source: sasmodels/sasmodels/models/parallelepiped.py @ 1916c52

core_shell_microgelscostrafo411magnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 1916c52 was 1916c52, checked in by richardh, 7 years ago

more bugs in oriened assym particles docs

  • Property mode set to 100644
File size: 9.6 KB
Line 
1# parallelepiped model
2# Note: model title and parameter table are inserted automatically
3r"""
4The form factor is normalized by the particle volume.
5For information about polarised and magnetic scattering, see
6the :ref:`magnetism` documentation.
7
8Definition
9----------
10
11| This model calculates the scattering from a rectangular parallelepiped
12| (\:numref:`parallelepiped-image`\).
13| If you need to apply polydispersity, see also :ref:`rectangular-prism`.
14
15.. _parallelepiped-image:
16
17
18.. figure:: img/parallelepiped_geometry.jpg
19
20   Parallelepiped with the corresponding definition of sides.
21
22.. note::
23
24   The edge of the solid used to have to satisfy the condition that $A < B < C$.
25   After some improvements to the effective radius calculation, used with an S(Q),
26   it is beleived that this is no longer the case.
27
28The 1D scattering intensity $I(q)$ is calculated as:
29
30.. Comment by Miguel Gonzalez:
31   I am modifying the original text because I find the notation a little bit
32   confusing. I think that in most textbooks/papers, the notation P(Q) is
33   used for the form factor (adim, P(Q=0)=1), although F(q) seems also to
34   be used. But here (as for many other models), P(q) is used to represent
35   the scattering intensity (in cm-1 normally). It would be good to agree on
36   a common notation.
37
38.. math::
39
40    I(q) = \frac{\text{scale}}{V} (\Delta\rho \cdot V)^2
41           \left< P(q, \alpha) \right> + \text{background}
42
43where the volume $V = A B C$, the contrast is defined as
44$\Delta\rho = \rho_\text{p} - \rho_\text{solvent}$,
45$P(q, \alpha)$ is the form factor corresponding to a parallelepiped oriented
46at an angle $\alpha$ (angle between the long axis C and $\vec q$),
47and the averaging $\left<\ldots\right>$ is applied over all orientations.
48
49Assuming $a = A/B < 1$, $b = B /B = 1$, and $c = C/B > 1$, the
50form factor is given by (Mittelbach and Porod, 1961)
51
52.. math::
53
54    P(q, \alpha) = \int_0^1 \phi_Q\left(\mu \sqrt{1-\sigma^2},a\right)
55        \left[S(\mu c \sigma/2)\right]^2 d\sigma
56
57with
58
59.. math::
60
61    \phi_Q(\mu,a) &= \int_0^1
62        \left\{S\left[\frac{\mu}{2}\cos\left(\frac{\pi}{2}u\right)\right]
63               S\left[\frac{\mu a}{2}\sin\left(\frac{\pi}{2}u\right)\right]
64               \right\}^2 du
65
66    S(x) &= \frac{\sin x}{x}
67
68    \mu &= qB
69
70
71The scattering intensity per unit volume is returned in units of |cm^-1|.
72
73NB: The 2nd virial coefficient of the parallelepiped is calculated based on
74the averaged effective radius, after appropriately
75sorting the three dimensions, to give an oblate or prolate particle, $(=\sqrt{A B / \pi})$ and
76length $(= C)$ values, and used as the effective radius for
77$S(q)$ when $P(q) \cdot S(q)$ is applied.
78
79To provide easy access to the orientation of the parallelepiped, we define
80three angles $\theta$, $\phi$ and $\Psi$. The definition of $\theta$ and
81$\phi$ is the same as for the cylinder model (see also figures below).
82
83.. Comment by Miguel Gonzalez:
84   The following text has been commented because I think there are two
85   mistakes. Psi is the rotational angle around C (but I cannot understand
86   what it means against the q plane) and psi=0 corresponds to a||x and b||y.
87
88   The angle $\Psi$ is the rotational angle around the $C$ axis against
89   the $q$ plane. For example, $\Psi = 0$ when the $B$ axis is parallel
90   to the $x$-axis of the detector.
91
92The angle $\Psi$ is the rotational angle around the $C$ axis.
93For $\theta = 0$ and $\phi = 0$, $\Psi = 0$ corresponds to the $B$ axis
94oriented parallel to the y-axis of the detector with $A$ along the z-axis.
95For other $\theta$, $\phi$ values, the parallelepiped has to be first rotated
96$\theta$ degrees around $z$ and $\phi$ degrees around $y$,
97before doing a final rotation of $\Psi$ degrees around the resulting $C$ to
98obtain the final orientation of the parallelepiped.
99For example, for $\theta = 0$ and $\phi = 90$, we have that $\Psi = 0$
100corresponds to $A$ along $x$ and $B$ along $y$,
101while for $\theta = 90$ and $\phi = 0$, $\Psi = 0$ corresponds to
102$A$ along $z$ and $B$ along $x$.
103
104.. _parallelepiped-orientation:
105
106.. figure:: img/parallelepiped_angle_definition.png
107
108    Definition of the angles for oriented parallelepiped, shown with $A < B < C$.
109
110.. figure:: img/parallelepiped_angle_projection.png
111
112    Examples of the angles for an oriented parallelepiped against the
113    detector plane.
114
115For a given orientation of the parallelepiped, the 2D form factor is
116calculated as
117
118.. math::
119
120    P(q_x, q_y) = \left[\frac{\sin(\tfrac{1}{2}qA\cos\alpha)}{(\tfrac{1}{2}qA\cos\alpha)}\right]^2
121                  \left[\frac{\sin(\tfrac{1}{2}qB\cos\beta)}{(\tfrac{1}{2}qB\cos\beta)}\right]^2
122                  \left[\frac{\sin(\tfrac{1}{2}qC\cos\gamma)}{(\tfrac{1}{2}qC\cos\gamma)}\right]^2
123
124with
125
126.. math::
127
128    \cos\alpha &= \hat A \cdot \hat q,
129
130    \cos\beta  &= \hat B \cdot \hat q,
131
132    \cos\gamma &= \hat C \cdot \hat q
133
134and the scattering intensity as:
135
136.. math::
137
138    I(q_x, q_y) = \frac{\text{scale}}{V} V^2 \Delta\rho^2 P(q_x, q_y)
139            + \text{background}
140
141.. Comment by Miguel Gonzalez:
142   This reflects the logic of the code, as in parallelepiped.c the call
143   to _pkernel returns $P(q_x, q_y)$ and then this is multiplied by
144   $V^2 * (\Delta \rho)^2$. And finally outside parallelepiped.c it will be
145   multiplied by scale, normalized by $V$ and the background added. But
146   mathematically it makes more sense to write
147   $I(q_x, q_y) = \text{scale} V \Delta\rho^2 P(q_x, q_y) + \text{background}$,
148   with scale being the volume fraction.
149
150
151Validation
152----------
153
154Validation of the code was done by comparing the output of the 1D calculation
155to the angular average of the output of a 2D calculation over all possible
156angles.
157
158
159References
160----------
161
162P Mittelbach and G Porod, *Acta Physica Austriaca*, 14 (1961) 185-211
163
164R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854
165
166Authorship and Verification
167----------------------------
168
169* **Author:** This model is based on form factor calculations implemented in a c-library
170provided by the NIST Center for Neutron Research (Kline, 2006).
171* **Last Modified by:**  Paul Kienzle **Date:** April 05, 2017
172* **Last Reviewed by:**  Richard Heenan **Date:** April 06, 2017
173
174"""
175
176import numpy as np
177from numpy import pi, inf, sqrt, sin, cos
178
179name = "parallelepiped"
180title = "Rectangular parallelepiped with uniform scattering length density."
181description = """
182    I(q)= scale*V*(sld - sld_solvent)^2*P(q,alpha)+background
183        P(q,alpha) = integral from 0 to 1 of ...
184           phi(mu*sqrt(1-sigma^2),a) * S(mu*c*sigma/2)^2 * dsigma
185        with
186            phi(mu,a) = integral from 0 to 1 of ..
187            (S((mu/2)*cos(pi*u/2))*S((mu*a/2)*sin(pi*u/2)))^2 * du
188            S(x) = sin(x)/x
189            mu = q*B
190        V: Volume of the rectangular parallelepiped
191        alpha: angle between the long axis of the
192            parallelepiped and the q-vector for 1D
193"""
194category = "shape:parallelepiped"
195
196#             ["name", "units", default, [lower, upper], "type","description"],
197parameters = [["sld", "1e-6/Ang^2", 4, [-inf, inf], "sld",
198               "Parallelepiped scattering length density"],
199              ["sld_solvent", "1e-6/Ang^2", 1, [-inf, inf], "sld",
200               "Solvent scattering length density"],
201              ["length_a", "Ang", 35, [0, inf], "volume",
202               "Shorter side of the parallelepiped"],
203              ["length_b", "Ang", 75, [0, inf], "volume",
204               "Second side of the parallelepiped"],
205              ["length_c", "Ang", 400, [0, inf], "volume",
206               "Larger side of the parallelepiped"],
207              ["theta", "degrees", 60, [-inf, inf], "orientation",
208               "In plane angle"],
209              ["phi", "degrees", 60, [-inf, inf], "orientation",
210               "Out of plane angle"],
211              ["psi", "degrees", 60, [-inf, inf], "orientation",
212               "Rotation angle around its own c axis against q plane"],
213             ]
214
215source = ["lib/gauss76.c", "parallelepiped.c"]
216
217def ER(length_a, length_b, length_c):
218    """
219    Return effective radius (ER) for P(q)*S(q)
220    """
221    # now that axes can be in any size order, need to sort a,b,c where a~b and c is either much smaller
222    # or much larger
223    abc = np.vstack((length_a, length_b, length_c))
224    abc = np.sort(abc, axis=0)
225    selector = (abc[1] - abc[0]) > (abc[2] - abc[1])
226    length = np.where(selector, abc[0], abc[2])
227    # surface average radius (rough approximation)
228    radius = np.sqrt(np.where(~selector, abc[0]*abc[1], abc[1]*abc[2]) / pi)
229
230    ddd = 0.75 * radius * (2*radius*length + (length + radius)*(length + pi*radius))
231    return 0.5 * (ddd) ** (1. / 3.)
232
233# VR defaults to 1.0
234
235# parameters for demo
236demo = dict(scale=1, background=0,
237            sld=6.3, sld_solvent=1.0,
238            length_a=35, length_b=75, length_c=400,
239            theta=45, phi=30, psi=15,
240            length_a_pd=0.1, length_a_pd_n=10,
241            length_b_pd=0.1, length_b_pd_n=1,
242            length_c_pd=0.1, length_c_pd_n=1,
243            theta_pd=10, theta_pd_n=1,
244            phi_pd=10, phi_pd_n=1,
245            psi_pd=10, psi_pd_n=10)
246# rkh 7/4/17 add random unit test for 2d, note make all params different, 2d values not tested against other codes or models
247qx, qy = 0.2 * cos(pi/6.), 0.2 * sin(pi/6.)
248tests = [[{}, 0.2, 0.17758004974],
249         [{}, [0.2], [0.17758004974]],
250         [{'theta':10.0, 'phi':20.0}, (qx, qy), 0.0089517140475],
251         [{'theta':10.0, 'phi':20.0}, [(qx, qy)], [0.0089517140475]],
252        ]
253del qx, qy  # not necessary to delete, but cleaner
Note: See TracBrowser for help on using the repository browser.