Changeset 9149238 in sasmodels


Ignore:
Timestamp:
Dec 18, 2017 11:08:36 AM (7 years ago)
Author:
Paul Kienzle <pkienzle@…>
Branches:
master, core_shell_microgels, magnetic_model, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
Children:
c11d09f, ead25cb
Parents:
df69efa (diff), a1c32c2 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
Message:

Merge branch 'ticket-786' into generic_integration_loop

Files:
2 added
33 edited

Legend:

Unmodified
Added
Removed
  • explore/asymint.py

    r49eb251 ra1c32c2  
    9696 
    9797def make_core_shell_parallelepiped(a, b, c, da, db, dc, slda, sldb, sldc, env=NPenv): 
     98    overlapping = False 
    9899    a, b, c = env.mpf(a), env.mpf(b), env.mpf(c) 
    99100    da, db, dc = env.mpf(da), env.mpf(db), env.mpf(dc) 
    100101    slda, sldb, sldc = env.mpf(slda), env.mpf(sldb), env.mpf(sldc) 
    101     drV0 = CONTRAST*a*b*c 
    102     dra, drb, drc = slda-SLD_SOLVENT, sldb-SLD_SOLVENT, sldc-SLD_SOLVENT 
    103     Aa, Ab, Ac = b*c, a*c, a*b 
    104     Ta, Tb, Tc = a + 2*da, b + 2*db, c + 2*dc 
    105     drVa, drVb, drVc = dra*a*Aa, drb*b*Ab, drc*c*Ac 
    106     drVTa, drVTb, drVTc = dra*Ta*Aa, drb*Tb*Ab, drc*Tc*Ac 
    107     def Fq(qa, qb, qc): 
    108         siA = env.sas_sinx_x(a*qa/2) 
    109         siB = env.sas_sinx_x(b*qb/2) 
    110         siC = env.sas_sinx_x(c*qc/2) 
    111         siAt = env.sas_sinx_x(Ta*qa/2) 
    112         siBt = env.sas_sinx_x(Tb*qb/2) 
    113         siCt = env.sas_sinx_x(Tc*qc/2) 
    114         return (drV0*siA*siB*siC 
    115             + (drVTa*siAt-drVa*siA)*siB*siC 
    116             + siA*(drVTb*siBt-drVb*siB)*siC 
    117             + siA*siB*(drVTc*siCt-drVc*siC)) 
     102    dr0 = CONTRAST 
     103    drA, drB, drC = slda-SLD_SOLVENT, sldb-SLD_SOLVENT, sldc-SLD_SOLVENT 
     104    tA, tB, tC = a + 2*da, b + 2*db, c + 2*dc 
     105    def Fq(qa, qb, qc): 
     106        siA = a*env.sas_sinx_x(a*qa/2) 
     107        siB = b*env.sas_sinx_x(b*qb/2) 
     108        siC = c*env.sas_sinx_x(c*qc/2) 
     109        siAt = tA*env.sas_sinx_x(tA*qa/2) 
     110        siBt = tB*env.sas_sinx_x(tB*qb/2) 
     111        siCt = tC*env.sas_sinx_x(tC*qc/2) 
     112        if overlapping: 
     113            return (dr0*siA*siB*siC 
     114                    + drA*(siAt-siA)*siB*siC 
     115                    + drB*siAt*(siBt-siB)*siC 
     116                    + drC*siAt*siBt*(siCt-siC)) 
     117        else: 
     118            return (dr0*siA*siB*siC 
     119                    + drA*(siAt-siA)*siB*siC 
     120                    + drB*siA*(siBt-siB)*siC 
     121                    + drC*siA*siB*(siCt-siC)) 
    118122    Fq.__doc__ = "core-shell parallelepiped a=%g, b=%g c=%g"%(a, b, c) 
    119     volume = a*b*c + 2*da*Aa + 2*db*Ab + 2*dc*Ac 
     123    if overlapping: 
     124        volume = a*b*c + 2*da*b*c + 2*tA*db*c + 2*tA*tB*dc 
     125    else: 
     126        volume = a*b*c + 2*da*b*c + 2*a*db*c + 2*a*b*dc 
    120127    norm = 1/(volume*10000) 
    121128    return norm, Fq 
     
    216223    DA, DB, DC = 2300, 21, 58 
    217224    SLDA, SLDB, SLDC = "5", "-0.3", "11.5" 
     225    #A,B,C,DA,DB,DC,SLDA,SLDB,SLDC = 10,20,30,100,200,300,1,2,3 
     226    #SLD_SOLVENT,CONTRAST = 0, 4 
    218227    if 1: # C shortest 
    219228        B, C = C, B 
  • .gitignore

    rc26897a r9248bf7  
    2222/example/Fit_*/ 
    2323/example/batch_fit.csv 
     24/sasmodels/models/lib/gauss*.c 
  • doc/guide/plugin.rst

    r3048ec6 rd0dc9a3  
    543543    M_PI, M_PI_2, M_PI_4, M_SQRT1_2, M_E: 
    544544        $\pi$, $\pi/2$, $\pi/4$, $1/\sqrt{2}$ and Euler's constant $e$ 
    545     exp, log, pow(x,y), expm1, sqrt: 
    546         Power functions $e^x$, $\ln x$, $x^y$, $e^x - 1$, $\sqrt{x}$. 
    547         The function expm1(x) is accurate across all $x$, including $x$ 
    548         very close to zero. 
     545    exp, log, pow(x,y), expm1, log1p, sqrt, cbrt: 
     546        Power functions $e^x$, $\ln x$, $x^y$, $e^x - 1$, $\ln 1 + x$, 
     547        $\sqrt{x}$, $\sqrt[3]{x}$. The functions expm1(x) and log1p(x) 
     548        are accurate across all $x$, including $x$ very close to zero. 
    549549    sin, cos, tan, asin, acos, atan: 
    550550        Trigonometry functions and inverses, operating on radians. 
     
    557557        atan(y/x) would return a value in quadrant I. Similarly for 
    558558        quadrants II and IV when $x$ and $y$ have opposite sign. 
    559     fmin(x,y), fmax(x,y), trunc, rint: 
     559    fabs(x), fmin(x,y), fmax(x,y), trunc, rint: 
    560560        Floating point functions.  rint(x) returns the nearest integer. 
    561561    NAN: 
    562562        NaN, Not a Number, $0/0$.  Use isnan(x) to test for NaN.  Note that 
    563563        you cannot use :code:`x == NAN` to test for NaN values since that 
    564         will always return false.  NAN does not equal NAN! 
     564        will always return false.  NAN does not equal NAN!  The alternative, 
     565        :code:`x != x` may fail if the compiler optimizes the test away. 
    565566    INFINITY: 
    566567        $\infty, 1/0$.  Use isinf(x) to test for infinity, or isfinite(x) 
     
    734735        Similar arrays are available in :code:`gauss20.c` for 20-point 
    735736        quadrature and in :code:`gauss150.c` for 150-point quadrature. 
     737        The macros :code:`GAUSS_N`, :code:`GAUSS_Z` and :code:`GAUSS_W` are 
     738        defined so that you can change the order of the integration by 
     739        selecting an different source without touching the C code. 
    736740 
    737741        :code:`source = ["lib/gauss76.c", ...]` 
  • sasmodels/compare.py

    r0e55afe ra261a83  
    4242from .data import plot_theory, empty_data1D, empty_data2D, load_data 
    4343from .direct_model import DirectModel, get_mesh 
    44 from .generate import FLOAT_RE 
     44from .generate import FLOAT_RE, set_integration_size 
    4545from .weights import plot_weights 
    4646 
     
    706706    return data, index 
    707707 
    708 def make_engine(model_info, data, dtype, cutoff): 
     708def make_engine(model_info, data, dtype, cutoff, ngauss=0): 
    709709    # type: (ModelInfo, Data, str, float) -> Calculator 
    710710    """ 
     
    714714    than OpenCL. 
    715715    """ 
     716    if ngauss: 
     717        set_integration_size(model_info, ngauss) 
     718 
    716719    if dtype is None or not dtype.endswith('!'): 
    717720        return eval_opencl(model_info, data, dtype=dtype, cutoff=cutoff) 
     
    954957    'poly', 'mono', 'cutoff=', 
    955958    'magnetic', 'nonmagnetic', 
    956     'accuracy=', 
     959    'accuracy=', 'ngauss=', 
    957960    'neval=',  # for timing... 
    958961 
     
    10891092        'show_weights' : False, 
    10901093        'sphere'    : 0, 
     1094        'ngauss'    : '0', 
    10911095    } 
    10921096    for arg in flags: 
     
    11151119        elif arg.startswith('-engine='):   opts['engine'] = arg[8:] 
    11161120        elif arg.startswith('-neval='):    opts['count'] = arg[7:] 
     1121        elif arg.startswith('-ngauss='):   opts['ngauss'] = arg[8:] 
    11171122        elif arg.startswith('-random='): 
    11181123            opts['seed'] = int(arg[8:]) 
     
    11691174 
    11701175    comparison = any(PAR_SPLIT in v for v in values) 
     1176 
    11711177    if PAR_SPLIT in name: 
    11721178        names = name.split(PAR_SPLIT, 2) 
     
    11811187        return None 
    11821188 
     1189    if PAR_SPLIT in opts['ngauss']: 
     1190        opts['ngauss'] = [int(k) for k in opts['ngauss'].split(PAR_SPLIT, 2)] 
     1191        comparison = True 
     1192    else: 
     1193        opts['ngauss'] = [int(opts['ngauss'])]*2 
     1194 
    11831195    if PAR_SPLIT in opts['engine']: 
    11841196        opts['engine'] = opts['engine'].split(PAR_SPLIT, 2) 
     
    11991211        opts['cutoff'] = [float(opts['cutoff'])]*2 
    12001212 
    1201     base = make_engine(model_info[0], data, opts['engine'][0], opts['cutoff'][0]) 
     1213    base = make_engine(model_info[0], data, opts['engine'][0], 
     1214                       opts['cutoff'][0], opts['ngauss'][0]) 
    12021215    if comparison: 
    1203         comp = make_engine(model_info[1], data, opts['engine'][1], opts['cutoff'][1]) 
     1216        comp = make_engine(model_info[1], data, opts['engine'][1], 
     1217                           opts['cutoff'][1], opts['ngauss'][1]) 
    12041218    else: 
    12051219        comp = None 
  • sasmodels/generate.py

    r2d81cfe ra261a83  
    270270""" 
    271271 
     272 
     273def set_integration_size(info, n): 
     274    # type: (ModelInfo, int) -> None 
     275    """ 
     276    Update the model definition, replacing the gaussian integration with 
     277    a gaussian integration of a different size. 
     278 
     279    Note: this really ought to be a method in modelinfo, but that leads to 
     280    import loops. 
     281    """ 
     282    if (info.source and any(lib.startswith('lib/gauss') for lib in info.source)): 
     283        import os.path 
     284        from .gengauss import gengauss 
     285        path = os.path.join(MODEL_PATH, "lib", "gauss%d.c"%n) 
     286        if not os.path.exists(path): 
     287            gengauss(n, path) 
     288        info.source = ["lib/gauss%d.c"%n if lib.startswith('lib/gauss') 
     289                        else lib for lib in info.source] 
    272290 
    273291def format_units(units): 
  • sasmodels/models/barbell.c

    rbecded3 r74768cb  
    2323    const double qab_r = radius_bell*qab; // Q*R*sin(theta) 
    2424    double total = 0.0; 
    25     for (int i = 0; i < 76; i++){ 
    26         const double t = Gauss76Z[i]*zm + zb; 
     25    for (int i = 0; i < GAUSS_N; i++){ 
     26        const double t = GAUSS_Z[i]*zm + zb; 
    2727        const double radical = 1.0 - t*t; 
    2828        const double bj = sas_2J1x_x(qab_r*sqrt(radical)); 
    2929        const double Fq = cos(m*t + b) * radical * bj; 
    30         total += Gauss76Wt[i] * Fq; 
     30        total += GAUSS_W[i] * Fq; 
    3131    } 
    3232    // translate dx in [-1,1] to dx in [lower,upper] 
     
    7373    const double zb = M_PI_4; 
    7474    double total = 0.0; 
    75     for (int i = 0; i < 76; i++){ 
    76         const double alpha= Gauss76Z[i]*zm + zb; 
     75    for (int i = 0; i < GAUSS_N; i++){ 
     76        const double alpha= GAUSS_Z[i]*zm + zb; 
    7777        double sin_alpha, cos_alpha; // slots to hold sincos function output 
    7878        SINCOS(alpha, sin_alpha, cos_alpha); 
    7979        const double Aq = _fq(q*sin_alpha, q*cos_alpha, h, radius_bell, radius, half_length); 
    80         total += Gauss76Wt[i] * Aq * Aq * sin_alpha; 
     80        total += GAUSS_W[i] * Aq * Aq * sin_alpha; 
    8181    } 
    8282    // translate dx in [-1,1] to dx in [lower,upper] 
  • sasmodels/models/bcc_paracrystal.c

    rea60e08 r74768cb  
    8181 
    8282    double outer_sum = 0.0; 
    83     for(int i=0; i<150; i++) { 
     83    for(int i=0; i<GAUSS_N; i++) { 
    8484        double inner_sum = 0.0; 
    85         const double theta = Gauss150Z[i]*theta_m + theta_b; 
     85        const double theta = GAUSS_Z[i]*theta_m + theta_b; 
    8686        double sin_theta, cos_theta; 
    8787        SINCOS(theta, sin_theta, cos_theta); 
    8888        const double qc = q*cos_theta; 
    8989        const double qab = q*sin_theta; 
    90         for(int j=0;j<150;j++) { 
    91             const double phi = Gauss150Z[j]*phi_m + phi_b; 
     90        for(int j=0;j<GAUSS_N;j++) { 
     91            const double phi = GAUSS_Z[j]*phi_m + phi_b; 
    9292            double sin_phi, cos_phi; 
    9393            SINCOS(phi, sin_phi, cos_phi); 
     
    9595            const double qb = qab*sin_phi; 
    9696            const double form = bcc_Zq(qa, qb, qc, dnn, d_factor); 
    97             inner_sum += Gauss150Wt[j] * form; 
     97            inner_sum += GAUSS_W[j] * form; 
    9898        } 
    9999        inner_sum *= phi_m;  // sum(f(x)dx) = sum(f(x)) dx 
    100         outer_sum += Gauss150Wt[i] * inner_sum * sin_theta; 
     100        outer_sum += GAUSS_W[i] * inner_sum * sin_theta; 
    101101    } 
    102102    outer_sum *= theta_m; 
  • sasmodels/models/capped_cylinder.c

    rbecded3 r74768cb  
    3030    const double qab_r = radius_cap*qab; // Q*R*sin(theta) 
    3131    double total = 0.0; 
    32     for (int i=0; i<76 ;i++) { 
    33         const double t = Gauss76Z[i]*zm + zb; 
     32    for (int i=0; i<GAUSS_N; i++) { 
     33        const double t = GAUSS_Z[i]*zm + zb; 
    3434        const double radical = 1.0 - t*t; 
    3535        const double bj = sas_2J1x_x(qab_r*sqrt(radical)); 
    3636        const double Fq = cos(m*t + b) * radical * bj; 
    37         total += Gauss76Wt[i] * Fq; 
     37        total += GAUSS_W[i] * Fq; 
    3838    } 
    3939    // translate dx in [-1,1] to dx in [lower,upper] 
     
    9595    const double zb = M_PI_4; 
    9696    double total = 0.0; 
    97     for (int i=0; i<76 ;i++) { 
    98         const double theta = Gauss76Z[i]*zm + zb; 
     97    for (int i=0; i<GAUSS_N ;i++) { 
     98        const double theta = GAUSS_Z[i]*zm + zb; 
    9999        double sin_theta, cos_theta; // slots to hold sincos function output 
    100100        SINCOS(theta, sin_theta, cos_theta); 
     
    103103        const double Aq = _fq(qab, qc, h, radius_cap, radius, half_length); 
    104104        // scale by sin_theta for spherical coord integration 
    105         total += Gauss76Wt[i] * Aq * Aq * sin_theta; 
     105        total += GAUSS_W[i] * Aq * Aq * sin_theta; 
    106106    } 
    107107    // translate dx in [-1,1] to dx in [lower,upper] 
  • sasmodels/models/core_shell_bicelle.c

    rbecded3 r74768cb  
    5252 
    5353    double total = 0.0; 
    54     for(int i=0;i<N_POINTS_76;i++) { 
    55         double theta = (Gauss76Z[i] + 1.0)*uplim; 
     54    for(int i=0;i<GAUSS_N;i++) { 
     55        double theta = (GAUSS_Z[i] + 1.0)*uplim; 
    5656        double sin_theta, cos_theta; // slots to hold sincos function output 
    5757        SINCOS(theta, sin_theta, cos_theta); 
    5858        double fq = bicelle_kernel(q*sin_theta, q*cos_theta, radius, thick_radius, thick_face, 
    5959                                   halflength, sld_core, sld_face, sld_rim, sld_solvent); 
    60         total += Gauss76Wt[i]*fq*fq*sin_theta; 
     60        total += GAUSS_W[i]*fq*fq*sin_theta; 
    6161    } 
    6262 
  • sasmodels/models/core_shell_bicelle_elliptical.c

    r82592da rd4db147  
    3737    //initialize integral 
    3838    double outer_sum = 0.0; 
    39     for(int i=0;i<76;i++) { 
     39    for(int i=0;i<GAUSS_N;i++) { 
    4040        //setup inner integral over the ellipsoidal cross-section 
    4141        //const double va = 0.0; 
    4242        //const double vb = 1.0; 
    43         //const double cos_theta = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; 
    44         const double cos_theta = ( Gauss76Z[i] + 1.0 )/2.0; 
     43        //const double cos_theta = ( GAUSS_Z[i]*(vb-va) + va + vb )/2.0; 
     44        const double cos_theta = ( GAUSS_Z[i] + 1.0 )/2.0; 
    4545        const double sin_theta = sqrt(1.0 - cos_theta*cos_theta); 
    4646        const double qab = q*sin_theta; 
     
    4949        const double si2 = sas_sinx_x((halfheight+thick_face)*qc); 
    5050        double inner_sum=0.0; 
    51         for(int j=0;j<76;j++) { 
     51        for(int j=0;j<GAUSS_N;j++) { 
    5252            //76 gauss points for the inner integral (WAS 20 points,so this may make unecessarily slow, but playing safe) 
    5353            // inner integral limits 
    5454            //const double vaj=0.0; 
    5555            //const double vbj=M_PI; 
    56             //const double phi = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; 
    57             const double phi = ( Gauss76Z[j] +1.0)*M_PI_2; 
     56            //const double phi = ( GAUSS_Z[j]*(vbj-vaj) + vaj + vbj )/2.0; 
     57            const double phi = ( GAUSS_Z[j] +1.0)*M_PI_2; 
    5858            const double rr = sqrt(r2A - r2B*cos(phi)); 
    5959            const double be1 = sas_2J1x_x(rr*qab); 
     
    6161            const double fq = dr1*si1*be1 + dr2*si2*be2 + dr3*si2*be1; 
    6262 
    63             inner_sum += Gauss76Wt[j] * fq * fq; 
     63            inner_sum += GAUSS_W[j] * fq * fq; 
    6464        } 
    6565        //now calculate outer integral 
    66         outer_sum += Gauss76Wt[i] * inner_sum; 
     66        outer_sum += GAUSS_W[i] * inner_sum; 
    6767    } 
    6868 
  • sasmodels/models/core_shell_bicelle_elliptical_belt_rough.c

    r82592da rd4db147  
    77        double length) 
    88{ 
    9     return M_PI*(  (r_minor + thick_rim)*(r_minor*x_core + thick_rim)* length +  
     9    return M_PI*(  (r_minor + thick_rim)*(r_minor*x_core + thick_rim)* length + 
    1010                 square(r_minor)*x_core*2.0*thick_face  ); 
    1111} 
     
    4747    //initialize integral 
    4848    double outer_sum = 0.0; 
    49     for(int i=0;i<76;i++) { 
     49    for(int i=0;i<GAUSS_N;i++) { 
    5050        //setup inner integral over the ellipsoidal cross-section 
    5151        // since we generate these lots of times, why not store them somewhere? 
    52         //const double cos_alpha = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; 
    53         const double cos_alpha = ( Gauss76Z[i] + 1.0 )/2.0; 
     52        //const double cos_alpha = ( GAUSS_Z[i]*(vb-va) + va + vb )/2.0; 
     53        const double cos_alpha = ( GAUSS_Z[i] + 1.0 )/2.0; 
    5454        const double sin_alpha = sqrt(1.0 - cos_alpha*cos_alpha); 
    5555        double inner_sum=0; 
     
    5858        si1 = sas_sinx_x(sinarg1); 
    5959        si2 = sas_sinx_x(sinarg2); 
    60         for(int j=0;j<76;j++) { 
     60        for(int j=0;j<GAUSS_N;j++) { 
    6161            //76 gauss points for the inner integral (WAS 20 points,so this may make unecessarily slow, but playing safe) 
    62             //const double beta = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; 
    63             const double beta = ( Gauss76Z[j] +1.0)*M_PI_2; 
     62            //const double beta = ( GAUSS_Z[j]*(vbj-vaj) + vaj + vbj )/2.0; 
     63            const double beta = ( GAUSS_Z[j] +1.0)*M_PI_2; 
    6464            const double rr = sqrt(r2A - r2B*cos(beta)); 
    6565            double besarg1 = q*rr*sin_alpha; 
     
    6767            be1 = sas_2J1x_x(besarg1); 
    6868            be2 = sas_2J1x_x(besarg2); 
    69             inner_sum += Gauss76Wt[j] *square(dr1*si1*be1 + 
     69            inner_sum += GAUSS_W[j] *square(dr1*si1*be1 + 
    7070                                              dr2*si1*be2 + 
    7171                                              dr3*si2*be1); 
    7272        } 
    7373        //now calculate outer integral 
    74         outer_sum += Gauss76Wt[i] * inner_sum; 
     74        outer_sum += GAUSS_W[i] * inner_sum; 
    7575    } 
    7676 
  • sasmodels/models/core_shell_cylinder.c

    rbecded3 r74768cb  
    3030    const double shell_vd = form_volume(radius,thickness,length) * (shell_sld-solvent_sld); 
    3131    double total = 0.0; 
    32     for (int i=0; i<76 ;i++) { 
     32    for (int i=0; i<GAUSS_N ;i++) { 
    3333        // translate a point in [-1,1] to a point in [0, pi/2] 
    34         //const double theta = ( Gauss76Z[i]*(upper-lower) + upper + lower )/2.0; 
     34        //const double theta = ( GAUSS_Z[i]*(upper-lower) + upper + lower )/2.0; 
    3535        double sin_theta, cos_theta; 
    36         const double theta = Gauss76Z[i]*M_PI_4 + M_PI_4; 
     36        const double theta = GAUSS_Z[i]*M_PI_4 + M_PI_4; 
    3737        SINCOS(theta, sin_theta,  cos_theta); 
    3838        const double qab = q*sin_theta; 
     
    4040        const double fq = _cyl(core_vd, core_r*qab, core_h*qc) 
    4141            + _cyl(shell_vd, shell_r*qab, shell_h*qc); 
    42         total += Gauss76Wt[i] * fq * fq * sin_theta; 
     42        total += GAUSS_W[i] * fq * fq * sin_theta; 
    4343    } 
    4444    // translate dx in [-1,1] to dx in [lower,upper] 
  • sasmodels/models/core_shell_ellipsoid.c

    rbecded3 r74768cb  
    5959    const double b = 0.5; 
    6060    double total = 0.0;     //initialize intergral 
    61     for(int i=0;i<76;i++) { 
    62         const double cos_theta = Gauss76Z[i]*m + b; 
     61    for(int i=0;i<GAUSS_N;i++) { 
     62        const double cos_theta = GAUSS_Z[i]*m + b; 
    6363        const double sin_theta = sqrt(1.0 - cos_theta*cos_theta); 
    6464        double fq = _cs_ellipsoid_kernel(q*sin_theta, q*cos_theta, 
     
    6666            equat_shell, polar_shell, 
    6767            sld_core_shell, sld_shell_solvent); 
    68         total += Gauss76Wt[i] * fq * fq; 
     68        total += GAUSS_W[i] * fq * fq; 
    6969    } 
    7070    total *= m; 
  • sasmodels/models/core_shell_parallelepiped.c

    r4493288 ra261a83  
    6060    // outer integral (with gauss points), integration limits = 0, 1 
    6161    double outer_sum = 0; //initialize integral 
    62     for( int i=0; i<76; i++) { 
    63         const double cos_alpha = 0.5 * ( Gauss76Z[i] + 1.0 ); 
     62    for( int i=0; i<GAUSS_N; i++) { 
     63        const double cos_alpha = 0.5 * ( GAUSS_Z[i] + 1.0 ); 
    6464        const double mu = half_q * sqrt(1.0-cos_alpha*cos_alpha); 
    6565 
     
    6868        const double siCt = tC * sas_sinx_x(tC * cos_alpha * half_q); 
    6969        double inner_sum = 0.0; 
    70         for(int j=0; j<76; j++) { 
    71             const double beta = 0.5 * ( Gauss76Z[j] + 1.0 ); 
     70        for(int j=0; j<GAUSS_N; j++) { 
     71            const double beta = 0.5 * ( GAUSS_Z[j] + 1.0 ); 
    7272            double sin_beta, cos_beta; 
    7373            SINCOS(M_PI_2*beta, sin_beta, cos_beta); 
     
    8989#endif 
    9090 
    91             inner_sum += Gauss76Wt[j] * f * f; 
     91            inner_sum += GAUSS_W[j] * f * f; 
    9292        } 
    9393        inner_sum *= 0.5; 
    9494        // now sum up the outer integral 
    95         outer_sum += Gauss76Wt[i] * inner_sum; 
     95        outer_sum += GAUSS_W[i] * inner_sum; 
    9696    } 
    9797    outer_sum *= 0.5; 
  • sasmodels/models/cylinder.c

    rbecded3 r74768cb  
    2121 
    2222    double total = 0.0; 
    23     for (int i=0; i<76 ;i++) { 
    24         const double theta = Gauss76Z[i]*zm + zb; 
     23    for (int i=0; i<GAUSS_N ;i++) { 
     24        const double theta = GAUSS_Z[i]*zm + zb; 
    2525        double sin_theta, cos_theta; // slots to hold sincos function output 
    2626        // theta (theta,phi) the projection of the cylinder on the detector plane 
    2727        SINCOS(theta , sin_theta, cos_theta); 
    2828        const double form = fq(q*sin_theta, q*cos_theta, radius, length); 
    29         total += Gauss76Wt[i] * form * form * sin_theta; 
     29        total += GAUSS_W[i] * form * form * sin_theta; 
    3030    } 
    3131    // translate dx in [-1,1] to dx in [lower,upper] 
  • sasmodels/models/ellipsoid.c

    rbecded3 r74768cb  
    2222 
    2323    // translate a point in [-1,1] to a point in [0, 1] 
    24     // const double u = Gauss76Z[i]*(upper-lower)/2 + (upper+lower)/2; 
     24    // const double u = GAUSS_Z[i]*(upper-lower)/2 + (upper+lower)/2; 
    2525    const double zm = 0.5; 
    2626    const double zb = 0.5; 
    2727    double total = 0.0; 
    28     for (int i=0;i<76;i++) { 
    29         const double u = Gauss76Z[i]*zm + zb; 
     28    for (int i=0;i<GAUSS_N;i++) { 
     29        const double u = GAUSS_Z[i]*zm + zb; 
    3030        const double r = radius_equatorial*sqrt(1.0 + u*u*v_square_minus_one); 
    3131        const double f = sas_3j1x_x(q*r); 
    32         total += Gauss76Wt[i] * f * f; 
     32        total += GAUSS_W[i] * f * f; 
    3333    } 
    3434    // translate dx in [-1,1] to dx in [lower,upper] 
  • sasmodels/models/elliptical_cylinder.c

    r82592da rd4db147  
    2222    //initialize integral 
    2323    double outer_sum = 0.0; 
    24     for(int i=0;i<76;i++) { 
     24    for(int i=0;i<GAUSS_N;i++) { 
    2525        //setup inner integral over the ellipsoidal cross-section 
    26         const double cos_val = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; 
     26        const double cos_val = ( GAUSS_Z[i]*(vb-va) + va + vb )/2.0; 
    2727        const double sin_val = sqrt(1.0 - cos_val*cos_val); 
    2828        //const double arg = radius_minor*sin_val; 
    2929        double inner_sum=0; 
    30         for(int j=0;j<76;j++) { 
    31             //20 gauss points for the inner integral, increase to 76, RKH 6Nov2017 
    32             const double theta = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; 
     30        for(int j=0;j<GAUSS_N;j++) { 
     31            const double theta = ( GAUSS_Z[j]*(vbj-vaj) + vaj + vbj )/2.0; 
    3332            const double r = sin_val*sqrt(rA - rB*cos(theta)); 
    3433            const double be = sas_2J1x_x(q*r); 
    35             inner_sum += Gauss76Wt[j] * be * be; 
     34            inner_sum += GAUSS_W[j] * be * be; 
    3635        } 
    3736        //now calculate the value of the inner integral 
     
    4039        //now calculate outer integral 
    4140        const double si = sas_sinx_x(q*0.5*length*cos_val); 
    42         outer_sum += Gauss76Wt[i] * inner_sum * si * si; 
     41        outer_sum += GAUSS_W[i] * inner_sum * si * si; 
    4342    } 
    4443    outer_sum *= 0.5*(vb-va); 
  • sasmodels/models/elliptical_cylinder.py

    r2d81cfe ra261a83  
    121121# pylint: enable=bad-whitespace, line-too-long 
    122122 
    123 source = ["lib/polevl.c", "lib/sas_J1.c", "lib/gauss76.c", "lib/gauss20.c", 
    124           "elliptical_cylinder.c"] 
     123source = ["lib/polevl.c", "lib/sas_J1.c", "lib/gauss76.c", "elliptical_cylinder.c"] 
    125124 
    126125demo = dict(scale=1, background=0, radius_minor=100, axis_ratio=1.5, length=400.0, 
  • sasmodels/models/fcc_paracrystal.c

    rf728001 r74768cb  
    5353 
    5454    double outer_sum = 0.0; 
    55     for(int i=0; i<150; i++) { 
     55    for(int i=0; i<GAUSS_N; i++) { 
    5656        double inner_sum = 0.0; 
    57         const double theta = Gauss150Z[i]*theta_m + theta_b; 
     57        const double theta = GAUSS_Z[i]*theta_m + theta_b; 
    5858        double sin_theta, cos_theta; 
    5959        SINCOS(theta, sin_theta, cos_theta); 
    6060        const double qc = q*cos_theta; 
    6161        const double qab = q*sin_theta; 
    62         for(int j=0;j<150;j++) { 
    63             const double phi = Gauss150Z[j]*phi_m + phi_b; 
     62        for(int j=0;j<GAUSS_N;j++) { 
     63            const double phi = GAUSS_Z[j]*phi_m + phi_b; 
    6464            double sin_phi, cos_phi; 
    6565            SINCOS(phi, sin_phi, cos_phi); 
     
    6767            const double qb = qab*sin_phi; 
    6868            const double form = fcc_Zq(qa, qb, qc, dnn, d_factor); 
    69             inner_sum += Gauss150Wt[j] * form; 
     69            inner_sum += GAUSS_W[j] * form; 
    7070        } 
    7171        inner_sum *= phi_m;  // sum(f(x)dx) = sum(f(x)) dx 
    72         outer_sum += Gauss150Wt[i] * inner_sum * sin_theta; 
     72        outer_sum += GAUSS_W[i] * inner_sum * sin_theta; 
    7373    } 
    7474    outer_sum *= theta_m; 
  • sasmodels/models/flexible_cylinder_elliptical.c

    r592343f r74768cb  
    1717    double sum=0.0; 
    1818 
    19     for(int i=0;i<N_POINTS_76;i++) { 
    20         const double zi = ( Gauss76Z[i] + 1.0 )*M_PI_4; 
     19    for(int i=0;i<GAUSS_N;i++) { 
     20        const double zi = ( GAUSS_Z[i] + 1.0 )*M_PI_4; 
    2121        double sn, cn; 
    2222        SINCOS(zi, sn, cn); 
    2323        const double arg = q*sqrt(a*a*sn*sn + b*b*cn*cn); 
    2424        const double yyy = sas_2J1x_x(arg); 
    25         sum += Gauss76Wt[i] * yyy * yyy; 
     25        sum += GAUSS_W[i] * yyy * yyy; 
    2626    } 
    2727    sum *= 0.5; 
  • sasmodels/models/hollow_cylinder.c

    rbecded3 r74768cb  
    3838 
    3939    double summ = 0.0;            //initialize intergral 
    40     for (int i=0;i<76;i++) { 
    41         const double cos_theta = 0.5*( Gauss76Z[i] * (upper-lower) + lower + upper ); 
     40    for (int i=0;i<GAUSS_N;i++) { 
     41        const double cos_theta = 0.5*( GAUSS_Z[i] * (upper-lower) + lower + upper ); 
    4242        const double sin_theta = sqrt(1.0 - cos_theta*cos_theta); 
    4343        const double form = _fq(q*sin_theta, q*cos_theta, 
    4444                                radius, thickness, length); 
    45         summ += Gauss76Wt[i] * form * form; 
     45        summ += GAUSS_W[i] * form * form; 
    4646    } 
    4747 
  • sasmodels/models/hollow_rectangular_prism.c

    r8de1477 r74768cb  
    3939 
    4040    double outer_sum = 0.0; 
    41     for(int i=0; i<76; i++) { 
     41    for(int i=0; i<GAUSS_N; i++) { 
    4242 
    43         const double theta = 0.5 * ( Gauss76Z[i]*(v1b-v1a) + v1a + v1b ); 
     43        const double theta = 0.5 * ( GAUSS_Z[i]*(v1b-v1a) + v1a + v1b ); 
    4444        double sin_theta, cos_theta; 
    4545        SINCOS(theta, sin_theta, cos_theta); 
     
    4949 
    5050        double inner_sum = 0.0; 
    51         for(int j=0; j<76; j++) { 
     51        for(int j=0; j<GAUSS_N; j++) { 
    5252 
    53             const double phi = 0.5 * ( Gauss76Z[j]*(v2b-v2a) + v2a + v2b ); 
     53            const double phi = 0.5 * ( GAUSS_Z[j]*(v2b-v2a) + v2a + v2b ); 
    5454            double sin_phi, cos_phi; 
    5555            SINCOS(phi, sin_phi, cos_phi); 
     
    6666            const double AP2 = vol_core * termA2 * termB2 * termC2; 
    6767 
    68             inner_sum += Gauss76Wt[j] * square(AP1-AP2); 
     68            inner_sum += GAUSS_W[j] * square(AP1-AP2); 
    6969        } 
    7070        inner_sum *= 0.5 * (v2b-v2a); 
    7171 
    72         outer_sum += Gauss76Wt[i] * inner_sum * sin(theta); 
     72        outer_sum += GAUSS_W[i] * inner_sum * sin(theta); 
    7373    } 
    7474    outer_sum *= 0.5*(v1b-v1a); 
  • sasmodels/models/hollow_rectangular_prism_thin_walls.c

    rab2aea8 r74768cb  
    11double form_volume(double length_a, double b2a_ratio, double c2a_ratio); 
    2 double Iq(double q, double sld, double solvent_sld, double length_a,  
     2double Iq(double q, double sld, double solvent_sld, double length_a, 
    33          double b2a_ratio, double c2a_ratio); 
    44 
     
    2929    const double v2a = 0.0; 
    3030    const double v2b = M_PI_2;  //phi integration limits 
    31      
     31 
    3232    double outer_sum = 0.0; 
    33     for(int i=0; i<76; i++) { 
    34         const double theta = 0.5 * ( Gauss76Z[i]*(v1b-v1a) + v1a + v1b ); 
     33    for(int i=0; i<GAUSS_N; i++) { 
     34        const double theta = 0.5 * ( GAUSS_Z[i]*(v1b-v1a) + v1a + v1b ); 
    3535 
    3636        double sin_theta, cos_theta; 
     
    4444 
    4545        double inner_sum = 0.0; 
    46         for(int j=0; j<76; j++) { 
    47             const double phi = 0.5 * ( Gauss76Z[j]*(v2b-v2a) + v2a + v2b ); 
     46        for(int j=0; j<GAUSS_N; j++) { 
     47            const double phi = 0.5 * ( GAUSS_Z[j]*(v2b-v2a) + v2a + v2b ); 
    4848 
    4949            double sin_phi, cos_phi; 
     
    6262                * ( cos_a*sin_b/cos_phi + cos_b*sin_a/sin_phi ); 
    6363 
    64             inner_sum += Gauss76Wt[j] * square(AL+AT); 
     64            inner_sum += GAUSS_W[j] * square(AL+AT); 
    6565        } 
    6666 
    6767        inner_sum *= 0.5 * (v2b-v2a); 
    68         outer_sum += Gauss76Wt[i] * inner_sum * sin_theta; 
     68        outer_sum += GAUSS_W[i] * inner_sum * sin_theta; 
    6969    } 
    7070 
  • sasmodels/models/lib/gauss150.c

    r994d77f r74768cb  
    77 * 
    88 */ 
     9 #ifdef GAUSS_N 
     10 # undef GAUSS_N 
     11 # undef GAUSS_Z 
     12 # undef GAUSS_W 
     13 #endif 
     14 #define GAUSS_N 150 
     15 #define GAUSS_Z Gauss150Z 
     16 #define GAUSS_W Gauss150Wt 
     17 
     18// Note: using array size 152 so that it is a multiple of 4 
    919 
    1020// Gaussians 
    11 constant double Gauss150Z[150]={ 
     21constant double Gauss150Z[152]={ 
    1222        -0.9998723404457334, 
    1323        -0.9993274305065947, 
     
    159169        0.9983473449340834, 
    160170        0.9993274305065947, 
    161         0.9998723404457334 
     171        0.9998723404457334, 
     172        0., 
     173        0. 
    162174}; 
    163175 
    164 constant double Gauss150Wt[150]={ 
     176constant double Gauss150Wt[152]={ 
    165177        0.0003276086705538, 
    166178        0.0007624720924706, 
     
    312324        0.0011976474864367, 
    313325        0.0007624720924706, 
    314         0.0003276086705538 
     326        0.0003276086705538, 
     327        0., 
     328        0. 
    315329}; 
  • sasmodels/models/lib/gauss20.c

    r994d77f r74768cb  
    77 * 
    88 */ 
     9 #ifdef GAUSS_N 
     10 # undef GAUSS_N 
     11 # undef GAUSS_Z 
     12 # undef GAUSS_W 
     13 #endif 
     14 #define GAUSS_N 20 
     15 #define GAUSS_Z Gauss20Z 
     16 #define GAUSS_W Gauss20Wt 
    917 
    1018// Gaussians 
  • sasmodels/models/lib/gauss76.c

    r66d119f r74768cb  
    77 * 
    88 */ 
    9 #define N_POINTS_76 76 
     9 #ifdef GAUSS_N 
     10 # undef GAUSS_N 
     11 # undef GAUSS_Z 
     12 # undef GAUSS_W 
     13 #endif 
     14 #define GAUSS_N 76 
     15 #define GAUSS_Z Gauss76Z 
     16 #define GAUSS_W Gauss76Wt 
    1017 
    1118// Gaussians 
    12 constant double Gauss76Wt[N_POINTS_76]={ 
     19constant double Gauss76Wt[76]={ 
    1320        .00126779163408536,             //0 
    1421        .00294910295364247, 
     
    8996}; 
    9097 
    91 constant double Gauss76Z[N_POINTS_76]={ 
     98constant double Gauss76Z[76]={ 
    9299        -.999505948362153,              //0 
    93100        -.997397786355355, 
  • sasmodels/models/parallelepiped.c

    r9b7b23f r74768cb  
    2323    double outer_total = 0; //initialize integral 
    2424 
    25     for( int i=0; i<76; i++) { 
    26         const double sigma = 0.5 * ( Gauss76Z[i] + 1.0 ); 
     25    for( int i=0; i<GAUSS_N; i++) { 
     26        const double sigma = 0.5 * ( GAUSS_Z[i] + 1.0 ); 
    2727        const double mu_proj = mu * sqrt(1.0-sigma*sigma); 
    2828 
     
    3030        // corresponding to angles from 0 to pi/2. 
    3131        double inner_total = 0.0; 
    32         for(int j=0; j<76; j++) { 
    33             const double uu = 0.5 * ( Gauss76Z[j] + 1.0 ); 
     32        for(int j=0; j<GAUSS_N; j++) { 
     33            const double uu = 0.5 * ( GAUSS_Z[j] + 1.0 ); 
    3434            double sin_uu, cos_uu; 
    3535            SINCOS(M_PI_2*uu, sin_uu, cos_uu); 
    3636            const double si1 = sas_sinx_x(mu_proj * sin_uu * a_scaled); 
    3737            const double si2 = sas_sinx_x(mu_proj * cos_uu); 
    38             inner_total += Gauss76Wt[j] * square(si1 * si2); 
     38            inner_total += GAUSS_W[j] * square(si1 * si2); 
    3939        } 
    4040        inner_total *= 0.5; 
    4141 
    4242        const double si = sas_sinx_x(mu * c_scaled * sigma); 
    43         outer_total += Gauss76Wt[i] * inner_total * si * si; 
     43        outer_total += GAUSS_W[i] * inner_total * si * si; 
    4444    } 
    4545    outer_total *= 0.5; 
  • sasmodels/models/pringle.c

    r1e7b0db0 r74768cb  
    2929    double sumC = 0.0;          // initialize integral 
    3030    double r; 
    31     for (int i=0; i < 76; i++) { 
    32         r = Gauss76Z[i]*zm + zb; 
     31    for (int i=0; i < GAUSS_N; i++) { 
     32        r = GAUSS_Z[i]*zm + zb; 
    3333 
    3434        const double qrs = r*q_sin_psi; 
    3535        const double qrrc = r*r*q_cos_psi; 
    3636 
    37         double y = Gauss76Wt[i] * r * sas_JN(n, beta*qrrc) * sas_JN(2*n, qrs); 
     37        double y = GAUSS_W[i] * r * sas_JN(n, beta*qrrc) * sas_JN(2*n, qrs); 
    3838        double S, C; 
    3939        SINCOS(alpha*qrrc, S, C); 
     
    8686 
    8787    double sum = 0.0; 
    88     for (int i = 0; i < 76; i++) { 
    89         double psi = Gauss76Z[i]*zm + zb; 
     88    for (int i = 0; i < GAUSS_N; i++) { 
     89        double psi = GAUSS_Z[i]*zm + zb; 
    9090        double sin_psi, cos_psi; 
    9191        SINCOS(psi, sin_psi, cos_psi); 
     
    9393        double sinc_term = square(sas_sinx_x(q * thickness * cos_psi / 2.0)); 
    9494        double pringle_kernel = 4.0 * sin_psi * bessel_term * sinc_term; 
    95         sum += Gauss76Wt[i] * pringle_kernel; 
     95        sum += GAUSS_W[i] * pringle_kernel; 
    9696    } 
    9797 
  • sasmodels/models/rectangular_prism.c

    r8de1477 r74768cb  
    2828 
    2929    double outer_sum = 0.0; 
    30     for(int i=0; i<76; i++) { 
    31         const double theta = 0.5 * ( Gauss76Z[i]*(v1b-v1a) + v1a + v1b ); 
     30    for(int i=0; i<GAUSS_N; i++) { 
     31        const double theta = 0.5 * ( GAUSS_Z[i]*(v1b-v1a) + v1a + v1b ); 
    3232        double sin_theta, cos_theta; 
    3333        SINCOS(theta, sin_theta, cos_theta); 
     
    3636 
    3737        double inner_sum = 0.0; 
    38         for(int j=0; j<76; j++) { 
    39             double phi = 0.5 * ( Gauss76Z[j]*(v2b-v2a) + v2a + v2b ); 
     38        for(int j=0; j<GAUSS_N; j++) { 
     39            double phi = 0.5 * ( GAUSS_Z[j]*(v2b-v2a) + v2a + v2b ); 
    4040            double sin_phi, cos_phi; 
    4141            SINCOS(phi, sin_phi, cos_phi); 
     
    4545            const double termB = sas_sinx_x(q * b_half * sin_theta * cos_phi); 
    4646            const double AP = termA * termB * termC; 
    47             inner_sum += Gauss76Wt[j] * AP * AP; 
     47            inner_sum += GAUSS_W[j] * AP * AP; 
    4848        } 
    4949        inner_sum = 0.5 * (v2b-v2a) * inner_sum; 
    50         outer_sum += Gauss76Wt[i] * inner_sum * sin_theta; 
     50        outer_sum += GAUSS_W[i] * inner_sum * sin_theta; 
    5151    } 
    5252 
  • sasmodels/models/sc_paracrystal.c

    rf728001 r74768cb  
    5454 
    5555    double outer_sum = 0.0; 
    56     for(int i=0; i<150; i++) { 
     56    for(int i=0; i<GAUSS_N; i++) { 
    5757        double inner_sum = 0.0; 
    58         const double theta = Gauss150Z[i]*theta_m + theta_b; 
     58        const double theta = GAUSS_Z[i]*theta_m + theta_b; 
    5959        double sin_theta, cos_theta; 
    6060        SINCOS(theta, sin_theta, cos_theta); 
    6161        const double qc = q*cos_theta; 
    6262        const double qab = q*sin_theta; 
    63         for(int j=0;j<150;j++) { 
    64             const double phi = Gauss150Z[j]*phi_m + phi_b; 
     63        for(int j=0;j<GAUSS_N;j++) { 
     64            const double phi = GAUSS_Z[j]*phi_m + phi_b; 
    6565            double sin_phi, cos_phi; 
    6666            SINCOS(phi, sin_phi, cos_phi); 
     
    6868            const double qb = qab*sin_phi; 
    6969            const double form = sc_Zq(qa, qb, qc, dnn, d_factor); 
    70             inner_sum += Gauss150Wt[j] * form; 
     70            inner_sum += GAUSS_W[j] * form; 
    7171        } 
    7272        inner_sum *= phi_m;  // sum(f(x)dx) = sum(f(x)) dx 
    73         outer_sum += Gauss150Wt[i] * inner_sum * sin_theta; 
     73        outer_sum += GAUSS_W[i] * inner_sum * sin_theta; 
    7474    } 
    7575    outer_sum *= theta_m; 
  • sasmodels/models/stacked_disks.c

    rbecded3 r74768cb  
    8181    double halfheight = 0.5*thick_core; 
    8282 
    83     for(int i=0; i<N_POINTS_76; i++) { 
    84         double zi = (Gauss76Z[i] + 1.0)*M_PI_4; 
     83    for(int i=0; i<GAUSS_N; i++) { 
     84        double zi = (GAUSS_Z[i] + 1.0)*M_PI_4; 
    8585        double sin_alpha, cos_alpha; // slots to hold sincos function output 
    8686        SINCOS(zi, sin_alpha, cos_alpha); 
     
    9595                           solvent_sld, 
    9696                           d); 
    97         summ += Gauss76Wt[i] * yyy * sin_alpha; 
     97        summ += GAUSS_W[i] * yyy * sin_alpha; 
    9898    } 
    9999 
  • sasmodels/models/triaxial_ellipsoid.c

    rbecded3 r74768cb  
    2121    const double zb = M_PI_4; 
    2222    double outer = 0.0; 
    23     for (int i=0;i<76;i++) { 
    24         //const double u = Gauss76Z[i]*(upper-lower)/2 + (upper + lower)/2; 
    25         const double phi = Gauss76Z[i]*zm + zb; 
     23    for (int i=0;i<GAUSS_N;i++) { 
     24        //const double u = GAUSS_Z[i]*(upper-lower)/2 + (upper + lower)/2; 
     25        const double phi = GAUSS_Z[i]*zm + zb; 
    2626        const double pa_sinsq_phi = pa*square(sin(phi)); 
    2727 
     
    2929        const double um = 0.5; 
    3030        const double ub = 0.5; 
    31         for (int j=0;j<76;j++) { 
     31        for (int j=0;j<GAUSS_N;j++) { 
    3232            // translate a point in [-1,1] to a point in [0, 1] 
    33             const double usq = square(Gauss76Z[j]*um + ub); 
     33            const double usq = square(GAUSS_Z[j]*um + ub); 
    3434            const double r = radius_equat_major*sqrt(pa_sinsq_phi*(1.0-usq) + 1.0 + pc*usq); 
    3535            const double fq = sas_3j1x_x(q*r); 
    36             inner += Gauss76Wt[j] * fq * fq; 
     36            inner += GAUSS_W[j] * fq * fq; 
    3737        } 
    38         outer += Gauss76Wt[i] * inner;  // correcting for dx later 
     38        outer += GAUSS_W[i] * inner;  // correcting for dx later 
    3939    } 
    4040    // translate integration ranges from [-1,1] to [lower,upper] and normalize by 4 pi 
  • sasmodels/special.py

    re65c3ba rdf69efa  
    33................. 
    44 
    5 The C code follows the C99 standard, with the usual math functions, 
    6 as defined in 
    7 `OpenCL <https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/mathFunctions.html>`_. 
    8 This includes the following: 
     5This following standard C99 math functions are available: 
    96 
    107    M_PI, M_PI_2, M_PI_4, M_SQRT1_2, M_E: 
    118        $\pi$, $\pi/2$, $\pi/4$, $1/\sqrt{2}$ and Euler's constant $e$ 
    129 
    13     exp, log, pow(x,y), expm1, sqrt: 
    14         Power functions $e^x$, $\ln x$, $x^y$, $e^x - 1$, $\sqrt{x}$. 
    15         The function expm1(x) is accurate across all $x$, including $x$ 
    16         very close to zero. 
     10    exp, log, pow(x,y), expm1, log1p, sqrt, cbrt: 
     11        Power functions $e^x$, $\ln x$, $x^y$, $e^x - 1$, $\ln 1 + x$, 
     12        $\sqrt{x}$, $\sqrt[3]{x}$. The functions expm1(x) and log1p(x) 
     13        are accurate across all $x$, including $x$ very close to zero. 
    1714 
    1815    sin, cos, tan, asin, acos, atan: 
     
    2926        quadrants II and IV when $x$ and $y$ have opposite sign. 
    3027 
    31     fmin(x,y), fmax(x,y), trunc, rint: 
     28    fabs(x), fmin(x,y), fmax(x,y), trunc, rint: 
    3229        Floating point functions.  rint(x) returns the nearest integer. 
    3330 
     
    3532        NaN, Not a Number, $0/0$.  Use isnan(x) to test for NaN.  Note that 
    3633        you cannot use :code:`x == NAN` to test for NaN values since that 
    37         will always return false.  NAN does not equal NAN! 
     34        will always return false.  NAN does not equal NAN!  The alternative, 
     35        :code:`x != x` may fail if the compiler optimizes the test away. 
    3836 
    3937    INFINITY: 
     
    8987        for forcing a constant to stay double precision. 
    9088 
    91 The following special functions and scattering calculations are defined in 
    92 `sasmodels/models/lib <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib>`_. 
     89The following special functions and scattering calculations are defined. 
    9390These functions have been tuned to be fast and numerically stable down 
    9491to $q=0$ even in single precision.  In some cases they work around bugs 
     
    184181 
    185182 
    186     Gauss76Z[i], Gauss76Wt[i]: 
     183    gauss76.n, gauss76.z[i], gauss76.w[i]: 
    187184        Points $z_i$ and weights $w_i$ for 76-point Gaussian quadrature, respectively, 
    188185        computing $\int_{-1}^1 f(z)\,dz \approx \sum_{i=1}^{76} w_i\,f(z_i)$. 
    189  
    190         Similar arrays are available in :code:`gauss20.c` for 20-point 
    191         quadrature and in :code:`gauss150.c` for 150-point quadrature. 
    192  
     186        When translating the model to C, include 'lib/gauss76.c' in the source 
     187        and use :code:`GAUSS_N`, :code:`GAUSS_Z`, and :code:`GAUSS_W`. 
     188 
     189        Similar arrays are available in :code:`gauss20` for 20-point quadrature 
     190        and :code:`gauss150.c` for 150-point quadrature. By using 
     191        :code:`import gauss76 as gauss` it is easy to change the number of 
     192        points in the integration. 
    193193""" 
    194194# pylint: disable=unused-import 
     
    200200 
    201201# C99 standard math library functions 
    202 from numpy import exp, log, power as pow, expm1, sqrt 
     202from numpy import exp, log, power as pow, expm1, log1p, sqrt, cbrt 
    203203from numpy import sin, cos, tan, arcsin as asin, arccos as acos, arctan as atan 
    204204from numpy import sinh, cosh, tanh, arcsinh as asinh, arccosh as acosh, arctanh as atanh 
    205205from numpy import arctan2 as atan2 
    206 from numpy import fmin, fmax, trunc, rint 
    207 from numpy import NAN, inf as INFINITY 
    208  
     206from numpy import fabs, fmin, fmax, trunc, rint 
     207from numpy import pi, nan, inf 
    209208from scipy.special import gamma as sas_gamma 
    210209from scipy.special import erf as sas_erf 
     
    218217# C99 standard math constants 
    219218M_PI, M_PI_2, M_PI_4, M_SQRT1_2, M_E = np.pi, np.pi/2, np.pi/4, np.sqrt(0.5), np.e 
     219NAN = nan 
     220INFINITY = inf 
    220221 
    221222# non-standard constants 
     
    226227    """return sin(x), cos(x)""" 
    227228    return sin(x), cos(x) 
     229sincos = SINCOS 
    228230 
    229231def square(x): 
     
    294296 
    295297# Gaussians 
    296  
    297 Gauss20Wt = np.array([ 
    298     .0176140071391521, 
    299     .0406014298003869, 
    300     .0626720483341091, 
    301     .0832767415767047, 
    302     .10193011981724, 
    303     .118194531961518, 
    304     .131688638449177, 
    305     .142096109318382, 
    306     .149172986472604, 
    307     .152753387130726, 
    308     .152753387130726, 
    309     .149172986472604, 
    310     .142096109318382, 
    311     .131688638449177, 
    312     .118194531961518, 
    313     .10193011981724, 
    314     .0832767415767047, 
    315     .0626720483341091, 
    316     .0406014298003869, 
    317     .0176140071391521 
    318 ]) 
    319  
    320 Gauss20Z = np.array([ 
    321     -.993128599185095, 
    322     -.963971927277914, 
    323     -.912234428251326, 
    324     -.839116971822219, 
    325     -.746331906460151, 
    326     -.636053680726515, 
    327     -.510867001950827, 
    328     -.37370608871542, 
    329     -.227785851141645, 
    330     -.076526521133497, 
    331     .0765265211334973, 
    332     .227785851141645, 
    333     .37370608871542, 
    334     .510867001950827, 
    335     .636053680726515, 
    336     .746331906460151, 
    337     .839116971822219, 
    338     .912234428251326, 
    339     .963971927277914, 
    340     .993128599185095 
    341 ]) 
    342  
    343 Gauss76Wt = np.array([ 
    344     .00126779163408536,         #0 
    345     .00294910295364247, 
    346     .00462793522803742, 
    347     .00629918049732845, 
    348     .00795984747723973, 
    349     .00960710541471375, 
    350     .0112381685696677, 
    351     .0128502838475101, 
    352     .0144407317482767, 
    353     .0160068299122486, 
    354     .0175459372914742,          #10 
    355     .0190554584671906, 
    356     .020532847967908, 
    357     .0219756145344162, 
    358     .0233813253070112, 
    359     .0247476099206597, 
    360     .026072164497986, 
    361     .0273527555318275, 
    362     .028587223650054, 
    363     .029773487255905, 
    364     .0309095460374916,          #20 
    365     .0319934843404216, 
    366     .0330234743977917, 
    367     .0339977794120564, 
    368     .0349147564835508, 
    369     .0357728593807139, 
    370     .0365706411473296, 
    371     .0373067565423816, 
    372     .0379799643084053, 
    373     .0385891292645067, 
    374     .0391332242205184,          #30 
    375     .0396113317090621, 
    376     .0400226455325968, 
    377     .040366472122844, 
    378     .0406422317102947, 
    379     .0408494593018285, 
    380     .040987805464794, 
    381     .0410570369162294, 
    382     .0410570369162294, 
    383     .040987805464794, 
    384     .0408494593018285,          #40 
    385     .0406422317102947, 
    386     .040366472122844, 
    387     .0400226455325968, 
    388     .0396113317090621, 
    389     .0391332242205184, 
    390     .0385891292645067, 
    391     .0379799643084053, 
    392     .0373067565423816, 
    393     .0365706411473296, 
    394     .0357728593807139,          #50 
    395     .0349147564835508, 
    396     .0339977794120564, 
    397     .0330234743977917, 
    398     .0319934843404216, 
    399     .0309095460374916, 
    400     .029773487255905, 
    401     .028587223650054, 
    402     .0273527555318275, 
    403     .026072164497986, 
    404     .0247476099206597,          #60 
    405     .0233813253070112, 
    406     .0219756145344162, 
    407     .020532847967908, 
    408     .0190554584671906, 
    409     .0175459372914742, 
    410     .0160068299122486, 
    411     .0144407317482767, 
    412     .0128502838475101, 
    413     .0112381685696677, 
    414     .00960710541471375,         #70 
    415     .00795984747723973, 
    416     .00629918049732845, 
    417     .00462793522803742, 
    418     .00294910295364247, 
    419     .00126779163408536          #75 (indexed from 0) 
    420 ]) 
    421  
    422 Gauss76Z = np.array([ 
    423     -.999505948362153,          #0 
    424     -.997397786355355, 
    425     -.993608772723527, 
    426     -.988144453359837, 
    427     -.981013938975656, 
    428     -.972229228520377, 
    429     -.961805126758768, 
    430     -.949759207710896, 
    431     -.936111781934811, 
    432     -.92088586125215, 
    433     -.904107119545567,          #10 
    434     -.885803849292083, 
    435     -.866006913771982, 
    436     -.844749694983342, 
    437     -.822068037328975, 
    438     -.7980001871612, 
    439     -.77258672828181, 
    440     -.74587051350361, 
    441     -.717896592387704, 
    442     -.688712135277641, 
    443     -.658366353758143,          #20 
    444     -.626910417672267, 
    445     -.594397368836793, 
    446     -.560882031601237, 
    447     -.526420920401243, 
    448     -.491072144462194, 
    449     -.454895309813726, 
    450     -.417951418780327, 
    451     -.380302767117504, 
    452     -.342012838966962, 
    453     -.303146199807908,          #30 
    454     -.263768387584994, 
    455     -.223945802196474, 
    456     -.183745593528914, 
    457     -.143235548227268, 
    458     -.102483975391227, 
    459     -.0615595913906112, 
    460     -.0205314039939986, 
    461     .0205314039939986, 
    462     .0615595913906112, 
    463     .102483975391227,                   #40 
    464     .143235548227268, 
    465     .183745593528914, 
    466     .223945802196474, 
    467     .263768387584994, 
    468     .303146199807908, 
    469     .342012838966962, 
    470     .380302767117504, 
    471     .417951418780327, 
    472     .454895309813726, 
    473     .491072144462194,           #50 
    474     .526420920401243, 
    475     .560882031601237, 
    476     .594397368836793, 
    477     .626910417672267, 
    478     .658366353758143, 
    479     .688712135277641, 
    480     .717896592387704, 
    481     .74587051350361, 
    482     .77258672828181, 
    483     .7980001871612,     #60 
    484     .822068037328975, 
    485     .844749694983342, 
    486     .866006913771982, 
    487     .885803849292083, 
    488     .904107119545567, 
    489     .92088586125215, 
    490     .936111781934811, 
    491     .949759207710896, 
    492     .961805126758768, 
    493     .972229228520377,           #70 
    494     .981013938975656, 
    495     .988144453359837, 
    496     .993608772723527, 
    497     .997397786355355, 
    498     .999505948362153            #75 
    499 ]) 
    500  
    501 Gauss150Z = np.array([ 
    502     -0.9998723404457334, 
    503     -0.9993274305065947, 
    504     -0.9983473449340834, 
    505     -0.9969322929775997, 
    506     -0.9950828645255290, 
    507     -0.9927998590434373, 
    508     -0.9900842691660192, 
    509     -0.9869372772712794, 
    510     -0.9833602541697529, 
    511     -0.9793547582425894, 
    512     -0.9749225346595943, 
    513     -0.9700655145738374, 
    514     -0.9647858142586956, 
    515     -0.9590857341746905, 
    516     -0.9529677579610971, 
    517     -0.9464345513503147, 
    518     -0.9394889610042837, 
    519     -0.9321340132728527, 
    520     -0.9243729128743136, 
    521     -0.9162090414984952, 
    522     -0.9076459563329236, 
    523     -0.8986873885126239, 
    524     -0.8893372414942055, 
    525     -0.8795995893549102, 
    526     -0.8694786750173527, 
    527     -0.8589789084007133, 
    528     -0.8481048644991847, 
    529     -0.8368612813885015, 
    530     -0.8252530581614230, 
    531     -0.8132852527930605, 
    532     -0.8009630799369827, 
    533     -0.7882919086530552, 
    534     -0.7752772600680049, 
    535     -0.7619248049697269, 
    536     -0.7482403613363824, 
    537     -0.7342298918013638, 
    538     -0.7198995010552305, 
    539     -0.7052554331857488, 
    540     -0.6903040689571928, 
    541     -0.6750519230300931, 
    542     -0.6595056411226444, 
    543     -0.6436719971150083, 
    544     -0.6275578900977726, 
    545     -0.6111703413658551, 
    546     -0.5945164913591590, 
    547     -0.5776035965513142, 
    548     -0.5604390262878617, 
    549     -0.5430302595752546, 
    550     -0.5253848818220803, 
    551     -0.5075105815339176, 
    552     -0.4894151469632753, 
    553     -0.4711064627160663, 
    554     -0.4525925063160997, 
    555     -0.4338813447290861, 
    556     -0.4149811308476706, 
    557     -0.3959000999390257, 
    558     -0.3766465660565522, 
    559     -0.3572289184172501, 
    560     -0.3376556177463400, 
    561     -0.3179351925907259, 
    562     -0.2980762356029071, 
    563     -0.2780873997969574, 
    564     -0.2579773947782034, 
    565     -0.2377549829482451, 
    566     -0.2174289756869712, 
    567     -0.1970082295132342, 
    568     -0.1765016422258567, 
    569     -0.1559181490266516, 
    570     -0.1352667186271445, 
    571     -0.1145563493406956, 
    572     -0.0937960651617229, 
    573     -0.0729949118337358, 
    574     -0.0521619529078925, 
    575     -0.0313062657937972, 
    576     -0.0104369378042598, 
    577     0.0104369378042598, 
    578     0.0313062657937972, 
    579     0.0521619529078925, 
    580     0.0729949118337358, 
    581     0.0937960651617229, 
    582     0.1145563493406956, 
    583     0.1352667186271445, 
    584     0.1559181490266516, 
    585     0.1765016422258567, 
    586     0.1970082295132342, 
    587     0.2174289756869712, 
    588     0.2377549829482451, 
    589     0.2579773947782034, 
    590     0.2780873997969574, 
    591     0.2980762356029071, 
    592     0.3179351925907259, 
    593     0.3376556177463400, 
    594     0.3572289184172501, 
    595     0.3766465660565522, 
    596     0.3959000999390257, 
    597     0.4149811308476706, 
    598     0.4338813447290861, 
    599     0.4525925063160997, 
    600     0.4711064627160663, 
    601     0.4894151469632753, 
    602     0.5075105815339176, 
    603     0.5253848818220803, 
    604     0.5430302595752546, 
    605     0.5604390262878617, 
    606     0.5776035965513142, 
    607     0.5945164913591590, 
    608     0.6111703413658551, 
    609     0.6275578900977726, 
    610     0.6436719971150083, 
    611     0.6595056411226444, 
    612     0.6750519230300931, 
    613     0.6903040689571928, 
    614     0.7052554331857488, 
    615     0.7198995010552305, 
    616     0.7342298918013638, 
    617     0.7482403613363824, 
    618     0.7619248049697269, 
    619     0.7752772600680049, 
    620     0.7882919086530552, 
    621     0.8009630799369827, 
    622     0.8132852527930605, 
    623     0.8252530581614230, 
    624     0.8368612813885015, 
    625     0.8481048644991847, 
    626     0.8589789084007133, 
    627     0.8694786750173527, 
    628     0.8795995893549102, 
    629     0.8893372414942055, 
    630     0.8986873885126239, 
    631     0.9076459563329236, 
    632     0.9162090414984952, 
    633     0.9243729128743136, 
    634     0.9321340132728527, 
    635     0.9394889610042837, 
    636     0.9464345513503147, 
    637     0.9529677579610971, 
    638     0.9590857341746905, 
    639     0.9647858142586956, 
    640     0.9700655145738374, 
    641     0.9749225346595943, 
    642     0.9793547582425894, 
    643     0.9833602541697529, 
    644     0.9869372772712794, 
    645     0.9900842691660192, 
    646     0.9927998590434373, 
    647     0.9950828645255290, 
    648     0.9969322929775997, 
    649     0.9983473449340834, 
    650     0.9993274305065947, 
    651     0.9998723404457334 
    652 ]) 
    653  
    654 Gauss150Wt = np.array([ 
    655     0.0003276086705538, 
    656     0.0007624720924706, 
    657     0.0011976474864367, 
    658     0.0016323569986067, 
    659     0.0020663664924131, 
    660     0.0024994789888943, 
    661     0.0029315036836558, 
    662     0.0033622516236779, 
    663     0.0037915348363451, 
    664     0.0042191661429919, 
    665     0.0046449591497966, 
    666     0.0050687282939456, 
    667     0.0054902889094487, 
    668     0.0059094573005900, 
    669     0.0063260508184704, 
    670     0.0067398879387430, 
    671     0.0071507883396855, 
    672     0.0075585729801782, 
    673     0.0079630641773633, 
    674     0.0083640856838475, 
    675     0.0087614627643580, 
    676     0.0091550222717888, 
    677     0.0095445927225849, 
    678     0.0099300043714212, 
    679     0.0103110892851360, 
    680     0.0106876814158841, 
    681     0.0110596166734735, 
    682     0.0114267329968529, 
    683     0.0117888704247183, 
    684     0.0121458711652067, 
    685     0.0124975796646449, 
    686     0.0128438426753249, 
    687     0.0131845093222756, 
    688     0.0135194311690004, 
    689     0.0138484622795371, 
    690     0.0141714592928592, 
    691     0.0144882814685445, 
    692     0.0147987907597169, 
    693     0.0151028518701744, 
    694     0.0154003323133401, 
    695     0.0156911024699895, 
    696     0.0159750356447283, 
    697     0.0162520081211971, 
    698     0.0165218992159766, 
    699     0.0167845913311726, 
    700     0.0170399700056559, 
    701     0.0172879239649355, 
    702     0.0175283451696437, 
    703     0.0177611288626114, 
    704     0.0179861736145128, 
    705     0.0182033813680609, 
    706     0.0184126574807331, 
    707     0.0186139107660094, 
    708     0.0188070535331042, 
    709     0.0189920016251754, 
    710     0.0191686744559934, 
    711     0.0193369950450545, 
    712     0.0194968900511231, 
    713     0.0196482898041878, 
    714     0.0197911283358190, 
    715     0.0199253434079123, 
    716     0.0200508765398072, 
    717     0.0201676730337687, 
    718     0.0202756819988200, 
    719     0.0203748563729175, 
    720     0.0204651529434560, 
    721     0.0205465323660984, 
    722     0.0206189591819181, 
    723     0.0206824018328499, 
    724     0.0207368326754401, 
    725     0.0207822279928917, 
    726     0.0208185680053983, 
    727     0.0208458368787627, 
    728     0.0208640227312962, 
    729     0.0208731176389954, 
    730     0.0208731176389954, 
    731     0.0208640227312962, 
    732     0.0208458368787627, 
    733     0.0208185680053983, 
    734     0.0207822279928917, 
    735     0.0207368326754401, 
    736     0.0206824018328499, 
    737     0.0206189591819181, 
    738     0.0205465323660984, 
    739     0.0204651529434560, 
    740     0.0203748563729175, 
    741     0.0202756819988200, 
    742     0.0201676730337687, 
    743     0.0200508765398072, 
    744     0.0199253434079123, 
    745     0.0197911283358190, 
    746     0.0196482898041878, 
    747     0.0194968900511231, 
    748     0.0193369950450545, 
    749     0.0191686744559934, 
    750     0.0189920016251754, 
    751     0.0188070535331042, 
    752     0.0186139107660094, 
    753     0.0184126574807331, 
    754     0.0182033813680609, 
    755     0.0179861736145128, 
    756     0.0177611288626114, 
    757     0.0175283451696437, 
    758     0.0172879239649355, 
    759     0.0170399700056559, 
    760     0.0167845913311726, 
    761     0.0165218992159766, 
    762     0.0162520081211971, 
    763     0.0159750356447283, 
    764     0.0156911024699895, 
    765     0.0154003323133401, 
    766     0.0151028518701744, 
    767     0.0147987907597169, 
    768     0.0144882814685445, 
    769     0.0141714592928592, 
    770     0.0138484622795371, 
    771     0.0135194311690004, 
    772     0.0131845093222756, 
    773     0.0128438426753249, 
    774     0.0124975796646449, 
    775     0.0121458711652067, 
    776     0.0117888704247183, 
    777     0.0114267329968529, 
    778     0.0110596166734735, 
    779     0.0106876814158841, 
    780     0.0103110892851360, 
    781     0.0099300043714212, 
    782     0.0095445927225849, 
    783     0.0091550222717888, 
    784     0.0087614627643580, 
    785     0.0083640856838475, 
    786     0.0079630641773633, 
    787     0.0075585729801782, 
    788     0.0071507883396855, 
    789     0.0067398879387430, 
    790     0.0063260508184704, 
    791     0.0059094573005900, 
    792     0.0054902889094487, 
    793     0.0050687282939456, 
    794     0.0046449591497966, 
    795     0.0042191661429919, 
    796     0.0037915348363451, 
    797     0.0033622516236779, 
    798     0.0029315036836558, 
    799     0.0024994789888943, 
    800     0.0020663664924131, 
    801     0.0016323569986067, 
    802     0.0011976474864367, 
    803     0.0007624720924706, 
    804     0.0003276086705538 
    805 ]) 
     298class Gauss: 
     299    def __init__(self, w, z): 
     300        self.n = len(w) 
     301        self.w = w 
     302        self.z = z 
     303 
     304gauss20 = Gauss( 
     305    w=np.array([ 
     306        .0176140071391521, 
     307        .0406014298003869, 
     308        .0626720483341091, 
     309        .0832767415767047, 
     310        .10193011981724, 
     311        .118194531961518, 
     312        .131688638449177, 
     313        .142096109318382, 
     314        .149172986472604, 
     315        .152753387130726, 
     316        .152753387130726, 
     317        .149172986472604, 
     318        .142096109318382, 
     319        .131688638449177, 
     320        .118194531961518, 
     321        .10193011981724, 
     322        .0832767415767047, 
     323        .0626720483341091, 
     324        .0406014298003869, 
     325        .0176140071391521 
     326    ]), 
     327    z=np.array([ 
     328        -.993128599185095, 
     329        -.963971927277914, 
     330        -.912234428251326, 
     331        -.839116971822219, 
     332        -.746331906460151, 
     333        -.636053680726515, 
     334        -.510867001950827, 
     335        -.37370608871542, 
     336        -.227785851141645, 
     337        -.076526521133497, 
     338        .0765265211334973, 
     339        .227785851141645, 
     340        .37370608871542, 
     341        .510867001950827, 
     342        .636053680726515, 
     343        .746331906460151, 
     344        .839116971822219, 
     345        .912234428251326, 
     346        .963971927277914, 
     347        .993128599185095 
     348    ]) 
     349) 
     350 
     351gauss76 = Gauss( 
     352    w=np.array([ 
     353        .00126779163408536,             #0 
     354        .00294910295364247, 
     355        .00462793522803742, 
     356        .00629918049732845, 
     357        .00795984747723973, 
     358        .00960710541471375, 
     359        .0112381685696677, 
     360        .0128502838475101, 
     361        .0144407317482767, 
     362        .0160068299122486, 
     363        .0175459372914742,              #10 
     364        .0190554584671906, 
     365        .020532847967908, 
     366        .0219756145344162, 
     367        .0233813253070112, 
     368        .0247476099206597, 
     369        .026072164497986, 
     370        .0273527555318275, 
     371        .028587223650054, 
     372        .029773487255905, 
     373        .0309095460374916,              #20 
     374        .0319934843404216, 
     375        .0330234743977917, 
     376        .0339977794120564, 
     377        .0349147564835508, 
     378        .0357728593807139, 
     379        .0365706411473296, 
     380        .0373067565423816, 
     381        .0379799643084053, 
     382        .0385891292645067, 
     383        .0391332242205184,              #30 
     384        .0396113317090621, 
     385        .0400226455325968, 
     386        .040366472122844, 
     387        .0406422317102947, 
     388        .0408494593018285, 
     389        .040987805464794, 
     390        .0410570369162294, 
     391        .0410570369162294, 
     392        .040987805464794, 
     393        .0408494593018285,              #40 
     394        .0406422317102947, 
     395        .040366472122844, 
     396        .0400226455325968, 
     397        .0396113317090621, 
     398        .0391332242205184, 
     399        .0385891292645067, 
     400        .0379799643084053, 
     401        .0373067565423816, 
     402        .0365706411473296, 
     403        .0357728593807139,              #50 
     404        .0349147564835508, 
     405        .0339977794120564, 
     406        .0330234743977917, 
     407        .0319934843404216, 
     408        .0309095460374916, 
     409        .029773487255905, 
     410        .028587223650054, 
     411        .0273527555318275, 
     412        .026072164497986, 
     413        .0247476099206597,              #60 
     414        .0233813253070112, 
     415        .0219756145344162, 
     416        .020532847967908, 
     417        .0190554584671906, 
     418        .0175459372914742, 
     419        .0160068299122486, 
     420        .0144407317482767, 
     421        .0128502838475101, 
     422        .0112381685696677, 
     423        .00960710541471375,             #70 
     424        .00795984747723973, 
     425        .00629918049732845, 
     426        .00462793522803742, 
     427        .00294910295364247, 
     428        .00126779163408536              #75 (indexed from 0) 
     429    ]), 
     430    z=np.array([ 
     431        -.999505948362153,              #0 
     432        -.997397786355355, 
     433        -.993608772723527, 
     434        -.988144453359837, 
     435        -.981013938975656, 
     436        -.972229228520377, 
     437        -.961805126758768, 
     438        -.949759207710896, 
     439        -.936111781934811, 
     440        -.92088586125215, 
     441        -.904107119545567,              #10 
     442        -.885803849292083, 
     443        -.866006913771982, 
     444        -.844749694983342, 
     445        -.822068037328975, 
     446        -.7980001871612, 
     447        -.77258672828181, 
     448        -.74587051350361, 
     449        -.717896592387704, 
     450        -.688712135277641, 
     451        -.658366353758143,              #20 
     452        -.626910417672267, 
     453        -.594397368836793, 
     454        -.560882031601237, 
     455        -.526420920401243, 
     456        -.491072144462194, 
     457        -.454895309813726, 
     458        -.417951418780327, 
     459        -.380302767117504, 
     460        -.342012838966962, 
     461        -.303146199807908,              #30 
     462        -.263768387584994, 
     463        -.223945802196474, 
     464        -.183745593528914, 
     465        -.143235548227268, 
     466        -.102483975391227, 
     467        -.0615595913906112, 
     468        -.0205314039939986, 
     469        .0205314039939986, 
     470        .0615595913906112, 
     471        .102483975391227,                       #40 
     472        .143235548227268, 
     473        .183745593528914, 
     474        .223945802196474, 
     475        .263768387584994, 
     476        .303146199807908, 
     477        .342012838966962, 
     478        .380302767117504, 
     479        .417951418780327, 
     480        .454895309813726, 
     481        .491072144462194,               #50 
     482        .526420920401243, 
     483        .560882031601237, 
     484        .594397368836793, 
     485        .626910417672267, 
     486        .658366353758143, 
     487        .688712135277641, 
     488        .717896592387704, 
     489        .74587051350361, 
     490        .77258672828181, 
     491        .7980001871612, #60 
     492        .822068037328975, 
     493        .844749694983342, 
     494        .866006913771982, 
     495        .885803849292083, 
     496        .904107119545567, 
     497        .92088586125215, 
     498        .936111781934811, 
     499        .949759207710896, 
     500        .961805126758768, 
     501        .972229228520377,               #70 
     502        .981013938975656, 
     503        .988144453359837, 
     504        .993608772723527, 
     505        .997397786355355, 
     506        .999505948362153                #75 
     507    ]) 
     508) 
     509 
     510gauss150 = Gauss( 
     511    z=np.array([ 
     512        -0.9998723404457334, 
     513        -0.9993274305065947, 
     514        -0.9983473449340834, 
     515        -0.9969322929775997, 
     516        -0.9950828645255290, 
     517        -0.9927998590434373, 
     518        -0.9900842691660192, 
     519        -0.9869372772712794, 
     520        -0.9833602541697529, 
     521        -0.9793547582425894, 
     522        -0.9749225346595943, 
     523        -0.9700655145738374, 
     524        -0.9647858142586956, 
     525        -0.9590857341746905, 
     526        -0.9529677579610971, 
     527        -0.9464345513503147, 
     528        -0.9394889610042837, 
     529        -0.9321340132728527, 
     530        -0.9243729128743136, 
     531        -0.9162090414984952, 
     532        -0.9076459563329236, 
     533        -0.8986873885126239, 
     534        -0.8893372414942055, 
     535        -0.8795995893549102, 
     536        -0.8694786750173527, 
     537        -0.8589789084007133, 
     538        -0.8481048644991847, 
     539        -0.8368612813885015, 
     540        -0.8252530581614230, 
     541        -0.8132852527930605, 
     542        -0.8009630799369827, 
     543        -0.7882919086530552, 
     544        -0.7752772600680049, 
     545        -0.7619248049697269, 
     546        -0.7482403613363824, 
     547        -0.7342298918013638, 
     548        -0.7198995010552305, 
     549        -0.7052554331857488, 
     550        -0.6903040689571928, 
     551        -0.6750519230300931, 
     552        -0.6595056411226444, 
     553        -0.6436719971150083, 
     554        -0.6275578900977726, 
     555        -0.6111703413658551, 
     556        -0.5945164913591590, 
     557        -0.5776035965513142, 
     558        -0.5604390262878617, 
     559        -0.5430302595752546, 
     560        -0.5253848818220803, 
     561        -0.5075105815339176, 
     562        -0.4894151469632753, 
     563        -0.4711064627160663, 
     564        -0.4525925063160997, 
     565        -0.4338813447290861, 
     566        -0.4149811308476706, 
     567        -0.3959000999390257, 
     568        -0.3766465660565522, 
     569        -0.3572289184172501, 
     570        -0.3376556177463400, 
     571        -0.3179351925907259, 
     572        -0.2980762356029071, 
     573        -0.2780873997969574, 
     574        -0.2579773947782034, 
     575        -0.2377549829482451, 
     576        -0.2174289756869712, 
     577        -0.1970082295132342, 
     578        -0.1765016422258567, 
     579        -0.1559181490266516, 
     580        -0.1352667186271445, 
     581        -0.1145563493406956, 
     582        -0.0937960651617229, 
     583        -0.0729949118337358, 
     584        -0.0521619529078925, 
     585        -0.0313062657937972, 
     586        -0.0104369378042598, 
     587        0.0104369378042598, 
     588        0.0313062657937972, 
     589        0.0521619529078925, 
     590        0.0729949118337358, 
     591        0.0937960651617229, 
     592        0.1145563493406956, 
     593        0.1352667186271445, 
     594        0.1559181490266516, 
     595        0.1765016422258567, 
     596        0.1970082295132342, 
     597        0.2174289756869712, 
     598        0.2377549829482451, 
     599        0.2579773947782034, 
     600        0.2780873997969574, 
     601        0.2980762356029071, 
     602        0.3179351925907259, 
     603        0.3376556177463400, 
     604        0.3572289184172501, 
     605        0.3766465660565522, 
     606        0.3959000999390257, 
     607        0.4149811308476706, 
     608        0.4338813447290861, 
     609        0.4525925063160997, 
     610        0.4711064627160663, 
     611        0.4894151469632753, 
     612        0.5075105815339176, 
     613        0.5253848818220803, 
     614        0.5430302595752546, 
     615        0.5604390262878617, 
     616        0.5776035965513142, 
     617        0.5945164913591590, 
     618        0.6111703413658551, 
     619        0.6275578900977726, 
     620        0.6436719971150083, 
     621        0.6595056411226444, 
     622        0.6750519230300931, 
     623        0.6903040689571928, 
     624        0.7052554331857488, 
     625        0.7198995010552305, 
     626        0.7342298918013638, 
     627        0.7482403613363824, 
     628        0.7619248049697269, 
     629        0.7752772600680049, 
     630        0.7882919086530552, 
     631        0.8009630799369827, 
     632        0.8132852527930605, 
     633        0.8252530581614230, 
     634        0.8368612813885015, 
     635        0.8481048644991847, 
     636        0.8589789084007133, 
     637        0.8694786750173527, 
     638        0.8795995893549102, 
     639        0.8893372414942055, 
     640        0.8986873885126239, 
     641        0.9076459563329236, 
     642        0.9162090414984952, 
     643        0.9243729128743136, 
     644        0.9321340132728527, 
     645        0.9394889610042837, 
     646        0.9464345513503147, 
     647        0.9529677579610971, 
     648        0.9590857341746905, 
     649        0.9647858142586956, 
     650        0.9700655145738374, 
     651        0.9749225346595943, 
     652        0.9793547582425894, 
     653        0.9833602541697529, 
     654        0.9869372772712794, 
     655        0.9900842691660192, 
     656        0.9927998590434373, 
     657        0.9950828645255290, 
     658        0.9969322929775997, 
     659        0.9983473449340834, 
     660        0.9993274305065947, 
     661        0.9998723404457334 
     662    ]), 
     663    w=np.array([ 
     664        0.0003276086705538, 
     665        0.0007624720924706, 
     666        0.0011976474864367, 
     667        0.0016323569986067, 
     668        0.0020663664924131, 
     669        0.0024994789888943, 
     670        0.0029315036836558, 
     671        0.0033622516236779, 
     672        0.0037915348363451, 
     673        0.0042191661429919, 
     674        0.0046449591497966, 
     675        0.0050687282939456, 
     676        0.0054902889094487, 
     677        0.0059094573005900, 
     678        0.0063260508184704, 
     679        0.0067398879387430, 
     680        0.0071507883396855, 
     681        0.0075585729801782, 
     682        0.0079630641773633, 
     683        0.0083640856838475, 
     684        0.0087614627643580, 
     685        0.0091550222717888, 
     686        0.0095445927225849, 
     687        0.0099300043714212, 
     688        0.0103110892851360, 
     689        0.0106876814158841, 
     690        0.0110596166734735, 
     691        0.0114267329968529, 
     692        0.0117888704247183, 
     693        0.0121458711652067, 
     694        0.0124975796646449, 
     695        0.0128438426753249, 
     696        0.0131845093222756, 
     697        0.0135194311690004, 
     698        0.0138484622795371, 
     699        0.0141714592928592, 
     700        0.0144882814685445, 
     701        0.0147987907597169, 
     702        0.0151028518701744, 
     703        0.0154003323133401, 
     704        0.0156911024699895, 
     705        0.0159750356447283, 
     706        0.0162520081211971, 
     707        0.0165218992159766, 
     708        0.0167845913311726, 
     709        0.0170399700056559, 
     710        0.0172879239649355, 
     711        0.0175283451696437, 
     712        0.0177611288626114, 
     713        0.0179861736145128, 
     714        0.0182033813680609, 
     715        0.0184126574807331, 
     716        0.0186139107660094, 
     717        0.0188070535331042, 
     718        0.0189920016251754, 
     719        0.0191686744559934, 
     720        0.0193369950450545, 
     721        0.0194968900511231, 
     722        0.0196482898041878, 
     723        0.0197911283358190, 
     724        0.0199253434079123, 
     725        0.0200508765398072, 
     726        0.0201676730337687, 
     727        0.0202756819988200, 
     728        0.0203748563729175, 
     729        0.0204651529434560, 
     730        0.0205465323660984, 
     731        0.0206189591819181, 
     732        0.0206824018328499, 
     733        0.0207368326754401, 
     734        0.0207822279928917, 
     735        0.0208185680053983, 
     736        0.0208458368787627, 
     737        0.0208640227312962, 
     738        0.0208731176389954, 
     739        0.0208731176389954, 
     740        0.0208640227312962, 
     741        0.0208458368787627, 
     742        0.0208185680053983, 
     743        0.0207822279928917, 
     744        0.0207368326754401, 
     745        0.0206824018328499, 
     746        0.0206189591819181, 
     747        0.0205465323660984, 
     748        0.0204651529434560, 
     749        0.0203748563729175, 
     750        0.0202756819988200, 
     751        0.0201676730337687, 
     752        0.0200508765398072, 
     753        0.0199253434079123, 
     754        0.0197911283358190, 
     755        0.0196482898041878, 
     756        0.0194968900511231, 
     757        0.0193369950450545, 
     758        0.0191686744559934, 
     759        0.0189920016251754, 
     760        0.0188070535331042, 
     761        0.0186139107660094, 
     762        0.0184126574807331, 
     763        0.0182033813680609, 
     764        0.0179861736145128, 
     765        0.0177611288626114, 
     766        0.0175283451696437, 
     767        0.0172879239649355, 
     768        0.0170399700056559, 
     769        0.0167845913311726, 
     770        0.0165218992159766, 
     771        0.0162520081211971, 
     772        0.0159750356447283, 
     773        0.0156911024699895, 
     774        0.0154003323133401, 
     775        0.0151028518701744, 
     776        0.0147987907597169, 
     777        0.0144882814685445, 
     778        0.0141714592928592, 
     779        0.0138484622795371, 
     780        0.0135194311690004, 
     781        0.0131845093222756, 
     782        0.0128438426753249, 
     783        0.0124975796646449, 
     784        0.0121458711652067, 
     785        0.0117888704247183, 
     786        0.0114267329968529, 
     787        0.0110596166734735, 
     788        0.0106876814158841, 
     789        0.0103110892851360, 
     790        0.0099300043714212, 
     791        0.0095445927225849, 
     792        0.0091550222717888, 
     793        0.0087614627643580, 
     794        0.0083640856838475, 
     795        0.0079630641773633, 
     796        0.0075585729801782, 
     797        0.0071507883396855, 
     798        0.0067398879387430, 
     799        0.0063260508184704, 
     800        0.0059094573005900, 
     801        0.0054902889094487, 
     802        0.0050687282939456, 
     803        0.0046449591497966, 
     804        0.0042191661429919, 
     805        0.0037915348363451, 
     806        0.0033622516236779, 
     807        0.0029315036836558, 
     808        0.0024994789888943, 
     809        0.0020663664924131, 
     810        0.0016323569986067, 
     811        0.0011976474864367, 
     812        0.0007624720924706, 
     813        0.0003276086705538 
     814    ]) 
     815) 
Note: See TracChangeset for help on using the changeset viewer.