Changeset 3fd0499 in sasmodels


Ignore:
Timestamp:
Apr 8, 2017 4:32:39 AM (8 months ago)
Author:
Paul Kienzle <pkienzle@…>
Branches:
master, boltzmann, costrafo411, doc_update, generic_integration_loop, ticket-1043, ticket-786
Children:
afd4692, 142a8e2
Parents:
16a8c63 (diff), b2921d0 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
Message:

Merge branch 'master' into ticket-890

Files:
7 added
5 deleted
30 edited

Legend:

Unmodified
Added
Removed
  • .gitattributes

    r46056006 r41709dc  
    1 *.py text=auto eol=lf 
    2 *.c text=auto eol=lf 
    3 *.h text=auto eol=lf 
    4 *.cpp text=auto eol=lf 
    5 *.rst text=auto eol=lf 
     1*.py text eol=lf 
     2*.c text eol=lf 
     3*.h text eol=lf 
     4*.cpp text eol=lf 
     5*.rst text eol=lf 
  • .travis.yml

    r01e551a r24cd982  
    11language: python 
    2 python: 
    3 - '2.7' 
     2 
     3sudo:  false 
     4 
     5matrix: 
     6  include: 
     7    - os: linux 
     8      env: 
     9        - PY=2.7 
     10        - NUMPYSPEC=numpy 
     11    - os: linux 
     12      env: 
     13        - PY=3 
     14        - NUMPYSPEC=numpy 
     15    - os: osx 
     16      language: generic 
     17      env: 
     18        - PY=2.7 
     19        - NUMPYSPEC=numpy 
     20    - os: osx 
     21      language: generic 
     22      env: 
     23        - PY=3 
     24        - NUMPYSPEC=numpy 
     25 
     26# whitelist 
    427branches: 
    528  only: 
    6   - master 
    7 virtualenv: 
    8   system_site_packages: true 
     29    - master 
     30 
     31addons: 
     32  apt: 
     33    packages: 
     34      opencl-headers 
     35 
    936before_install: 
    10 - sudo apt-get update; 
    11 - sudo apt-get install python-numpy python-scipy 
     37  - echo $TRAVIS_OS_NAME 
     38 
     39  - if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then 
     40      wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh; 
     41    fi; 
     42  - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then 
     43      wget https://repo.continuum.io/miniconda/Miniconda3-latest-MacOSX-x86_64.sh -O miniconda.sh; 
     44    fi; 
     45 
     46  - bash miniconda.sh -b -p $HOME/miniconda 
     47  - export PATH="$HOME/miniconda/bin:$PATH" 
     48  - hash -r 
     49  - conda update --yes conda 
     50 
     51  # Useful for debugging any issues with conda 
     52  - conda info -a 
     53 
     54  - conda install --yes python=$PY $NUMPYSPEC scipy cython mako cffi 
     55 
     56  - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then 
     57      pip install pyopencl; 
     58    fi; 
     59 
    1260install: 
    13 - pip install bumps 
    14 - pip install unittest-xml-reporting 
     61  - pip install bumps 
     62  - pip install unittest-xml-reporting 
     63 
    1564script: 
    1665- export WORKSPACE=/home/travis/build/SasView/sasmodels/ 
    1766- python -m sasmodels.model_test dll all 
     67 
    1868notifications: 
    1969  slack: 
  • sasmodels/models/cylinder.py

    r15a90c1 r3fd0499  
    3838 
    3939 
    40 Numerical integration is simplified by a change of variable to $u = cos(\alpha)$ with  
    41 $sin(\alpha)=\sqrt{1-u^2}$.  
     40Numerical integration is simplified by a change of variable to $u = cos(\alpha)$ with 
     41$sin(\alpha)=\sqrt{1-u^2}$. 
    4242 
    4343The output of the 1D scattering intensity function for randomly oriented 
     
    156156tests = [[{}, 0.2, 0.042761386790780453], 
    157157        [{}, [0.2], [0.042761386790780453]], 
    158 #  new coords     
     158#  new coords 
    159159        [{'theta':80.1534480601659, 'phi':10.1510817110481}, (qx, qy), 0.03514647218513852], 
    160160        [{'theta':80.1534480601659, 'phi':10.1510817110481}, [(qx, qy)], [0.03514647218513852]], 
  • sasmodels/models/parallelepiped.py

    r1916c52 r3fd0499  
    2424   The edge of the solid used to have to satisfy the condition that $A < B < C$. 
    2525   After some improvements to the effective radius calculation, used with an S(Q), 
    26    it is beleived that this is no longer the case.  
     26   it is beleived that this is no longer the case. 
    2727 
    2828The 1D scattering intensity $I(q)$ is calculated as: 
     
    189189            mu = q*B 
    190190        V: Volume of the rectangular parallelepiped 
    191         alpha: angle between the long axis of the  
     191        alpha: angle between the long axis of the 
    192192            parallelepiped and the q-vector for 1D 
    193193""" 
     
    219219    Return effective radius (ER) for P(q)*S(q) 
    220220    """ 
    221     # now that axes can be in any size order, need to sort a,b,c where a~b and c is either much smaller  
     221    # now that axes can be in any size order, need to sort a,b,c where a~b and c is either much smaller 
    222222    # or much larger 
    223223    abc = np.vstack((length_a, length_b, length_c)) 
  • sasmodels/models/triaxial_ellipsoid.py

    r16a8c63 r3fd0499  
    113113* **Author:** NIST IGOR/DANSE **Date:** pre 2010 
    114114* **Last Modified by:** Paul Kienzle (improved calculation) **Date:** April 4, 2017 
    115 * **Last Reviewed by:** Paul Kienzle &Richard Heenan **Date:**  April 4, 2017 
     115* **Last Reviewed by:** Paul Kienzle & Richard Heenan **Date:**  April 4, 2017 
    116116 
    117117""" 
  • explore/angular_pd.py

    r12eb36b r8267e0b  
    4747 
    4848def draw_mesh_new(ax, theta, dtheta, phi, dphi, flow, radius=10., dist='gauss'): 
    49     theta_center = radians(theta) 
     49    theta_center = radians(90-theta) 
    5050    phi_center = radians(phi) 
    5151    flow_center = radians(flow) 
     
    137137                              radius=11., dist=dist) 
    138138        if not axis.startswith('d'): 
    139             ax.view_init(elev=theta, azim=phi) 
     139            ax.view_init(elev=90-theta if use_new else theta, azim=phi) 
    140140        plt.gcf().canvas.draw() 
    141141 
  • sasmodels/compare.py

    r650c6d2 re6ab0d3  
    8484    -edit starts the parameter explorer 
    8585    -default/-demo* use demo vs default parameters 
    86     -html shows the model docs instead of running the model 
     86    -help/-html shows the model docs instead of running the model 
    8787    -title="note" adds note to the plot title, after the model name 
    8888    -data="path" uses q, dq from the data file 
     
    836836    'linear', 'log', 'q4', 
    837837    'hist', 'nohist', 
    838     'edit', 'html', 
     838    'edit', 'html', 'help', 
    839839    'demo', 'default', 
    840840    ]) 
     
    10051005        elif arg == '-default':    opts['use_demo'] = False 
    10061006        elif arg == '-html':    opts['html'] = True 
     1007        elif arg == '-help':    opts['html'] = True 
    10071008    # pylint: enable=bad-whitespace 
    10081009 
  • sasmodels/kernel_header.c

    rdaeef4c rb00a646  
    148148inline double sas_sinx_x(double x) { return x==0 ? 1.0 : sin(x)/x; } 
    149149 
     150// To rotate from the canonical position to theta, phi, psi, first rotate by 
     151// psi about the major axis, oriented along z, which is a rotation in the 
     152// detector plane xy. Next rotate by theta about the y axis, aligning the major 
     153// axis in the xz plane. Finally, rotate by phi in the detector plane xy. 
     154// To compute the scattering, undo these rotations in reverse order: 
     155//     rotate in xy by -phi, rotate in xz by -theta, rotate in xy by -psi 
     156// The returned q is the length of the q vector and (xhat, yhat, zhat) is a unit 
     157// vector in the q direction. 
     158// To change between counterclockwise and clockwise rotation, change the 
     159// sign of phi and psi. 
     160 
    150161#if 1 
    151162//think cos(theta) should be sin(theta) in new coords, RKH 11Jan2017 
     
    166177#endif 
    167178 
     179#if 1 
     180#define ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, xhat, yhat, zhat) do { \ 
     181    q = sqrt(qx*qx + qy*qy); \ 
     182    const double qxhat = qx/q; \ 
     183    const double qyhat = qy/q; \ 
     184    double sin_theta, cos_theta; \ 
     185    double sin_phi, cos_phi; \ 
     186    double sin_psi, cos_psi; \ 
     187    SINCOS(theta*M_PI_180, sin_theta, cos_theta); \ 
     188    SINCOS(phi*M_PI_180, sin_phi, cos_phi); \ 
     189    SINCOS(psi*M_PI_180, sin_psi, cos_psi); \ 
     190    xhat = qxhat*(-sin_phi*sin_psi + cos_theta*cos_phi*cos_psi) \ 
     191         + qyhat*( cos_phi*sin_psi + cos_theta*sin_phi*cos_psi); \ 
     192    yhat = qxhat*(-sin_phi*cos_psi - cos_theta*cos_phi*sin_psi) \ 
     193         + qyhat*( cos_phi*cos_psi - cos_theta*sin_phi*sin_psi); \ 
     194    zhat = qxhat*(-sin_theta*cos_phi) \ 
     195         + qyhat*(-sin_theta*sin_phi); \ 
     196    } while (0) 
     197#else 
     198// SasView 3.x definition of orientation 
    168199#define ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, cos_alpha, cos_mu, cos_nu) do { \ 
    169200    q = sqrt(qx*qx + qy*qy); \ 
     
    180211    cos_nu = (-cos_phi*sin_psi*sin_theta + sin_phi*cos_psi)*qxhat + sin_psi*cos_theta*qyhat; \ 
    181212    } while (0) 
     213#endif 
  • sasmodels/models/barbell.py

    rfcb33e4 r0b56f38  
    8787* **Last Reviewed by:** Richard Heenan **Date:** January 4, 2017 
    8888""" 
    89 from numpy import inf 
     89from numpy import inf, sin, cos, pi 
    9090 
    9191name = "barbell" 
     
    125125            phi_pd=15, phi_pd_n=0, 
    126126           ) 
     127q = 0.1 
     128# april 6 2017, rkh add unit tests, NOT compared with any other calc method, assume correct! 
     129qx = q*cos(pi/6.0) 
     130qy = q*sin(pi/6.0) 
     131tests = [[{}, 0.075, 25.5691260532], 
     132        [{'theta':80., 'phi':10.}, (qx, qy), 3.04233067789], 
     133        ] 
     134del qx, qy  # not necessary to delete, but cleaner 
  • sasmodels/models/bcc_paracrystal.c

    r4962519 r50beefe  
    9090    double theta, double phi, double psi) 
    9191{ 
    92     double q, cos_a1, cos_a2, cos_a3; 
    93     ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, cos_a3, cos_a2, cos_a1); 
     92    double q, zhat, yhat, xhat; 
     93    ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, xhat, yhat, zhat); 
    9494 
    95     const double a1 = +cos_a3 - cos_a1 + cos_a2; 
    96     const double a2 = +cos_a3 + cos_a1 - cos_a2; 
    97     const double a3 = -cos_a3 + cos_a1 + cos_a2; 
     95    const double a1 = +xhat - zhat + yhat; 
     96    const double a2 = +xhat + zhat - yhat; 
     97    const double a3 = -xhat + zhat + yhat; 
    9898 
    9999    const double qd = 0.5*q*dnn; 
  • sasmodels/models/bcc_paracrystal.py

    r925ad6e re2d6e3b  
    9999""" 
    100100 
    101 from numpy import inf 
     101from numpy import inf, pi 
    102102 
    103103name = "bcc_paracrystal" 
     
    141141    psi_pd=15, psi_pd_n=0, 
    142142    ) 
     143# april 6 2017, rkh add unit tests, NOT compared with any other calc method, assume correct! 
     144# add 2d test later 
     145q =4.*pi/220. 
     146tests = [ 
     147    [{ }, 
     148     [0.001, q, 0.215268], [1.46601394721, 2.85851284174, 0.00866710287078]], 
     149] 
  • sasmodels/models/capped_cylinder.py

    rfcb33e4 r0b56f38  
    9191 
    9292""" 
    93 from numpy import inf 
     93from numpy import inf, sin, cos, pi 
    9494 
    9595name = "capped_cylinder" 
     
    145145            theta_pd=15, theta_pd_n=45, 
    146146            phi_pd=15, phi_pd_n=1) 
     147q = 0.1 
     148# april 6 2017, rkh add unit tests, NOT compared with any other calc method, assume correct! 
     149qx = q*cos(pi/6.0) 
     150qy = q*sin(pi/6.0) 
     151tests = [[{}, 0.075, 26.0698570695], 
     152        [{'theta':80., 'phi':10.}, (qx, qy), 0.561811990502], 
     153        ] 
     154del qx, qy  # not necessary to delete, but cleaner 
  • sasmodels/models/core_shell_bicelle.c

    r592343f rb260926  
    3030 
    3131static double 
    32 bicelle_kernel(double qq, 
     32bicelle_kernel(double q, 
    3333              double rad, 
    3434              double radthick, 
    3535              double facthick, 
    36               double length, 
     36              double halflength, 
    3737              double rhoc, 
    3838              double rhoh, 
     
    4242              double cos_alpha) 
    4343{ 
    44     double si1,si2,be1,be2; 
    45  
    4644    const double dr1 = rhoc-rhoh; 
    4745    const double dr2 = rhor-rhosolv; 
    4846    const double dr3 = rhoh-rhor; 
    49     const double vol1 = M_PI*rad*rad*(2.0*length); 
    50     const double vol2 = M_PI*(rad+radthick)*(rad+radthick)*2.0*(length+facthick); 
    51     const double vol3 = M_PI*rad*rad*2.0*(length+facthick); 
    52     double besarg1 = qq*rad*sin_alpha; 
    53     double besarg2 = qq*(rad+radthick)*sin_alpha; 
    54     double sinarg1 = qq*length*cos_alpha; 
    55     double sinarg2 = qq*(length+facthick)*cos_alpha; 
     47    const double vol1 = M_PI*square(rad)*2.0*(halflength); 
     48    const double vol2 = M_PI*square(rad+radthick)*2.0*(halflength+facthick); 
     49    const double vol3 = M_PI*square(rad)*2.0*(halflength+facthick); 
    5650 
    57     be1 = sas_2J1x_x(besarg1); 
    58     be2 = sas_2J1x_x(besarg2); 
    59     si1 = sas_sinx_x(sinarg1); 
    60     si2 = sas_sinx_x(sinarg2); 
     51    const double be1 = sas_2J1x_x(q*(rad)*sin_alpha); 
     52    const double be2 = sas_2J1x_x(q*(rad+radthick)*sin_alpha); 
     53    const double si1 = sas_sinx_x(q*(halflength)*cos_alpha); 
     54    const double si2 = sas_sinx_x(q*(halflength+facthick)*cos_alpha); 
    6155 
    6256    const double t = vol1*dr1*si1*be1 + 
     
    6458                     vol3*dr3*si2*be1; 
    6559 
    66     const double retval = t*t*sin_alpha; 
     60    const double retval = t*t; 
    6761 
    6862    return retval; 
     
    7165 
    7266static double 
    73 bicelle_integration(double qq, 
     67bicelle_integration(double q, 
    7468                   double rad, 
    7569                   double radthick, 
     
    8377    // set up the integration end points 
    8478    const double uplim = M_PI_4; 
    85     const double halfheight = 0.5*length; 
     79    const double halflength = 0.5*length; 
    8680 
    8781    double summ = 0.0; 
     
    9084        double sin_alpha, cos_alpha; // slots to hold sincos function output 
    9185        SINCOS(alpha, sin_alpha, cos_alpha); 
    92         double yyy = Gauss76Wt[i] * bicelle_kernel(qq, rad, radthick, facthick, 
    93                              halfheight, rhoc, rhoh, rhor, rhosolv, 
     86        double yyy = Gauss76Wt[i] * bicelle_kernel(q, rad, radthick, facthick, 
     87                             halflength, rhoc, rhoh, rhor, rhosolv, 
    9488                             sin_alpha, cos_alpha); 
    95         summ += yyy; 
     89        summ += yyy*sin_alpha; 
    9690    } 
    9791 
     
    119113    double answer = bicelle_kernel(q, radius, thick_rim, thick_face, 
    120114                           0.5*length, core_sld, face_sld, rim_sld, 
    121                            solvent_sld, sin_alpha, cos_alpha) / fabs(sin_alpha); 
    122  
    123     answer *= 1.0e-4; 
    124  
    125     return answer; 
     115                           solvent_sld, sin_alpha, cos_alpha); 
     116    return 1.0e-4*answer; 
    126117} 
    127118 
  • sasmodels/models/core_shell_bicelle.py

    r3b9a526 r0b56f38  
    8888""" 
    8989 
    90 from numpy import inf, sin, cos 
     90from numpy import inf, sin, cos, pi 
    9191 
    9292name = "core_shell_bicelle" 
     
    155155            theta=90, 
    156156            phi=0) 
     157q = 0.1 
     158# april 6 2017, rkh add unit tests, NOT compared with any other calc method, assume correct! 
     159qx = q*cos(pi/6.0) 
     160qy = q*sin(pi/6.0) 
     161tests = [[{}, 0.05, 7.4883545957], 
     162        [{'theta':80., 'phi':10.}, (qx, qy), 2.81048892474 ], 
     163        ] 
     164del qx, qy  # not necessary to delete, but cleaner 
    157165 
    158 #qx, qy = 0.4 * cos(pi/2.0), 0.5 * sin(0) 
  • sasmodels/models/core_shell_bicelle_elliptical.c

    r592343f rf4f85b3  
    3232} 
    3333 
    34 double  
    35                 Iq(double qq, 
    36                    double rad, 
    37                    double x_core, 
    38                    double radthick, 
    39                    double facthick, 
    40                    double length, 
    41                    double rhoc, 
    42                    double rhoh, 
    43                    double rhor, 
    44                    double rhosolv) 
     34double Iq(double q, 
     35          double rad, 
     36          double x_core, 
     37          double radthick, 
     38          double facthick, 
     39          double length, 
     40          double rhoc, 
     41          double rhoh, 
     42          double rhor, 
     43          double rhosolv) 
    4544{ 
    4645    double si1,si2,be1,be2; 
     
    7473        const double sin_alpha = sqrt(1.0 - cos_alpha*cos_alpha); 
    7574        double inner_sum=0; 
    76         double sinarg1 = qq*halfheight*cos_alpha; 
    77         double sinarg2 = qq*(halfheight+facthick)*cos_alpha; 
     75        double sinarg1 = q*halfheight*cos_alpha; 
     76        double sinarg2 = q*(halfheight+facthick)*cos_alpha; 
    7877        si1 = sas_sinx_x(sinarg1); 
    7978        si2 = sas_sinx_x(sinarg2); 
     
    8382            const double beta = ( Gauss76Z[j] +1.0)*M_PI_2; 
    8483            const double rr = sqrt(rA - rB*cos(beta)); 
    85             double besarg1 = qq*rr*sin_alpha; 
    86             double besarg2 = qq*(rr+radthick)*sin_alpha; 
     84            double besarg1 = q*rr*sin_alpha; 
     85            double besarg2 = q*(rr+radthick)*sin_alpha; 
    8786            be1 = sas_2J1x_x(besarg1); 
    8887            be2 = sas_2J1x_x(besarg2); 
     
    114113{ 
    115114       // THIS NEEDS TESTING 
    116     double qq, cos_val, cos_mu, cos_nu; 
    117     ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, qq, cos_val, cos_mu, cos_nu); 
     115    double q, xhat, yhat, zhat; 
     116    ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, xhat, yhat, zhat); 
    118117    const double dr1 = rhoc-rhoh; 
    119118    const double dr2 = rhor-rhosolv; 
     
    125124    const double vol3 = M_PI*rad*radius_major*2.0*(halfheight+facthick); 
    126125 
    127     // Compute:  r = sqrt((radius_major*cos_nu)^2 + (radius_minor*cos_mu)^2) 
     126    // Compute:  r = sqrt((radius_major*zhat)^2 + (radius_minor*yhat)^2) 
    128127    // Given:    radius_major = r_ratio * radius_minor   
    129128    // ASSUME the sin_alpha is included in the separate integration over orientation of rod angle 
    130     const double r = rad*sqrt(square(x_core*cos_nu) + cos_mu*cos_mu); 
    131     const double be1 = sas_2J1x_x( qq*r ); 
    132     const double be2 = sas_2J1x_x( qq*(r + radthick ) ); 
    133     const double si1 = sas_sinx_x( qq*halfheight*cos_val ); 
    134     const double si2 = sas_sinx_x( qq*(halfheight + facthick)*cos_val ); 
     129    const double rad_minor = rad; 
     130    const double rad_major = rad*x_core; 
     131    const double r_hat = sqrt(square(rad_major*xhat) + square(rad_minor*yhat)); 
     132    const double rshell_hat = sqrt(square((rad_major+radthick)*xhat) 
     133                                   + square((rad_minor+radthick)*yhat)); 
     134    const double be1 = sas_2J1x_x( q*r_hat ); 
     135    const double be2 = sas_2J1x_x( q*rshell_hat ); 
     136    const double si1 = sas_sinx_x( q*halfheight*zhat ); 
     137    const double si2 = sas_sinx_x( q*(halfheight + facthick)*zhat ); 
    135138    const double Aq = square( vol1*dr1*si1*be1 + vol2*dr2*si2*be2 +  vol3*dr3*si2*be1); 
    136139    //const double vol = form_volume(radius_minor, r_ratio, length); 
  • sasmodels/models/core_shell_bicelle_elliptical.py

    r3b9a526 r16a8c63  
    8080 
    8181 
    82 .. figure:: img/elliptical_cylinder_angle_definition.jpg 
     82.. figure:: img/elliptical_cylinder_angle_definition.png 
    8383 
    84     Definition of the angles for the oriented core_shell_bicelle_elliptical model. 
    85     Note that *theta* and *phi* are currently defined differently to those for the core_shell_bicelle model. 
     84    Definition of the angles for the oriented core_shell_bicelle_elliptical particles.    
     85 
    8686 
    8787 
     
    9999""" 
    100100 
    101 from numpy import inf, sin, cos 
     101from numpy import inf, sin, cos, pi 
    102102 
    103103name = "core_shell_bicelle_elliptical" 
     
    150150            psi=0) 
    151151 
    152 #qx, qy = 0.4 * cos(pi/2.0), 0.5 * sin(0) 
     152q = 0.1 
     153# april 6 2017, rkh added a 2d unit test, NOT READY YET pull #890 branch assume correct! 
     154qx = q*cos(pi/6.0) 
     155qy = q*sin(pi/6.0) 
    153156 
    154157tests = [ 
     
    159162    'sld_core':4.0, 'sld_face':7.0, 'sld_rim':1.0, 'sld_solvent':6.0, 'background':0.0}, 
    160163    0.015, 286.540286], 
    161 ] 
     164#    [{'theta':80., 'phi':10.}, (qx, qy), 7.88866563001 ], 
     165        ] 
     166 
     167del qx, qy  # not necessary to delete, but cleaner 
  • sasmodels/models/core_shell_cylinder.py

    rfcb33e4 r0b56f38  
    7373""" 
    7474 
    75 from numpy import pi, inf 
     75from numpy import pi, inf, sin, cos 
    7676 
    7777name = "core_shell_cylinder" 
     
    151151            theta_pd=15, theta_pd_n=45, 
    152152            phi_pd=15, phi_pd_n=1) 
    153  
     153q = 0.1 
     154# april 6 2017, rkh add unit tests, NOT compared with any other calc method, assume correct! 
     155qx = q*cos(pi/6.0) 
     156qy = q*sin(pi/6.0) 
     157tests = [[{}, 0.075, 10.8552692237], 
     158        [{}, (qx, qy), 0.444618752741 ], 
     159        ] 
     160del qx, qy  # not necessary to delete, but cleaner 
  • sasmodels/models/core_shell_parallelepiped.c

    r1e7b0db r92dfe0c  
    134134    double psi) 
    135135{ 
    136     double q, cos_val_a, cos_val_b, cos_val_c; 
    137     ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, cos_val_c, cos_val_b, cos_val_a); 
     136    double q, zhat, yhat, xhat; 
     137    ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, xhat, yhat, zhat); 
    138138 
    139139    // cspkernel in csparallelepiped recoded here 
     
    160160    double tc = length_a + 2.0*thick_rim_c; 
    161161    //handle arg=0 separately, as sin(t)/t -> 1 as t->0 
    162     double siA = sas_sinx_x(0.5*q*length_a*cos_val_a); 
    163     double siB = sas_sinx_x(0.5*q*length_b*cos_val_b); 
    164     double siC = sas_sinx_x(0.5*q*length_c*cos_val_c); 
    165     double siAt = sas_sinx_x(0.5*q*ta*cos_val_a); 
    166     double siBt = sas_sinx_x(0.5*q*tb*cos_val_b); 
    167     double siCt = sas_sinx_x(0.5*q*tc*cos_val_c); 
     162    double siA = sas_sinx_x(0.5*q*length_a*xhat); 
     163    double siB = sas_sinx_x(0.5*q*length_b*yhat); 
     164    double siC = sas_sinx_x(0.5*q*length_c*zhat); 
     165    double siAt = sas_sinx_x(0.5*q*ta*xhat); 
     166    double siBt = sas_sinx_x(0.5*q*tb*yhat); 
     167    double siCt = sas_sinx_x(0.5*q*tc*zhat); 
    168168     
    169169 
  • sasmodels/models/core_shell_parallelepiped.py

    rcb0dc22 r1916c52  
    1010 
    1111.. note:: 
    12    This model was originally ported from NIST IGOR macros. However,t is not 
    13    yet fully understood by the SasView developers and is currently review. 
     12   This model was originally ported from NIST IGOR macros. However, it is not 
     13   yet fully understood by the SasView developers and is currently under review. 
    1414 
    1515The form factor is normalized by the particle volume $V$ such that 
     
    4848amplitudes of the core and shell, in the same manner as a core-shell model. 
    4949 
     50.. math:: 
     51 
     52    F_{a}(Q,\alpha,\beta)= 
     53    \left[\frac{\sin(\tfrac{1}{2}Q(L_A+2t_A)\sin\alpha \sin\beta)}{\tfrac{1}{2}Q(L_A+2t_A)\sin\alpha\sin\beta} 
     54    - \frac{\sin(\tfrac{1}{2}QL_A\sin\alpha \sin\beta)}{\tfrac{1}{2}QL_A\sin\alpha \sin\beta} \right] 
     55    \left[\frac{\sin(\tfrac{1}{2}QL_B\sin\alpha \sin\beta)}{\tfrac{1}{2}QL_B\sin\alpha \sin\beta} \right] 
     56    \left[\frac{\sin(\tfrac{1}{2}QL_C\sin\alpha \sin\beta)}{\tfrac{1}{2}QL_C\sin\alpha \sin\beta} \right] 
    5057 
    5158.. note:: 
    5259 
     60    Why does t_B not appear in the above equation? 
    5361    For the calculation of the form factor to be valid, the sides of the solid 
    54     MUST be chosen such that** $A < B < C$. 
     62    MUST (perhaps not any more?) be chosen such that** $A < B < C$. 
    5563    If this inequality is not satisfied, the model will not report an error, 
    5664    but the calculation will not be correct and thus the result wrong. 
    5765 
    5866FITTING NOTES 
    59 If the scale is set equal to the particle volume fraction, |phi|, the returned 
     67If the scale is set equal to the particle volume fraction, $\phi$, the returned 
    6068value is the scattered intensity per unit volume, $I(q) = \phi P(q)$. 
    6169However, **no interparticle interference effects are included in this 
     
    7381NB: The 2nd virial coefficient of the core_shell_parallelepiped is calculated 
    7482based on the the averaged effective radius $(=\sqrt{(A+2t_A)(B+2t_B)/\pi})$ 
    75 and length $(C+2t_C)$ values, and used as the effective radius 
    76 for $S(Q)$ when $P(Q) * S(Q)$ is applied. 
     83and length $(C+2t_C)$ values, after appropriately 
     84sorting the three dimensions to give an oblate or prolate particle, to give an  
     85effective radius, for $S(Q)$ when $P(Q) * S(Q)$ is applied. 
    7786 
    7887To provide easy access to the orientation of the parallelepiped, we define the 
     
    8392*x*-axis of the detector. 
    8493 
    85 .. figure:: img/parallelepiped_angle_definition.jpg 
     94.. figure:: img/parallelepiped_angle_definition.png 
    8695 
    8796    Definition of the angles for oriented core-shell parallelepipeds. 
    8897 
    89 .. figure:: img/parallelepiped_angle_projection.jpg 
     98.. figure:: img/parallelepiped_angle_projection.png 
    9099 
    91100    Examples of the angles for oriented core-shell parallelepipeds against the 
     
    112121 
    113122import numpy as np 
    114 from numpy import pi, inf, sqrt 
     123from numpy import pi, inf, sqrt, cos, sin 
    115124 
    116125name = "core_shell_parallelepiped" 
     
    186195            psi_pd=10, psi_pd_n=1) 
    187196 
    188 qx, qy = 0.2 * np.cos(2.5), 0.2 * np.sin(2.5) 
     197# rkh 7/4/17 add random unit test for 2d, note make all params different, 2d values not tested against other codes or models 
     198qx, qy = 0.2 * cos(pi/6.), 0.2 * sin(pi/6.) 
    189199tests = [[{}, 0.2, 0.533149288477], 
    190200         [{}, [0.2], [0.533149288477]], 
    191          [{'theta':10.0, 'phi':10.0}, (qx, qy), 0.032102135569], 
    192          [{'theta':10.0, 'phi':10.0}, [(qx, qy)], [0.032102135569]], 
     201         [{'theta':10.0, 'phi':20.0}, (qx, qy), 0.0853299803222], 
     202         [{'theta':10.0, 'phi':20.0}, [(qx, qy)], [0.0853299803222]], 
    193203        ] 
    194204del qx, qy  # not necessary to delete, but cleaner 
  • sasmodels/models/ellipsoid.c

    r130d4c7 r3b571ae  
    33double Iqxy(double qx, double qy, double sld, double sld_solvent, 
    44    double radius_polar, double radius_equatorial, double theta, double phi); 
    5  
    6 static double 
    7 _ellipsoid_kernel(double q, double radius_polar, double radius_equatorial, double cos_alpha) 
    8 { 
    9     double ratio = radius_polar/radius_equatorial; 
    10     // Using ratio v = Rp/Re, we can expand the following to match the 
    11     // form given in Guinier (1955) 
    12     //     r = Re * sqrt(1 + cos^2(T) (v^2 - 1)) 
    13     //       = Re * sqrt( (1 - cos^2(T)) + v^2 cos^2(T) ) 
    14     //       = Re * sqrt( sin^2(T) + v^2 cos^2(T) ) 
    15     //       = sqrt( Re^2 sin^2(T) + Rp^2 cos^2(T) ) 
    16     // 
    17     // Instead of using pythagoras we could pass in sin and cos; this may be 
    18     // slightly better for 2D which has already computed it, but it introduces 
    19     // an extra sqrt and square for 1-D not required by the current form, so 
    20     // leave it as is. 
    21     const double r = radius_equatorial 
    22                      * sqrt(1.0 + cos_alpha*cos_alpha*(ratio*ratio - 1.0)); 
    23     const double f = sas_3j1x_x(q*r); 
    24  
    25     return f*f; 
    26 } 
    275 
    286double form_volume(double radius_polar, double radius_equatorial) 
     
    3715    double radius_equatorial) 
    3816{ 
     17    // Using ratio v = Rp/Re, we can implement the form given in Guinier (1955) 
     18    //     i(h) = int_0^pi/2 Phi^2(h a sqrt(cos^2 + v^2 sin^2) cos dT 
     19    //          = int_0^pi/2 Phi^2(h a sqrt((1-sin^2) + v^2 sin^2) cos dT 
     20    //          = int_0^pi/2 Phi^2(h a sqrt(1 + sin^2(v^2-1)) cos dT 
     21    // u-substitution of 
     22    //     u = sin, du = cos dT 
     23    //     i(h) = int_0^1 Phi^2(h a sqrt(1 + u^2(v^2-1)) du 
     24    const double v_square_minus_one = square(radius_polar/radius_equatorial) - 1.0; 
     25 
    3926    // translate a point in [-1,1] to a point in [0, 1] 
     27    // const double u = Gauss76Z[i]*(upper-lower)/2 + (upper+lower)/2; 
    4028    const double zm = 0.5; 
    4129    const double zb = 0.5; 
    4230    double total = 0.0; 
    4331    for (int i=0;i<76;i++) { 
    44         //const double cos_alpha = (Gauss76Z[i]*(upper-lower) + upper + lower)/2; 
    45         const double cos_alpha = Gauss76Z[i]*zm + zb; 
    46         total += Gauss76Wt[i] * _ellipsoid_kernel(q, radius_polar, radius_equatorial, cos_alpha); 
     32        const double u = Gauss76Z[i]*zm + zb; 
     33        const double r = radius_equatorial*sqrt(1.0 + u*u*v_square_minus_one); 
     34        const double f = sas_3j1x_x(q*r); 
     35        total += Gauss76Wt[i] * f * f; 
    4736    } 
    4837    // translate dx in [-1,1] to dx in [lower,upper] 
     
    6251    double q, sin_alpha, cos_alpha; 
    6352    ORIENT_SYMMETRIC(qx, qy, theta, phi, q, sin_alpha, cos_alpha); 
    64     const double form = _ellipsoid_kernel(q, radius_polar, radius_equatorial, cos_alpha); 
     53    const double r = sqrt(square(radius_equatorial*sin_alpha) 
     54                          + square(radius_polar*cos_alpha)); 
     55    const double f = sas_3j1x_x(q*r); 
    6556    const double s = (sld - sld_solvent) * form_volume(radius_polar, radius_equatorial); 
    6657 
    67     return 1.0e-4 * form * s * s; 
     58    return 1.0e-4 * square(f * s); 
    6859} 
    6960 
  • sasmodels/models/ellipsoid.py

    r925ad6e r0b56f38  
    1818.. math:: 
    1919 
    20     F(q,\alpha) = \frac{3 \Delta \rho V (\sin[qr(R_p,R_e,\alpha)] 
    21                 - \cos[qr(R_p,R_e,\alpha)])} 
    22                 {[qr(R_p,R_e,\alpha)]^3} 
     20    F(q,\alpha) = \Delta \rho V \frac{3(\sin qr  - qr \cos qr)}{(qr)^3} 
    2321 
    24 and 
     22for 
    2523 
    2624.. math:: 
    2725 
    28     r(R_p,R_e,\alpha) = \left[ R_e^2 \sin^2 \alpha 
    29         + R_p^2 \cos^2 \alpha \right]^{1/2} 
     26    r = \left[ R_e^2 \sin^2 \alpha + R_p^2 \cos^2 \alpha \right]^{1/2} 
    3027 
    3128 
    3229$\alpha$ is the angle between the axis of the ellipsoid and $\vec q$, 
    33 $V = (4/3)\pi R_pR_e^2$ is the volume of the ellipsoid , $R_p$ is the polar radius along the 
    34 rotational axis of the ellipsoid, $R_e$ is the equatorial radius perpendicular 
    35 to the rotational axis of the ellipsoid and $\Delta \rho$ (contrast) is the 
    36 scattering length density difference between the scatterer and the solvent. 
     30$V = (4/3)\pi R_pR_e^2$ is the volume of the ellipsoid, $R_p$ is the polar 
     31radius along the rotational axis of the ellipsoid, $R_e$ is the equatorial 
     32radius perpendicular to the rotational axis of the ellipsoid and 
     33$\Delta \rho$ (contrast) is the scattering length density difference between 
     34the scatterer and the solvent. 
    3735 
    38 For randomly oriented particles: 
     36For randomly oriented particles use the orientational average, 
    3937 
    4038.. math:: 
    4139 
    42    F^2(q)=\int_{0}^{\pi/2}{F^2(q,\alpha)\sin(\alpha)d\alpha} 
     40   \langle F^2(q) \rangle = \int_{0}^{\pi/2}{F^2(q,\alpha)\sin(\alpha)\,d\alpha} 
    4341 
     42 
     43computed via substitution of $u=\sin(\alpha)$, $du=\cos(\alpha)\,d\alpha$ as 
     44 
     45.. math:: 
     46 
     47    \langle F^2(q) \rangle = \int_0^1{F^2(q, u)\,du} 
     48 
     49with 
     50 
     51.. math:: 
     52 
     53    r = R_e \left[ 1 + u^2\left(R_p^2/R_e^2 - 1\right)\right]^{1/2} 
    4454 
    4555To provide easy access to the orientation of the ellipsoid, we define 
     
    4858:ref:`cylinder orientation figure <cylinder-angle-definition>`. 
    4959For the ellipsoid, $\theta$ is the angle between the rotational axis 
    50 and the $z$ -axis. 
     60and the $z$ -axis in the $xz$ plane followed by a rotation by $\phi$ 
     61in the $xy$ plane. 
    5162 
    5263NB: The 2nd virial coefficient of the solid ellipsoid is calculated based 
     
    90101than 500. 
    91102 
     103Model was also tested against the triaxial ellipsoid model with equal major 
     104and minor equatorial radii.  It is also consistent with the cyclinder model 
     105with polar radius equal to length and equatorial radius equal to radius. 
     106 
    92107References 
    93108---------- 
     
    96111*Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, 
    97112Plenum Press, New York, 1987. 
     113 
     114Authorship and Verification 
     115---------------------------- 
     116 
     117* **Author:** NIST IGOR/DANSE **Date:** pre 2010 
     118* **Converted to sasmodels by:** Helen Park **Date:** July 9, 2014 
     119* **Last Modified by:** Paul Kienzle **Date:** March 22, 2017 
    98120""" 
    99121 
    100 from numpy import inf 
     122from numpy import inf, sin, cos, pi 
    101123 
    102124name = "ellipsoid" 
     
    139161def ER(radius_polar, radius_equatorial): 
    140162    import numpy as np 
    141  
     163# see equation (26) in A.Isihara, J.Chem.Phys. 18(1950)1446-1449 
    142164    ee = np.empty_like(radius_polar) 
    143165    idx = radius_polar > radius_equatorial 
     
    168190            theta_pd=15, theta_pd_n=45, 
    169191            phi_pd=15, phi_pd_n=1) 
     192q = 0.1 
     193# april 6 2017, rkh add unit tests, NOT compared with any other calc method, assume correct! 
     194qx = q*cos(pi/6.0) 
     195qy = q*sin(pi/6.0) 
     196tests = [[{}, 0.05, 54.8525847025], 
     197        [{'theta':80., 'phi':10.}, (qx, qy), 1.74134670026 ], 
     198        ] 
     199del qx, qy  # not necessary to delete, but cleaner 
  • sasmodels/models/elliptical_cylinder.c

    r592343f r61104c8  
    6767     double theta, double phi, double psi) 
    6868{ 
    69     double q, cos_val, cos_mu, cos_nu; 
    70     ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, cos_val, cos_mu, cos_nu); 
     69    double q, xhat, yhat, zhat; 
     70    ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, xhat, yhat, zhat); 
    7171 
    7272    // Compute:  r = sqrt((radius_major*cos_nu)^2 + (radius_minor*cos_mu)^2) 
    7373    // Given:    radius_major = r_ratio * radius_minor 
    74     const double r = radius_minor*sqrt(square(r_ratio*cos_nu) + cos_mu*cos_mu); 
     74    const double r = radius_minor*sqrt(square(r_ratio*xhat) + square(yhat)); 
    7575    const double be = sas_2J1x_x(q*r); 
    76     const double si = sas_sinx_x(q*0.5*length*cos_val); 
     76    const double si = sas_sinx_x(q*zhat*0.5*length); 
    7777    const double Aq = be * si; 
    7878    const double delrho = sld - solvent_sld; 
  • sasmodels/models/elliptical_cylinder.py

    rfcb33e4 r16a8c63  
    6464oriented system. 
    6565 
    66 .. figure:: img/elliptical_cylinder_angle_definition.jpg 
     66.. figure:: img/elliptical_cylinder_angle_definition.png 
    6767 
    68     Definition of angles for 2D 
     68    Definition of angles for oriented elliptical cylinder, where axis_ratio >1, 
     69    and angle $\Psi$ is a rotation around the axis of the cylinder. 
    6970 
    70 .. figure:: img/cylinder_angle_projection.jpg 
     71.. figure:: img/elliptical_cylinder_angle_projection.png 
    7172 
    7273    Examples of the angles for oriented elliptical cylinders against the 
    73     detector plane. 
     74    detector plane, with $\Psi$ = 0. 
    7475 
    7576NB: The 2nd virial coefficient of the cylinder is calculated based on the 
     
    108109""" 
    109110 
    110 from numpy import pi, inf, sqrt 
     111from numpy import pi, inf, sqrt, sin, cos 
    111112 
    112113name = "elliptical_cylinder" 
     
    149150                           + (length + radius) * (length + pi * radius)) 
    150151    return 0.5 * (ddd) ** (1. / 3.) 
     152q = 0.1 
     153# april 6 2017, rkh added a 2d unit test, NOT READY YET pull #890 branch assume correct! 
     154qx = q*cos(pi/6.0) 
     155qy = q*sin(pi/6.0) 
    151156 
    152157tests = [ 
     
    158163      'sld_solvent':1.0, 'background':0.0}, 
    159164     0.001, 675.504402], 
     165#    [{'theta':80., 'phi':10.}, (qx, qy), 7.88866563001 ], 
    160166] 
  • sasmodels/models/fcc_paracrystal.c

    r4962519 r50beefe  
    9090    double theta, double phi, double psi) 
    9191{ 
    92     double q, cos_a1, cos_a2, cos_a3; 
    93     ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, cos_a3, cos_a2, cos_a1); 
     92    double q, zhat, yhat, xhat; 
     93    ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, xhat, yhat, zhat); 
    9494 
    95     const double a1 = cos_a2 + cos_a3; 
    96     const double a2 = cos_a3 + cos_a1; 
    97     const double a3 = cos_a2 + cos_a1; 
     95    const double a1 = yhat + xhat; 
     96    const double a2 = xhat + zhat; 
     97    const double a3 = yhat + zhat; 
    9898    const double qd = 0.5*q*dnn; 
    9999    const double arg = 0.5*square(qd*d_factor)*(a1*a1 + a2*a2 + a3*a3); 
  • sasmodels/models/fcc_paracrystal.py

    r925ad6e re2d6e3b  
    9090""" 
    9191 
    92 from numpy import inf 
     92from numpy import inf, pi 
    9393 
    9494name = "fcc_paracrystal" 
     
    128128            psi_pd=15, psi_pd_n=0, 
    129129           ) 
     130# april 6 2017, rkh add unit tests, NOT compared with any other calc method, assume correct! 
     131# add 2d test later 
     132q =4.*pi/220. 
     133tests = [ 
     134    [{ }, 
     135     [0.001, q, 0.215268], [0.275164706668, 5.7776842567, 0.00958167119232]], 
     136] 
  • sasmodels/models/hollow_cylinder.py

    raea2e2a r0b56f38  
    6060""" 
    6161 
    62 from numpy import pi, inf 
     62from numpy import pi, inf, sin, cos 
    6363 
    6464name = "hollow_cylinder" 
     
    129129            theta_pd=10, theta_pd_n=5, 
    130130           ) 
    131  
     131q = 0.1 
     132# april 6 2017, rkh added a 2d unit test, assume correct! 
     133qx = q*cos(pi/6.0) 
     134qy = q*sin(pi/6.0) 
    132135# Parameters for unit tests 
    133136tests = [ 
    134137    [{}, 0.00005, 1764.926], 
    135138    [{}, 'VR', 1.8], 
    136     [{}, 0.001, 1756.76] 
    137     ] 
     139    [{}, 0.001, 1756.76], 
     140    [{}, (qx, qy), 2.36885476192  ], 
     141        ] 
     142del qx, qy  # not necessary to delete, but cleaner 
  • sasmodels/models/parallelepiped.c

    r1e7b0db rd605080  
    6767    double psi) 
    6868{ 
    69     double q, cos_val_a, cos_val_b, cos_val_c; 
    70     ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, cos_val_c, cos_val_b, cos_val_a); 
     69    double q, xhat, yhat, zhat; 
     70    ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, xhat, yhat, zhat); 
    7171 
    72     const double siA = sas_sinx_x(0.5*q*length_a*cos_val_a); 
    73     const double siB = sas_sinx_x(0.5*q*length_b*cos_val_b); 
    74     const double siC = sas_sinx_x(0.5*q*length_c*cos_val_c); 
     72    const double siA = sas_sinx_x(0.5*length_a*q*xhat); 
     73    const double siB = sas_sinx_x(0.5*length_b*q*yhat); 
     74    const double siC = sas_sinx_x(0.5*length_c*q*zhat); 
    7575    const double V = form_volume(length_a, length_b, length_c); 
    7676    const double drho = (sld - solvent_sld); 
  • sasmodels/models/sc_paracrystal.c

    r4962519 r50beefe  
    111111          double psi) 
    112112{ 
    113     double q, cos_a1, cos_a2, cos_a3; 
    114     ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, cos_a3, cos_a2, cos_a1); 
     113    double q, zhat, yhat, xhat; 
     114    ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, xhat, yhat, zhat); 
    115115 
    116116    const double qd = q*dnn; 
     
    118118    const double tanh_qd = tanh(arg); 
    119119    const double cosh_qd = cosh(arg); 
    120     const double Zq = tanh_qd/(1. - cos(qd*cos_a1)/cosh_qd) 
    121                     * tanh_qd/(1. - cos(qd*cos_a2)/cosh_qd) 
    122                     * tanh_qd/(1. - cos(qd*cos_a3)/cosh_qd); 
     120    const double Zq = tanh_qd/(1. - cos(qd*zhat)/cosh_qd) 
     121                    * tanh_qd/(1. - cos(qd*yhat)/cosh_qd) 
     122                    * tanh_qd/(1. - cos(qd*xhat)/cosh_qd); 
    123123 
    124124    const double Fq = sphere_form(q, radius, sphere_sld, solvent_sld)*Zq; 
  • sasmodels/models/stacked_disks.py

    rc3ccaec r0b56f38  
    103103""" 
    104104 
    105 from numpy import inf 
     105from numpy import inf, sin, cos, pi 
    106106 
    107107name = "stacked_disks" 
     
    152152# After redefinition of spherical coordinates - 
    153153# tests had in old coords theta=0, phi=0; new coords theta=90, phi=0 
    154 # but should not matter here as so far all the tests are 1D not 2D 
     154q = 0.1 
     155# april 6 2017, rkh added a 2d unit test, assume correct! 
     156qx = q*cos(pi/6.0) 
     157qy = q*sin(pi/6.0) 
    155158tests = [ 
    156159# Accuracy tests based on content in test/utest_extra_models.py. 
     
    186189    [{'thick_core': 10.0, 
    187190      'thick_layer': 15.0, 
     191      'radius': 100.0, 
     192      'n_stacking': 5, 
     193      'sigma_d': 0.0, 
     194      'sld_core': 4.0, 
     195      'sld_layer': -0.4, 
     196      'solvent_sd': 5.0, 
     197      'theta': 90.0, 
     198      'phi': 20.0, 
     199      'scale': 0.01, 
     200      'background': 0.001}, 
     201      (qx, qy), 0.0491167089952  ], 
     202    [{'thick_core': 10.0, 
     203      'thick_layer': 15.0, 
    188204      'radius': 3000.0, 
    189205      'n_stacking': 5, 
     
    228244      'background': 0.001, 
    229245     }, ([0.4, 0.5]), [0.00105074, 0.00121761]], 
     246    [{'thick_core': 10.0, 
     247      'thick_layer': 15.0, 
     248      'radius': 3000.0, 
     249      'n_stacking': 1.0, 
     250      'sigma_d': 0.0, 
     251      'sld_core': 4.0, 
     252      'sld_layer': -0.4, 
     253      'solvent_sd': 5.0, 
     254      'theta': 90.0, 
     255      'phi': 20.0, 
     256      'scale': 0.01, 
     257      'background': 0.001, 
     258     }, (qx, qy), 0.0341738733124 ], 
    230259 
    231260    [{'thick_core': 10.0, 
  • sasmodels/models/triaxial_ellipsoid.c

    r925ad6e r68dd6a9  
    2020    double radius_polar) 
    2121{ 
    22     double sn, cn; 
    23     // translate a point in [-1,1] to a point in [0, 1] 
    24     const double zm = 0.5; 
    25     const double zb = 0.5; 
     22    const double pa = square(radius_equat_minor/radius_equat_major) - 1.0; 
     23    const double pc = square(radius_polar/radius_equat_major) - 1.0; 
     24    // translate a point in [-1,1] to a point in [0, pi/2] 
     25    const double zm = M_PI_4; 
     26    const double zb = M_PI_4; 
    2627    double outer = 0.0; 
    2728    for (int i=0;i<76;i++) { 
    28         //const double cos_alpha = (Gauss76Z[i]*(upper-lower) + upper + lower)/2; 
    29         const double x = 0.5*(Gauss76Z[i] + 1.0); 
    30         SINCOS(M_PI_2*x, sn, cn); 
    31         const double acosx2 = radius_equat_minor*radius_equat_minor*cn*cn; 
    32         const double bsinx2 = radius_equat_major*radius_equat_major*sn*sn; 
    33         const double c2 = radius_polar*radius_polar; 
     29        //const double u = Gauss76Z[i]*(upper-lower)/2 + (upper + lower)/2; 
     30        const double phi = Gauss76Z[i]*zm + zb; 
     31        const double pa_sinsq_phi = pa*square(sin(phi)); 
    3432 
    3533        double inner = 0.0; 
     34        const double um = 0.5; 
     35        const double ub = 0.5; 
    3636        for (int j=0;j<76;j++) { 
    37             const double ysq = square(Gauss76Z[j]*zm + zb); 
    38             const double t = q*sqrt(acosx2 + bsinx2*(1.0-ysq) + c2*ysq); 
    39             const double fq = sas_3j1x_x(t); 
    40             inner += Gauss76Wt[j] * fq * fq ; 
     37            // translate a point in [-1,1] to a point in [0, 1] 
     38            const double usq = square(Gauss76Z[j]*um + ub); 
     39            const double r = radius_equat_major*sqrt(pa_sinsq_phi*(1.0-usq) + 1.0 + pc*usq); 
     40            const double fq = sas_3j1x_x(q*r); 
     41            inner += Gauss76Wt[j] * fq * fq; 
    4142        } 
    42         outer += Gauss76Wt[i] * 0.5 * inner; 
     43        outer += Gauss76Wt[i] * inner;  // correcting for dx later 
    4344    } 
    44     // translate dx in [-1,1] to dx in [lower,upper] 
    45     const double fqsq = outer*zm; 
     45    // translate integration ranges from [-1,1] to [lower,upper] and normalize by 4 pi 
     46    const double fqsq = outer/4.0;  // = outer*um*zm*8.0/(4.0*M_PI); 
    4647    const double s = (sld - sld_solvent) * form_volume(radius_equat_minor, radius_equat_major, radius_polar); 
    4748    return 1.0e-4 * s * s * fqsq; 
     
    5859    double psi) 
    5960{ 
    60     double q, calpha, cmu, cnu; 
    61     ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, calpha, cmu, cnu); 
     61    double q, xhat, yhat, zhat; 
     62    ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, xhat, yhat, zhat); 
    6263 
    63     const double t = q*sqrt(radius_equat_minor*radius_equat_minor*cnu*cnu 
    64                           + radius_equat_major*radius_equat_major*cmu*cmu 
    65                           + radius_polar*radius_polar*calpha*calpha); 
    66     const double fq = sas_3j1x_x(t); 
     64    const double r = sqrt(square(radius_equat_minor*xhat) 
     65                          + square(radius_equat_major*yhat) 
     66                          + square(radius_polar*zhat)); 
     67    const double fq = sas_3j1x_x(q*r); 
    6768    const double s = (sld - sld_solvent) * form_volume(radius_equat_minor, radius_equat_major, radius_polar); 
    6869 
Note: See TracChangeset for help on using the changeset viewer.