1 | static double |
---|
2 | bcc_Zq(double qa, double qb, double qc, double dnn, double d_factor) |
---|
3 | { |
---|
4 | // Equations from Matsuoka 26-27-28, multiplied by |q| |
---|
5 | const double a1 = (-qa + qb + qc)/2.0; |
---|
6 | const double a2 = (+qa - qb + qc)/2.0; |
---|
7 | const double a3 = (+qa + qb - qc)/2.0; |
---|
8 | |
---|
9 | #if 1 |
---|
10 | // Matsuoka 29-30-31 |
---|
11 | // Z_k numerator: 1 - exp(a)^2 |
---|
12 | // Z_k denominator: 1 - 2 cos(d a_k) exp(a) + exp(2a) |
---|
13 | // Rewriting numerator |
---|
14 | // => -(exp(2a) - 1) |
---|
15 | // => -expm1(2a) |
---|
16 | // Rewriting denominator |
---|
17 | // => exp(a)^2 - 2 cos(d ak) exp(a) + 1) |
---|
18 | // => (exp(a) - 2 cos(d ak)) * exp(a) + 1 |
---|
19 | const double arg = -0.5*square(dnn*d_factor)*(a1*a1 + a2*a2 + a3*a3); |
---|
20 | const double exp_arg = exp(arg); |
---|
21 | const double Zq = -cube(expm1(2.0*arg)) |
---|
22 | / ( ((exp_arg - 2.0*cos(dnn*a1))*exp_arg + 1.0) |
---|
23 | * ((exp_arg - 2.0*cos(dnn*a2))*exp_arg + 1.0) |
---|
24 | * ((exp_arg - 2.0*cos(dnn*a3))*exp_arg + 1.0)); |
---|
25 | |
---|
26 | #elif 0 |
---|
27 | // ** Alternate form, which perhaps is more approachable |
---|
28 | // Z_k numerator => -[(exp(2a) - 1) / 2.exp(a)] 2.exp(a) |
---|
29 | // => -[sinh(a)] exp(a) |
---|
30 | // Z_k denominator => [(exp(2a) + 1) / 2.exp(a) - cos(d a_k)] 2.exp(a) |
---|
31 | // => [cosh(a) - cos(d a_k)] 2.exp(a) |
---|
32 | // => Z_k = -sinh(a) / [cosh(a) - cos(d a_k)] |
---|
33 | // = sinh(-a) / [cosh(-a) - cos(d a_k)] |
---|
34 | // |
---|
35 | // One more step leads to the form in sasview 3.x for 2d models |
---|
36 | // = tanh(-a) / [1 - cos(d a_k)/cosh(-a)] |
---|
37 | // |
---|
38 | const double arg = 0.5*square(dnn*d_factor)*(a1*a1 + a2*a2 + a3*a3); |
---|
39 | const double sinh_qd = sinh(arg); |
---|
40 | const double cosh_qd = cosh(arg); |
---|
41 | const double Zq = sinh_qd/(cosh_qd - cos(dnn*a1)) |
---|
42 | * sinh_qd/(cosh_qd - cos(dnn*a2)) |
---|
43 | * sinh_qd/(cosh_qd - cos(dnn*a3)); |
---|
44 | #else |
---|
45 | const double arg = 0.5*square(dnn*d_factor)*(a1*a1 + a2*a2 + a3*a3); |
---|
46 | const double tanh_qd = tanh(arg); |
---|
47 | const double cosh_qd = cosh(arg); |
---|
48 | const double Zq = tanh_qd/(1.0 - cos(dnn*a1)/cosh_qd) |
---|
49 | * tanh_qd/(1.0 - cos(dnn*a2)/cosh_qd) |
---|
50 | * tanh_qd/(1.0 - cos(dnn*a3)/cosh_qd); |
---|
51 | #endif |
---|
52 | |
---|
53 | return Zq; |
---|
54 | } |
---|
55 | |
---|
56 | |
---|
57 | // occupied volume fraction calculated from lattice symmetry and sphere radius |
---|
58 | static double |
---|
59 | bcc_volume_fraction(double radius, double dnn) |
---|
60 | { |
---|
61 | return 2.0*sphere_volume(sqrt(0.75)*radius/dnn); |
---|
62 | } |
---|
63 | |
---|
64 | static double |
---|
65 | form_volume(double radius) |
---|
66 | { |
---|
67 | return sphere_volume(radius); |
---|
68 | } |
---|
69 | |
---|
70 | |
---|
71 | static double Iq(double q, double dnn, |
---|
72 | double d_factor, double radius, |
---|
73 | double sld, double solvent_sld) |
---|
74 | { |
---|
75 | // translate a point in [-1,1] to a point in [0, 2 pi] |
---|
76 | const double phi_m = M_PI; |
---|
77 | const double phi_b = M_PI; |
---|
78 | // translate a point in [-1,1] to a point in [0, pi] |
---|
79 | const double theta_m = M_PI_2; |
---|
80 | const double theta_b = M_PI_2; |
---|
81 | |
---|
82 | double outer_sum = 0.0; |
---|
83 | for(int i=0; i<150; i++) { |
---|
84 | double inner_sum = 0.0; |
---|
85 | const double theta = Gauss150Z[i]*theta_m + theta_b; |
---|
86 | double sin_theta, cos_theta; |
---|
87 | SINCOS(theta, sin_theta, cos_theta); |
---|
88 | const double qc = q*cos_theta; |
---|
89 | const double qab = q*sin_theta; |
---|
90 | for(int j=0;j<150;j++) { |
---|
91 | const double phi = Gauss150Z[j]*phi_m + phi_b; |
---|
92 | double sin_phi, cos_phi; |
---|
93 | SINCOS(phi, sin_phi, cos_phi); |
---|
94 | const double qa = qab*cos_phi; |
---|
95 | const double qb = qab*sin_phi; |
---|
96 | const double form = bcc_Zq(qa, qb, qc, dnn, d_factor); |
---|
97 | inner_sum += Gauss150Wt[j] * form; |
---|
98 | } |
---|
99 | inner_sum *= phi_m; // sum(f(x)dx) = sum(f(x)) dx |
---|
100 | outer_sum += Gauss150Wt[i] * inner_sum * sin_theta; |
---|
101 | } |
---|
102 | outer_sum *= theta_m; |
---|
103 | const double Zq = outer_sum/(4.0*M_PI); |
---|
104 | const double Pq = sphere_form(q, radius, sld, solvent_sld); |
---|
105 | return bcc_volume_fraction(radius, dnn) * Pq * Zq; |
---|
106 | } |
---|
107 | |
---|
108 | |
---|
109 | static double Iqxy(double qa, double qb, double qc, |
---|
110 | double dnn, double d_factor, double radius, |
---|
111 | double sld, double solvent_sld) |
---|
112 | { |
---|
113 | const double q = sqrt(qa*qa + qb*qb + qc*qc); |
---|
114 | const double Zq = bcc_Zq(qa, qb, qc, dnn, d_factor); |
---|
115 | const double Pq = sphere_form(q, radius, sld, solvent_sld); |
---|
116 | return bcc_volume_fraction(radius, dnn) * Pq * Zq; |
---|
117 | } |
---|