source: sasmodels/sasmodels/models/elliptical_cylinder.c @ 592343f

core_shell_microgelscostrafo411magnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 592343f was 592343f, checked in by wojciech, 6 years ago

sas_J1c translated to sas_2J1x_x

  • Property mode set to 100644
File size: 3.0 KB
Line 
1double form_volume(double radius_minor, double r_ratio, double length);
2double Iq(double q, double radius_minor, double r_ratio, double length,
3          double sld, double solvent_sld);
4double Iqxy(double qx, double qy, double radius_minor, double r_ratio, double length,
5            double sld, double solvent_sld, double theta, double phi, double psi);
6
7
8double
9form_volume(double radius_minor, double r_ratio, double length)
10{
11    return M_PI * radius_minor * radius_minor * r_ratio * length;
12}
13
14double
15Iq(double q, double radius_minor, double r_ratio, double length,
16   double sld, double solvent_sld)
17{
18    // orientational average limits
19    const double va = 0.0;
20    const double vb = 1.0;
21    // inner integral limits
22    const double vaj=0.0;
23    const double vbj=M_PI;
24
25    const double radius_major = r_ratio * radius_minor;
26    const double rA = 0.5*(square(radius_major) + square(radius_minor));
27    const double rB = 0.5*(square(radius_major) - square(radius_minor));
28
29    //initialize integral
30    double outer_sum = 0.0;
31    for(int i=0;i<76;i++) {
32        //setup inner integral over the ellipsoidal cross-section
33        const double cos_val = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0;
34        const double sin_val = sqrt(1.0 - cos_val*cos_val);
35        //const double arg = radius_minor*sin_val;
36        double inner_sum=0;
37        for(int j=0;j<20;j++) {
38            //20 gauss points for the inner integral
39            const double theta = ( Gauss20Z[j]*(vbj-vaj) + vaj + vbj )/2.0;
40            const double r = sin_val*sqrt(rA - rB*cos(theta));
41            const double be = sas_2J1x_x(q*r);
42            inner_sum += Gauss20Wt[j] * be * be;
43        }
44        //now calculate the value of the inner integral
45        inner_sum *= 0.5*(vbj-vaj);
46
47        //now calculate outer integral
48        const double si = sas_sinx_x(q*0.5*length*cos_val);
49        outer_sum += Gauss76Wt[i] * inner_sum * si * si;
50    }
51    outer_sum *= 0.5*(vb-va);
52
53    //divide integral by Pi
54    const double form = outer_sum/M_PI;
55
56    // scale by contrast and volume, and convert to to 1/cm units
57    const double vol = form_volume(radius_minor, r_ratio, length);
58    const double delrho = sld - solvent_sld;
59    return 1.0e-4*square(delrho*vol)*form;
60}
61
62
63double
64Iqxy(double qx, double qy,
65     double radius_minor, double r_ratio, double length,
66     double sld, double solvent_sld,
67     double theta, double phi, double psi)
68{
69    double q, cos_val, cos_mu, cos_nu;
70    ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, cos_val, cos_mu, cos_nu);
71
72    // Compute:  r = sqrt((radius_major*cos_nu)^2 + (radius_minor*cos_mu)^2)
73    // Given:    radius_major = r_ratio * radius_minor
74    const double r = radius_minor*sqrt(square(r_ratio*cos_nu) + cos_mu*cos_mu);
75    const double be = sas_2J1x_x(q*r);
76    const double si = sas_sinx_x(q*0.5*length*cos_val);
77    const double Aq = be * si;
78    const double delrho = sld - solvent_sld;
79    const double vol = form_volume(radius_minor, r_ratio, length);
80    return 1.0e-4 * square(delrho * vol * Aq);
81}
Note: See TracBrowser for help on using the repository browser.