Changeset 6e0c1df in sasmodels
- Timestamp:
- Apr 1, 2019 7:02:50 AM (6 years ago)
- Branches:
- magnetic_model
- Parents:
- 6b86bee
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/guide/magnetism/magnetism.rst
r6b86bee r6e0c1df 4 4 ================================ 5 5 6 (Version 2: Spherical Polarimetry in SANS: Allow for freedom in field/polarisation axis away from the detector plane, 7 i.e. allow in-beam direction or oscillatory/rotational fields...) 6 Spherical Polarimetry in SANS: This description allows for freedom in 7 field/polarisation axis away from the detector plane 8 i.e. allows in-beam direction or AC or rotational fields. 8 9 9 10 For magnetic systems, the scattering length density (SLD = $\beta$) is a combination … … 21 22 nuclear scattering and has one effective magnetisation orientation 22 23 23 The external field $\mathbf{H}=H \mathbf{P}$ coincides with the polarisation axis24 The external field $\mathbf{H}=H \mathbf{P}$ coincides with the polarisation axis 24 25 $\mathbf{P}=(\sin\theta_P \cos \phi_P, \sin \theta_P \sin \phi_P,\cos\theta_P )$ for the neutrons, which is the quantisation axis 25 26 for the Pauli spin operator. … … 60 61 after the sample. 61 62 62 For magnetic neutron scattering, only the magnetisation component or Halpern-Johnson vector 63 For magnetic neutron scattering, only the magnetisation component or Halpern-Johnson vector 63 64 $\mathbf{M_\perp}$ perpendicular to the scattering vector 64 65 $\mathbf{Q}=q \mathbf{n}=q (\cos\theta, \sin \theta,0)$ contributes to the magnetic scattering: … … 76 77 77 78 .. math:: 78 I^{\pm\pm} = N^2 \mp \mathbf{P}\cdot(N^{\ast}\mathbf{M_\perp} +N\mathbf{M_\perp}^{\ast}) 79 I^{\pm\pm} = N^2 \mp \mathbf{P}\cdot(N^{\ast}\mathbf{M_\perp} +N\mathbf{M_\perp}^{\ast}) 79 80 + (\mathbf{P}\cdot \mathbf{M_\perp})^2 80 81 … … 93 94 94 95 .. math:: 95 \mathbf{M}_{\perp,\parallel P } = ( mathbf{P}\cdot \mathbf{M}_{\perp })mathbf{P}96 \text{ magnetisation component parallel to polarisation for NSF scattering} 96 \mathbf{M}_{\perp,\parallel P } = ( \mathbf{P}\cdot \mathbf{M}_{\perp }) \mathbf{P} 97 97 98 98 99 The component perpendicular to the polarisation gives rise to SF scattering. The perpendicular … … 101 102 .. math:: 102 103 \mathbf{M}_{\perp,\perp P } = \mathbf{M}_{\perp } - (\mathbf{P}\cdot \mathbf{M}_{\perp }) \mathbf{P} 103 \text{ magnetisation component perpendicular to polarisation for SF scattering} 104 104 105 105 106 and a third vector perpendicular to both $\mathbf{P}$ and $\mathbf{M}_{\perp,\perp P } $ : 106 107 107 108 .. math:: 108 \mathbf{O} = \mathbf{M}_{\perp} \times \mathbf{P} - \mathbf{M}_{\perp,\perp P } = [\mathbf{q}\cdot(\mathbf{M}\times\mathbf{P})(\mathbf{q}-\mathbf{P}\times\mathbf{q})]109 \text{ vector perpendicular to polarisation and Halpern-Johnson vector for SF scattering}109 \mathbf{O} = \mathbf{M}_{\perp} \times \mathbf{P} - \mathbf{M}_{\perp,\perp P } 110 = [\mathbf{n}\cdot(\mathbf{M}\times\mathbf{P})(\mathbf{n}-\mathbf{P}\times\mathbf{n})] 110 111 111 For symmetric, collinear spin structures ($\mathbf{M}_{\perp}^{\ast}=\matbf{M}_{\perp}^{\ast}$), $\mathbf{O}\cdot \matbf{O}^{\ast}=0$ 112 113 For symmetric, collinear spin structures ($\mathbf{M}_{\perp}^{\ast}=\mathbf{M}_{\perp}^{\ast}$), $\mathbf{O}\cdot \mathbf{O}^{\ast}=0$ 112 114 since $\mathbf{M}_{\perp} \times \mathbf{P} \cdot \mathbf{M}_{\perp} \times \mathbf{P} = \mathbf{M}_{\perp,\perp P }$. 113 115 … … 115 117 Depending on the spin state of the 116 118 neutrons, the scattering length densities, including the nuclear scattering 117 length density $(\beta{_N})$ are 119 length density $(\beta{_N})$ are for the non-spin-flip states 118 120 119 121 .. math:: 120 \beta_{\pm\pm} = \beta_N \mp b_H math{P}\cdot M_{\perp } 121 \text{ for non-spin-flip states} 122 \beta_{\pm\pm} = \beta_N \mp b_H \mathbf{P}\cdot \mathbf{M}_{\perp } 122 123 123 and 124 125 and for spin-flip states 124 126 125 127 .. math:: 126 \beta_{\pm\mp} = -b_H (\lvert\mathbf{M}_{\perp,\perp P }\rvert \pm i \mathbf{q}\cdot (\mathbf{M}\times \mathbf{P} (1-\mathbf{P}\cdot\mathbf{q})) 127 \text{ for spin-flip states} 128 \beta_{\pm\mp} = -b_H (\lvert\mathbf{M}_{\perp,\perp P }\rvert \pm i \mathbf{n}\cdot (\mathbf{M}\times \mathbf{P} (1-\mathbf{P}\cdot\mathbf{n})) 128 129 129 130 130 with $\lvert\mathbf{M}_{\perp,\perp P }\rvert= (\mathbf{M}_{\perp,\perp P } \cdot \mathbf{M}_{\perp,\perp P })^{1/2} 131 =(M_{\perp,x}^2+M_{\perp,y}^2+M_{\perp,z}^2-(M_{\perp,x} P_x+ M_{\perp,y} P_y + M_{\perp,z} P_z )^2 )^{1/2}$. 131 132 with 133 134 .. math:: 135 \lvert\mathbf{M}_{\perp,\perp P }\rvert= (\mathbf{M}_{\perp,\perp P } \cdot \mathbf{M}_{\perp,\perp P })^{1/2} 136 =(M_{\perp,x}^2+M_{\perp,y}^2+M_{\perp,z}^2-(M_{\perp,x} P_x+ M_{\perp,y} P_y + M_{\perp,z} P_z )^2 )^{1/2}. 132 137 133 138
Note: See TracChangeset
for help on using the changeset viewer.