1 | double form_volume(double length_a, double b2a_ratio, double c2a_ratio, double thickness); |
---|
2 | double Iq(double q, double sld, double solvent_sld, double length_a, |
---|
3 | double b2a_ratio, double c2a_ratio, double thickness); |
---|
4 | |
---|
5 | double form_volume(double length_a, double b2a_ratio, double c2a_ratio, double thickness) |
---|
6 | { |
---|
7 | double length_b = length_a * b2a_ratio; |
---|
8 | double length_c = length_a * c2a_ratio; |
---|
9 | double a_core = length_a - 2.0*thickness; |
---|
10 | double b_core = length_b - 2.0*thickness; |
---|
11 | double c_core = length_c - 2.0*thickness; |
---|
12 | double vol_core = a_core * b_core * c_core; |
---|
13 | double vol_total = length_a * length_b * length_c; |
---|
14 | double vol_shell = vol_total - vol_core; |
---|
15 | return vol_shell; |
---|
16 | } |
---|
17 | |
---|
18 | double Iq(double q, |
---|
19 | double sld, |
---|
20 | double solvent_sld, |
---|
21 | double length_a, |
---|
22 | double b2a_ratio, |
---|
23 | double c2a_ratio, |
---|
24 | double thickness) |
---|
25 | { |
---|
26 | const double length_b = length_a * b2a_ratio; |
---|
27 | const double length_c = length_a * c2a_ratio; |
---|
28 | const double a_half = 0.5 * length_a; |
---|
29 | const double b_half = 0.5 * length_b; |
---|
30 | const double c_half = 0.5 * length_c; |
---|
31 | const double vol_total = length_a * length_b * length_c; |
---|
32 | const double vol_core = 8.0 * (a_half-thickness) * (b_half-thickness) * (c_half-thickness); |
---|
33 | |
---|
34 | //Integration limits to use in Gaussian quadrature |
---|
35 | const double v1a = 0.0; |
---|
36 | const double v1b = M_PI_2; //theta integration limits |
---|
37 | const double v2a = 0.0; |
---|
38 | const double v2b = M_PI_2; //phi integration limits |
---|
39 | |
---|
40 | double outer_sum = 0.0; |
---|
41 | for(int i=0; i<76; i++) { |
---|
42 | |
---|
43 | const double theta = 0.5 * ( Gauss76Z[i]*(v1b-v1a) + v1a + v1b ); |
---|
44 | double sin_theta, cos_theta; |
---|
45 | SINCOS(theta, sin_theta, cos_theta); |
---|
46 | |
---|
47 | const double termC1 = sas_sinx_x(q * c_half * cos(theta)); |
---|
48 | const double termC2 = sas_sinx_x(q * (c_half-thickness)*cos(theta)); |
---|
49 | |
---|
50 | double inner_sum = 0.0; |
---|
51 | for(int j=0; j<76; j++) { |
---|
52 | |
---|
53 | const double phi = 0.5 * ( Gauss76Z[j]*(v2b-v2a) + v2a + v2b ); |
---|
54 | double sin_phi, cos_phi; |
---|
55 | SINCOS(phi, sin_phi, cos_phi); |
---|
56 | |
---|
57 | // Amplitude AP from eqn. (13), rewritten to avoid round-off effects when arg=0 |
---|
58 | |
---|
59 | const double termA1 = sas_sinx_x(q * a_half * sin_theta * sin_phi); |
---|
60 | const double termA2 = sas_sinx_x(q * (a_half-thickness) * sin_theta * sin_phi); |
---|
61 | |
---|
62 | const double termB1 = sas_sinx_x(q * b_half * sin_theta * cos_phi); |
---|
63 | const double termB2 = sas_sinx_x(q * (b_half-thickness) * sin_theta * cos_phi); |
---|
64 | |
---|
65 | const double AP1 = vol_total * termA1 * termB1 * termC1; |
---|
66 | const double AP2 = vol_core * termA2 * termB2 * termC2; |
---|
67 | |
---|
68 | inner_sum += Gauss76Wt[j] * square(AP1-AP2); |
---|
69 | } |
---|
70 | inner_sum *= 0.5 * (v2b-v2a); |
---|
71 | |
---|
72 | outer_sum += Gauss76Wt[i] * inner_sum * sin(theta); |
---|
73 | } |
---|
74 | outer_sum *= 0.5*(v1b-v1a); |
---|
75 | |
---|
76 | // Normalize as in Eqn. (15) without the volume factor (as cancels with (V*DelRho)^2 normalization) |
---|
77 | // The factor 2 is due to the different theta integration limit (pi/2 instead of pi) |
---|
78 | const double form = outer_sum/M_PI_2; |
---|
79 | |
---|
80 | // Multiply by contrast^2. Factor corresponding to volume^2 cancels with previous normalization. |
---|
81 | const double delrho = sld - solvent_sld; |
---|
82 | |
---|
83 | // Convert from [1e-12 A-1] to [cm-1] |
---|
84 | return 1.0e-4 * delrho * delrho * form; |
---|
85 | } |
---|
86 | |
---|
87 | double Iqxy(double qa, double qb, double qc, |
---|
88 | double sld, |
---|
89 | double solvent_sld, |
---|
90 | double length_a, |
---|
91 | double b2a_ratio, |
---|
92 | double c2a_ratio, |
---|
93 | double thickness) |
---|
94 | { |
---|
95 | const double length_b = length_a * b2a_ratio; |
---|
96 | const double length_c = length_a * c2a_ratio; |
---|
97 | const double a_half = 0.5 * length_a; |
---|
98 | const double b_half = 0.5 * length_b; |
---|
99 | const double c_half = 0.5 * length_c; |
---|
100 | const double vol_total = length_a * length_b * length_c; |
---|
101 | const double vol_core = 8.0 * (a_half-thickness) * (b_half-thickness) * (c_half-thickness); |
---|
102 | |
---|
103 | // Amplitude AP from eqn. (13) |
---|
104 | |
---|
105 | const double termA1 = sas_sinx_x(qa * a_half); |
---|
106 | const double termA2 = sas_sinx_x(qa * (a_half-thickness)); |
---|
107 | |
---|
108 | const double termB1 = sas_sinx_x(qb * b_half); |
---|
109 | const double termB2 = sas_sinx_x(qb * (b_half-thickness)); |
---|
110 | |
---|
111 | const double termC1 = sas_sinx_x(qc * c_half); |
---|
112 | const double termC2 = sas_sinx_x(qc * (c_half-thickness)); |
---|
113 | |
---|
114 | const double AP1 = vol_total * termA1 * termB1 * termC1; |
---|
115 | const double AP2 = vol_core * termA2 * termB2 * termC2; |
---|
116 | |
---|
117 | // Multiply by contrast^2. Factor corresponding to volume^2 cancels with previous normalization. |
---|
118 | const double delrho = sld - solvent_sld; |
---|
119 | |
---|
120 | // Convert from [1e-12 A-1] to [cm-1] |
---|
121 | return 1.0e-4 * square(delrho * (AP1-AP2)); |
---|
122 | } |
---|