Changes in / [1941ec6:8224d24] in sasmodels
- Files:
-
- 2 deleted
- 43 edited
Legend:
- Unmodified
- Added
- Removed
-
.gitignore
r2badeca r2badeca 25 25 /example/Fit_*/ 26 26 /example/batch_fit.csv 27 /sasmodels/models/lib/gauss*.c -
doc/guide/plugin.rst
rc654160 r0a9fcab 292 292 **Note: The order of the parameters in the definition will be the order of the 293 293 parameters in the user interface and the order of the parameters in Iq(), 294 Iqac(), Iqabc() and form_volume(). And** *scale* **and** *background* 295 **parameters are implicit to all models, so they do not need to be included 296 in the parameter table.** 294 Iqxy() and form_volume(). And** *scale* **and** *background* **parameters are 295 implicit to all models, so they do not need to be included in the parameter table.** 297 296 298 297 - **"name"** is the name of the parameter shown on the FitPage. … … 363 362 scattered intensity. 364 363 365 - "volume" parameters are passed to Iq(), Iqac(), Iqabc() and form_volume(), 366 and have polydispersity loops generated automatically. 367 368 - "orientation" parameters are not passed, but instead are combined with 369 orientation dispersity to translate *qx* and *qy* to *qa*, *qb* and *qc*. 370 These parameters should appear at the end of the table with the specific 371 names *theta*, *phi* and for asymmetric shapes *psi*, in that order. 364 - "volume" parameters are passed to Iq(), Iqxy(), and form_volume(), and 365 have polydispersity loops generated automatically. 366 367 - "orientation" parameters are only passed to Iqxy(), and have angular 368 dispersion. 372 369 373 370 Some models will have integer parameters, such as number of pearls in the … … 422 419 That is, the individual models do not need to include polydispersity 423 420 calculations, but instead rely on numerical integration to compute the 424 appropriately smeared pattern. 421 appropriately smeared pattern. Angular dispersion values over polar angle 422 $\theta$ requires an additional $\cos \theta$ weighting due to decreased 423 arc length for the equatorial angle $\phi$ with increasing latitude. 425 424 426 425 Python Models … … 469 468 barbell). If I(q; pars) is NaN for any $q$, then those parameters will be 470 469 ignored, and not included in the calculation of the weighted polydispersity. 470 471 Similar to *Iq*, you can define *Iqxy(qx, qy, par1, par2, ...)* where the 472 parameter list includes any orientation parameters. If *Iqxy* is not defined, 473 then it will default to *Iqxy = Iq(sqrt(qx**2+qy**2), par1, par2, ...)*. 471 474 472 475 Models should define *form_volume(par1, par2, ...)* where the parameter … … 494 497 } 495 498 499 *Iqxy* is similar to *Iq*, except it uses parameters *qx, qy* instead of *q*, 500 and it includes orientation parameters. 501 496 502 *form_volume* defines the volume of the shape. As in python models, it 497 503 includes only the volume parameters. 498 504 505 *Iqxy* will default to *Iq(sqrt(qx**2 + qy**2), par1, ...)* and 506 *form_volume* will default to 1.0. 507 499 508 **source=['fn.c', ...]** includes the listed C source files in the 500 program before *Iq* and *form_volume* are defined. This allows you to 501 extend the library of C functions available to your model. 502 503 *c_code* includes arbitrary C code into your kernel, which can be 504 handy for defining helper functions for *Iq* and *form_volume*. Note that 505 you can put the full function definition for *Iq* and *form_volume* 506 (include function declaration) into *c_code* as well, or put them into an 507 external C file and add that file to the list of sources. 509 program before *Iq* and *Iqxy* are defined. This allows you to extend the 510 library of C functions available to your model. 508 511 509 512 Models are defined using double precision declarations for the … … 529 532 530 533 #define INVALID(v) (v.bell_radius < v.radius) 531 532 The INVALID define can go into *Iq*, or *c_code*, or an external C file533 listed in *source*.534 535 Oriented Shapes536 ...............537 538 If the scattering is dependent on the orientation of the shape, then you539 will need to include *orientation* parameters *theta*, *phi* and *psi*540 at the end of the parameter table. Shape orientation uses *a*, *b* and *c*541 axes, corresponding to the *x*, *y* and *z* axes in the laboratory coordinate542 system, with *z* along the beam and *x*-*y* in the detector plane, with *x*543 horizontal and *y* vertical. The *psi* parameter rotates the shape544 about its *c* axis, the *theta* parameter then rotates the *c* axis toward545 the *x* axis of the detector, then *phi* rotates the shape in the detector546 plane. (Prior to these rotations, orientation dispersity will be applied547 as roll-pitch-yaw, rotating *c*, then *b* then *a* in the shape coordinate548 system.) A particular *qx*, *qy* point on the detector, then corresponds549 to *qa*, *qb*, *qc* with respect to the shape.550 551 The oriented C model is called as *Iqabc(qa, qb, qc, par1, par2, ...)* where552 *par1*, etc. are the parameters to the model. If the shape is rotationally553 symmetric about *c* then *psi* is not needed, and the model is called554 as *Iqac(qab, qc, par1, par2, ...)*. In either case, the orientation555 parameters are not included in the function call.556 557 For 1D oriented shapes, an integral over all angles is usually needed for558 the *Iq* function. Given symmetry and the substitution $u = \cos(\alpha)$,559 $du = -\sin(\alpha)\,d\alpha$ this becomes560 561 .. math::562 563 I(q) &= \frac{1}{4\pi} \int_{-\pi/2}^{pi/2} \int_{-pi}^{pi}564 F(q_a, q_b, q_c)^2 \sin(\alpha)\,d\beta\,d\alpha \\565 &= \frac{8}{4\pi} \int_{0}^{pi/2} \int_{0}^{\pi/2}566 F^2 \sin(\alpha)\,d\beta\,d\alpha \\567 &= \frac{8}{4\pi} \int_1^0 \int_{0}^{\pi/2} - F^2 \,d\beta\,du \\568 &= \frac{8}{4\pi} \int_0^1 \int_{0}^{\pi/2} F^2 \,d\beta\,du569 570 for571 572 .. math::573 574 q_a &= q \sin(\alpha)\sin(\beta) = q \sqrt{1-u^2} \sin(\beta) \\575 q_b &= q \sin(\alpha)\cos(\beta) = q \sqrt{1-u^2} \cos(\beta) \\576 q_c &= q \cos(\alpha) = q u577 578 Using the $z, w$ values for Gauss-Legendre integration in "lib/gauss76.c", the579 numerical integration is then::580 581 double outer_sum = 0.0;582 for (int i = 0; i < GAUSS_N; i++) {583 const double cos_alpha = 0.5*GAUSS_Z[i] + 0.5;584 const double sin_alpha = sqrt(1.0 - cos_alpha*cos_alpha);585 const double qc = cos_alpha * q;586 double inner_sum = 0.0;587 for (int j = 0; j < GAUSS_N; j++) {588 const double beta = M_PI_4 * GAUSS_Z[j] + M_PI_4;589 double sin_beta, cos_beta;590 SINCOS(beta, sin_beta, cos_beta);591 const double qa = sin_alpha * sin_beta * q;592 const double qb = sin_alpha * cos_beta * q;593 const double form = Fq(qa, qb, qc, ...);594 inner_sum += GAUSS_W[j] * form * form;595 }596 outer_sum += GAUSS_W[i] * inner_sum;597 }598 outer_sum *= 0.25; // = 8/(4 pi) * outer_sum * (pi/2) / 4599 600 The *z* values for the Gauss-Legendre integration extends from -1 to 1, so601 the double sum of *w[i]w[j]* explains the factor of 4. Correcting for the602 average *dz[i]dz[j]* gives $(1-0) \cdot (\pi/2-0) = \pi/2$. The $8/(4 \pi)$603 factor comes from the integral over the quadrant. With less symmetry (eg.,604 in the bcc and fcc paracrystal models), then an integral over the entire605 sphere may be necessary.606 607 For simpler models which are rotationally symmetric a single integral608 suffices:609 610 .. math::611 612 I(q) &= \frac{1}{\pi}\int_{-\pi/2}^{\pi/2}613 F(q_{ab}, q_c)^2 \sin(\alpha)\,d\alpha/\pi \\614 &= \frac{2}{\pi} \int_0^1 F^2\,du615 616 for617 618 .. math::619 620 q_{ab} &= q \sin(\alpha) = q \sqrt{1 - u^2} \\621 q_c &= q \cos(\alpha) = q u622 623 624 with integration loop::625 626 double sum = 0.0;627 for (int i = 0; i < GAUSS_N; i++) {628 const double cos_alpha = 0.5*GAUSS_Z[i] + 0.5;629 const double sin_alpha = sqrt(1.0 - cos_alpha*cos_alpha);630 const double qab = sin_alpha * q;631 const double qc = cos_alpha * q;632 const double form = Fq(qab, qc, ...);633 sum += GAUSS_W[j] * form * form;634 }635 sum *= 0.5; // = 2/pi * sum * (pi/2) / 2636 637 Magnetism638 .........639 640 Magnetism is supported automatically for all shapes by modifying the641 effective SLD of particle according to the Halpern-Johnson vector642 describing the interaction between neutron spin and magnetic field. All643 parameters marked as type *sld* in the parameter table are treated as644 possibly magnetic particles with magnitude *M0* and direction645 *mtheta* and *mphi*. Polarization parameters are also provided646 automatically for magnetic models to set the spin state of the measurement.647 648 For more complicated systems where magnetism is not uniform throughout649 the individual particles, you will need to write your own models.650 You should not mark the nuclear sld as type *sld*, but instead leave651 them unmarked and provide your own magnetism and polarization parameters.652 For 2D measurements you will need $(q_x, q_y)$ values for the measurement653 to compute the proper magnetism and orientation, which you can implement654 using *Iqxy(qx, qy, par1, par2, ...)*.655 534 656 535 Special Functions … … 917 796 show a 50x improvement or more over the equivalent pure python model. 918 797 798 External C Models 799 ................. 800 801 External C models are very much like embedded C models, except that 802 *Iq*, *Iqxy* and *form_volume* are defined in an external source file 803 loaded using the *source=[...]* statement. You need to supply the function 804 declarations for each of these that you need instead of building them 805 automatically from the parameter table. 806 919 807 920 808 .. _Form_Factors: … … 1118 1006 variable name *Rg* for example because $R_g$ is the right name for the model 1119 1007 parameter then ignore the lint errors. Also, ignore *missing-docstring* 1120 for standard model functions *Iq*, *Iq ac*, etc.1008 for standard model functions *Iq*, *Iqxy*, etc. 1121 1009 1122 1010 We will have delinting sessions at the SasView Code Camps, where we can -
explore/asymint.py
ra1c32c2 r1820208 86 86 a, b, c = env.mpf(a), env.mpf(b), env.mpf(c) 87 87 def Fq(qa, qb, qc): 88 siA = env.sas_sinx_x( a*qa/2)89 siB = env.sas_sinx_x( b*qb/2)90 siC = env.sas_sinx_x( c*qc/2)88 siA = env.sas_sinx_x(0.5*a*qa/2) 89 siB = env.sas_sinx_x(0.5*b*qb/2) 90 siC = env.sas_sinx_x(0.5*c*qc/2) 91 91 return siA * siB * siC 92 92 Fq.__doc__ = "parallelepiped a=%g, b=%g c=%g"%(a, b, c) 93 93 volume = a*b*c 94 94 norm = CONTRAST**2*volume/10000 95 return norm, Fq96 97 def make_core_shell_parallelepiped(a, b, c, da, db, dc, slda, sldb, sldc, env=NPenv):98 overlapping = False99 a, b, c = env.mpf(a), env.mpf(b), env.mpf(c)100 da, db, dc = env.mpf(da), env.mpf(db), env.mpf(dc)101 slda, sldb, sldc = env.mpf(slda), env.mpf(sldb), env.mpf(sldc)102 dr0 = CONTRAST103 drA, drB, drC = slda-SLD_SOLVENT, sldb-SLD_SOLVENT, sldc-SLD_SOLVENT104 tA, tB, tC = a + 2*da, b + 2*db, c + 2*dc105 def Fq(qa, qb, qc):106 siA = a*env.sas_sinx_x(a*qa/2)107 siB = b*env.sas_sinx_x(b*qb/2)108 siC = c*env.sas_sinx_x(c*qc/2)109 siAt = tA*env.sas_sinx_x(tA*qa/2)110 siBt = tB*env.sas_sinx_x(tB*qb/2)111 siCt = tC*env.sas_sinx_x(tC*qc/2)112 if overlapping:113 return (dr0*siA*siB*siC114 + drA*(siAt-siA)*siB*siC115 + drB*siAt*(siBt-siB)*siC116 + drC*siAt*siBt*(siCt-siC))117 else:118 return (dr0*siA*siB*siC119 + drA*(siAt-siA)*siB*siC120 + drB*siA*(siBt-siB)*siC121 + drC*siA*siB*(siCt-siC))122 Fq.__doc__ = "core-shell parallelepiped a=%g, b=%g c=%g"%(a, b, c)123 if overlapping:124 volume = a*b*c + 2*da*b*c + 2*tA*db*c + 2*tA*tB*dc125 else:126 volume = a*b*c + 2*da*b*c + 2*a*db*c + 2*a*b*dc127 norm = 1/(volume*10000)128 95 return norm, Fq 129 96 … … 217 184 NORM, KERNEL = make_parallelepiped(A, B, C) 218 185 NORM_MP, KERNEL_MP = make_parallelepiped(A, B, C, env=MPenv) 219 elif shape == 'core_shell_parallelepiped':220 #A, B, C = 4450, 14000, 47221 #A, B, C = 445, 140, 47 # integer for the sake of mpf222 A, B, C = 6800, 114, 1380223 DA, DB, DC = 2300, 21, 58224 SLDA, SLDB, SLDC = "5", "-0.3", "11.5"225 #A,B,C,DA,DB,DC,SLDA,SLDB,SLDC = 10,20,30,100,200,300,1,2,3226 #SLD_SOLVENT,CONTRAST = 0, 4227 if 1: # C shortest228 B, C = C, B229 DB, DC = DC, DB230 SLDB, SLDC = SLDC, SLDB231 elif 0: # C longest232 A, C = C, A233 DA, DC = DC, DA234 SLDA, SLDC = SLDC, SLDA235 NORM, KERNEL = make_core_shell_parallelepiped(A, B, C, DA, DB, DC, SLDA, SLDB, SLDC)236 NORM_MP, KERNEL_MP = make_core_shell_parallelepiped(A, B, C, DA, DB, DC, SLDA, SLDB, SLDC, env=MPenv)237 186 elif shape == 'paracrystal': 238 187 LATTICE = 'bcc' … … 393 342 print("gauss-150", *gauss_quad_2d(Q, n=150)) 394 343 print("gauss-500", *gauss_quad_2d(Q, n=500)) 395 print("gauss-1025", *gauss_quad_2d(Q, n=1025))396 print("gauss-2049", *gauss_quad_2d(Q, n=2049))397 344 #gridded_2d(Q, n=2**8+1) 398 345 gridded_2d(Q, n=2**10+1) 399 #gridded_2d(Q, n=2**1 2+1)346 #gridded_2d(Q, n=2**13+1) 400 347 #gridded_2d(Q, n=2**15+1) 401 if shape not in ('paracrystal', 'core_shell_parallelepiped'): 402 # adaptive forms on models for which the calculations are fast enough 348 if shape != 'paracrystal': # adaptive forms are too slow! 403 349 print("dblquad", *scipy_dblquad_2d(Q)) 404 350 print("semi-romberg-100", *semi_romberg_2d(Q, n=100)) -
sasmodels/compare.py
r2d81cfe r2d81cfe 42 42 from .data import plot_theory, empty_data1D, empty_data2D, load_data 43 43 from .direct_model import DirectModel, get_mesh 44 from .generate import FLOAT_RE , set_integration_size44 from .generate import FLOAT_RE 45 45 from .weights import plot_weights 46 46 … … 693 693 data = empty_data2D(q, resolution=res) 694 694 data.accuracy = opts['accuracy'] 695 set_beam_stop(data, qmin)695 set_beam_stop(data, 0.0004) 696 696 index = ~data.mask 697 697 else: … … 706 706 return data, index 707 707 708 def make_engine(model_info, data, dtype, cutoff , ngauss=0):708 def make_engine(model_info, data, dtype, cutoff): 709 709 # type: (ModelInfo, Data, str, float) -> Calculator 710 710 """ … … 714 714 than OpenCL. 715 715 """ 716 if ngauss:717 set_integration_size(model_info, ngauss)718 719 716 if dtype is None or not dtype.endswith('!'): 720 717 return eval_opencl(model_info, data, dtype=dtype, cutoff=cutoff) … … 957 954 'poly', 'mono', 'cutoff=', 958 955 'magnetic', 'nonmagnetic', 959 'accuracy=', 'ngauss=',956 'accuracy=', 960 957 'neval=', # for timing... 961 958 … … 1092 1089 'show_weights' : False, 1093 1090 'sphere' : 0, 1094 'ngauss' : '0',1095 1091 } 1096 1092 for arg in flags: … … 1119 1115 elif arg.startswith('-engine='): opts['engine'] = arg[8:] 1120 1116 elif arg.startswith('-neval='): opts['count'] = arg[7:] 1121 elif arg.startswith('-ngauss='): opts['ngauss'] = arg[8:]1122 1117 elif arg.startswith('-random='): 1123 1118 opts['seed'] = int(arg[8:]) … … 1174 1169 1175 1170 comparison = any(PAR_SPLIT in v for v in values) 1176 1177 1171 if PAR_SPLIT in name: 1178 1172 names = name.split(PAR_SPLIT, 2) … … 1187 1181 return None 1188 1182 1189 if PAR_SPLIT in opts['ngauss']:1190 opts['ngauss'] = [int(k) for k in opts['ngauss'].split(PAR_SPLIT, 2)]1191 comparison = True1192 else:1193 opts['ngauss'] = [int(opts['ngauss'])]*21194 1195 1183 if PAR_SPLIT in opts['engine']: 1196 1184 opts['engine'] = opts['engine'].split(PAR_SPLIT, 2) … … 1211 1199 opts['cutoff'] = [float(opts['cutoff'])]*2 1212 1200 1213 base = make_engine(model_info[0], data, opts['engine'][0], 1214 opts['cutoff'][0], opts['ngauss'][0]) 1201 base = make_engine(model_info[0], data, opts['engine'][0], opts['cutoff'][0]) 1215 1202 if comparison: 1216 comp = make_engine(model_info[1], data, opts['engine'][1], 1217 opts['cutoff'][1], opts['ngauss'][1]) 1203 comp = make_engine(model_info[1], data, opts['engine'][1], opts['cutoff'][1]) 1218 1204 else: 1219 1205 comp = None … … 1288 1274 if model_info != model_info2: 1289 1275 pars2 = randomize_pars(model_info2, pars2) 1290 limit_dimensions(model_info 2, pars2, maxdim)1276 limit_dimensions(model_info, pars2, maxdim) 1291 1277 # Share values for parameters with the same name 1292 1278 for k, v in pars.items(): -
sasmodels/details.py
r108e70e r2d81cfe 258 258 # type: (...) -> Sequence[np.ndarray] 259 259 """ 260 **Deprecated** Theta weights will be computed in the kernel wrapper if261 they are needed.262 263 260 If there is a theta parameter, update the weights of that parameter so that 264 261 the cosine weighting required for polar integration is preserved. … … 275 272 Returns updated weights vectors 276 273 """ 274 # TODO: explain in a comment why scale and background are missing 277 275 # Apparently the parameters.theta_offset similarly skips scale and 278 276 # and background, so the indexing works out, but they are still shipped … … 281 279 index = parameters.theta_offset 282 280 theta = dispersity[index] 281 # TODO: modify the dispersity vector to avoid the theta=-90,90,270,... 283 282 theta_weight = abs(cos(radians(theta))) 284 283 weights = tuple(theta_weight*w if k == index else w -
sasmodels/generate.py
r108e70e rdb03406 7 7 particular dimensions averaged over all orientations. 8 8 9 *Iqac(qab, qc, p1, p2, ...)* returns the scattering at qab, qc 10 for a rotationally symmetric form with particular dimensions. 11 qab, qc are determined from shape orientation and scattering angles. 12 This call is used if the shape has orientation parameters theta and phi. 13 14 *Iqabc(qa, qb, qc, p1, p2, ...)* returns the scattering at qa, qb, qc 15 for a form with particular dimensions. qa, qb, qc are determined from 16 shape orientation and scattering angles. This call is used if the shape 17 has orientation parameters theta, phi and psi. 18 19 *Iqxy(qx, qy, p1, p2, ...)* returns the scattering at qx, qy. Use this 20 to create an arbitrary 2D theory function, needed for q-dependent 21 background functions and for models with non-uniform magnetism. 9 *Iqxy(qx, qy, p1, p2, ...)* returns the scattering at qx, qy for a form 10 with particular dimensions for a single orientation. 11 12 *Imagnetic(qx, qy, result[], p1, p2, ...)* returns the scattering for the 13 polarized neutron spin states (up-up, up-down, down-up, down-down) for 14 a form with particular dimensions for a single orientation. 22 15 23 16 *form_volume(p1, p2, ...)* returns the volume of the form with particular … … 38 31 scale and background parameters for each model. 39 32 40 C code should be stylized C-99 functions written for OpenCL. All functions 41 need prototype declarations even if the are defined before they are used. 42 Although OpenCL supports *#include* preprocessor directives, the list of 43 includes should be given as part of the metadata in the kernel module 44 definition. The included files should be listed using a path relative to the 45 kernel module, or if using "lib/file.c" if it is one of the standard includes 46 provided with the sasmodels source. The includes need to be listed in order 47 so that functions are defined before they are used. 33 *Iq*, *Iqxy*, *Imagnetic* and *form_volume* should be stylized C-99 34 functions written for OpenCL. All functions need prototype declarations 35 even if the are defined before they are used. OpenCL does not support 36 *#include* preprocessor directives, so instead the list of includes needs 37 to be given as part of the metadata in the kernel module definition. 38 The included files should be listed using a path relative to the kernel 39 module, or if using "lib/file.c" if it is one of the standard includes 40 provided with the sasmodels source. The includes need to be listed in 41 order so that functions are defined before they are used. 48 42 49 43 Floating point values should be declared as *double*. For single precision … … 113 107 present, the volume ratio is 1. 114 108 115 *form_volume*, *Iq*, *Iq ac*, *Iqabc* are strings containing116 the C source code for the body of the volume, Iq, and Iqacfunctions109 *form_volume*, *Iq*, *Iqxy*, *Imagnetic* are strings containing the 110 C source code for the body of the volume, Iq, and Iqxy functions 117 111 respectively. These can also be defined in the last source file. 118 112 119 *Iq* , *Iqac*, *Iqabc* also be instead be python functions defining the113 *Iq* and *Iqxy* also be instead be python functions defining the 120 114 kernel. If they are marked as *Iq.vectorized = True* then the 121 115 kernel is passed the entire *q* vector at once, otherwise it is … … 174 168 from zlib import crc32 175 169 from inspect import currentframe, getframeinfo 176 import logging177 170 178 171 import numpy as np # type: ignore … … 188 181 pass 189 182 # pylint: enable=unused-import 190 191 logger = logging.getLogger(__name__)192 183 193 184 # jitter projection to use in the kernel code. See explore/jitter.py … … 279 270 """ 280 271 281 282 def set_integration_size(info, n):283 # type: (ModelInfo, int) -> None284 """285 Update the model definition, replacing the gaussian integration with286 a gaussian integration of a different size.287 288 Note: this really ought to be a method in modelinfo, but that leads to289 import loops.290 """291 if (info.source and any(lib.startswith('lib/gauss') for lib in info.source)):292 import os.path293 from .gengauss import gengauss294 path = os.path.join(MODEL_PATH, "lib", "gauss%d.c"%n)295 if not os.path.exists(path):296 gengauss(n, path)297 info.source = ["lib/gauss%d.c"%n if lib.startswith('lib/gauss')298 else lib for lib in info.source]299 272 300 273 def format_units(units): … … 635 608 636 609 """ 637 def _gen_fn( model_info, name, pars):638 # type: ( ModelInfo, str, List[Parameter]) -> str610 def _gen_fn(name, pars, body, filename, line): 611 # type: (str, List[Parameter], str, str, int) -> str 639 612 """ 640 613 Generate a function given pars and body. … … 648 621 """ 649 622 par_decl = ', '.join(p.as_function_argument() for p in pars) if pars else 'void' 650 body = getattr(model_info, name)651 filename = model_info.filename652 # Note: if symbol is defined strangely in the module then default it to 1653 lineno = model_info.lineno.get(name, 1)654 623 return _FN_TEMPLATE % { 655 624 'name': name, 'pars': par_decl, 'body': body, 656 'filename': filename.replace('\\', '\\\\'), 'line': line no,625 'filename': filename.replace('\\', '\\\\'), 'line': line, 657 626 } 658 627 … … 669 638 670 639 # type in IQXY pattern could be single, float, double, long double, ... 671 _IQXY_PATTERN = re.compile( r"(^|\s)double\s+I(?P<mode>q(ab?c|xy))\s*[(]",640 _IQXY_PATTERN = re.compile("^((inline|static) )? *([a-z ]+ )? *Iqxy *([(]|$)", 672 641 flags=re.MULTILINE) 673 def find_xy_mode(source):642 def _have_Iqxy(sources): 674 643 # type: (List[str]) -> bool 675 644 """ 676 Return t he xy mode as qa, qac, qabc orqxy.645 Return true if any file defines Iqxy. 677 646 678 647 Note this is not a C parser, and so can be easily confused by 679 648 non-standard syntax. Also, it will incorrectly identify the following 680 as having 2D models::649 as having Iqxy:: 681 650 682 651 /* 683 double Iq ac(qab, qc, ...) { ... fill this in later ... }652 double Iqxy(qx, qy, ...) { ... fill this in later ... } 684 653 */ 685 654 686 If you want to comment out the function, use // on the front of the 687 line:: 688 689 /* 690 // double Iqac(qab, qc, ...) { ... fill this in later ... } 691 */ 692 693 """ 694 for code in source: 695 m = _IQXY_PATTERN.search(code) 696 if m is not None: 697 return m.group('mode') 698 return 'qa' 699 700 701 def _add_source(source, code, path, lineno=1): 655 If you want to comment out an Iqxy function, use // on the front of the 656 line instead. 657 """ 658 for _path, code in sources: 659 if _IQXY_PATTERN.search(code): 660 return True 661 return False 662 663 664 def _add_source(source, code, path): 702 665 """ 703 666 Add a file to the list of source code chunks, tagged with path and line. 704 667 """ 705 668 path = path.replace('\\', '\\\\') 706 source.append('#line %d "%s"' % (lineno, path))669 source.append('#line 1 "%s"' % path) 707 670 source.append(code) 708 671 … … 735 698 user_code = [(f, open(f).read()) for f in model_sources(model_info)] 736 699 700 # What kind of 2D model do we need? 701 xy_mode = ('qa' if not _have_Iqxy(user_code) and not isinstance(model_info.Iqxy, str) 702 else 'qac' if not partable.is_asymmetric 703 else 'qabc') 704 737 705 # Build initial sources 738 706 source = [] … … 742 710 743 711 if model_info.c_code: 744 _add_source(source, model_info.c_code, model_info.filename, 745 lineno=model_info.lineno.get('c_code', 1)) 712 source.append(model_info.c_code) 746 713 747 714 # Make parameters for q, qx, qy so that we can use them in declarations 748 q, qx, qy, qab, qa, qb, qc \ 749 = [Parameter(name=v) for v in 'q qx qy qab qa qb qc'.split()] 715 q, qx, qy = [Parameter(name=v) for v in ('q', 'qx', 'qy')] 750 716 # Generate form_volume function, etc. from body only 751 717 if isinstance(model_info.form_volume, str): 752 718 pars = partable.form_volume_parameters 753 source.append(_gen_fn(model_info, 'form_volume', pars)) 719 source.append(_gen_fn('form_volume', pars, model_info.form_volume, 720 model_info.filename, model_info._form_volume_line)) 754 721 if isinstance(model_info.Iq, str): 755 722 pars = [q] + partable.iq_parameters 756 source.append(_gen_fn(model_info, 'Iq', pars)) 723 source.append(_gen_fn('Iq', pars, model_info.Iq, 724 model_info.filename, model_info._Iq_line)) 757 725 if isinstance(model_info.Iqxy, str): 758 pars = [qx, qy] + partable.iq_parameters + partable.orientation_parameters 759 source.append(_gen_fn(model_info, 'Iqxy', pars)) 760 if isinstance(model_info.Iqac, str): 761 pars = [qab, qc] + partable.iq_parameters 762 source.append(_gen_fn(model_info, 'Iqac', pars)) 763 if isinstance(model_info.Iqabc, str): 764 pars = [qa, qb, qc] + partable.iq_parameters 765 source.append(_gen_fn(model_info, 'Iqabc', pars)) 766 767 # What kind of 2D model do we need? Is it consistent with the parameters? 768 xy_mode = find_xy_mode(source) 769 if xy_mode == 'qabc' and not partable.is_asymmetric: 770 raise ValueError("asymmetric oriented models need to define Iqabc") 771 elif xy_mode == 'qac' and partable.is_asymmetric: 772 raise ValueError("symmetric oriented models need to define Iqac") 773 elif not partable.orientation_parameters and xy_mode in ('qac', 'qabc'): 774 raise ValueError("Unexpected function I%s for unoriented shape"%xy_mode) 775 elif partable.orientation_parameters and xy_mode not in ('qac', 'qabc'): 776 if xy_mode == 'qxy': 777 logger.warn("oriented shapes should define Iqac or Iqabc") 778 else: 779 raise ValueError("Expected function Iqac or Iqabc for oriented shape") 726 pars = [qx, qy] + partable.iqxy_parameters 727 source.append(_gen_fn('Iqxy', pars, model_info.Iqxy, 728 model_info.filename, model_info._Iqxy_line)) 780 729 781 730 # Define the parameter table … … 803 752 if xy_mode == 'qabc': 804 753 pars = ",".join(["_qa", "_qb", "_qc"] + model_refs) 805 call_iqxy = "#define CALL_IQ_ABC(_qa,_qb,_qc,_v) Iq abc(%s)" % pars754 call_iqxy = "#define CALL_IQ_ABC(_qa,_qb,_qc,_v) Iqxy(%s)" % pars 806 755 clear_iqxy = "#undef CALL_IQ_ABC" 807 756 elif xy_mode == 'qac': 808 757 pars = ",".join(["_qa", "_qc"] + model_refs) 809 call_iqxy = "#define CALL_IQ_AC(_qa,_qc,_v) Iq ac(%s)" % pars758 call_iqxy = "#define CALL_IQ_AC(_qa,_qc,_v) Iqxy(%s)" % pars 810 759 clear_iqxy = "#undef CALL_IQ_AC" 811 el if xy_mode == 'qa':760 else: # xy_mode == 'qa' 812 761 pars = ",".join(["_qa"] + model_refs) 813 762 call_iqxy = "#define CALL_IQ_A(_qa,_v) Iq(%s)" % pars 814 763 clear_iqxy = "#undef CALL_IQ_A" 815 elif xy_mode == 'qxy':816 orientation_refs = _call_pars("_v.", partable.orientation_parameters)817 pars = ",".join(["_qx", "_qy"] + model_refs + orientation_refs)818 call_iqxy = "#define CALL_IQ_XY(_qx,_qy,_v) Iqxy(%s)" % pars819 clear_iqxy = "#undef CALL_IQ_XY"820 if partable.orientation_parameters:821 call_iqxy += "\n#define HAVE_THETA"822 clear_iqxy += "\n#undef HAVE_THETA"823 if partable.is_asymmetric:824 call_iqxy += "\n#define HAVE_PSI"825 clear_iqxy += "\n#undef HAVE_PSI"826 827 764 828 765 magpars = [k-2 for k, p in enumerate(partable.call_parameters) -
sasmodels/kernel_header.c
r108e70e r8698a0d 150 150 inline double cube(double x) { return x*x*x; } 151 151 inline double sas_sinx_x(double x) { return x==0 ? 1.0 : sin(x)/x; } 152 153 // CRUFT: support old style models with orientation received qx, qy and angles154 155 // To rotate from the canonical position to theta, phi, psi, first rotate by156 // psi about the major axis, oriented along z, which is a rotation in the157 // detector plane xy. Next rotate by theta about the y axis, aligning the major158 // axis in the xz plane. Finally, rotate by phi in the detector plane xy.159 // To compute the scattering, undo these rotations in reverse order:160 // rotate in xy by -phi, rotate in xz by -theta, rotate in xy by -psi161 // The returned q is the length of the q vector and (xhat, yhat, zhat) is a unit162 // vector in the q direction.163 // To change between counterclockwise and clockwise rotation, change the164 // sign of phi and psi.165 166 #if 1167 //think cos(theta) should be sin(theta) in new coords, RKH 11Jan2017168 #define ORIENT_SYMMETRIC(qx, qy, theta, phi, q, sn, cn) do { \169 SINCOS(phi*M_PI_180, sn, cn); \170 q = sqrt(qx*qx + qy*qy); \171 cn = (q==0. ? 1.0 : (cn*qx + sn*qy)/q * sin(theta*M_PI_180)); \172 sn = sqrt(1 - cn*cn); \173 } while (0)174 #else175 // SasView 3.x definition of orientation176 #define ORIENT_SYMMETRIC(qx, qy, theta, phi, q, sn, cn) do { \177 SINCOS(theta*M_PI_180, sn, cn); \178 q = sqrt(qx*qx + qy*qy);\179 cn = (q==0. ? 1.0 : (cn*cos(phi*M_PI_180)*qx + sn*qy)/q); \180 sn = sqrt(1 - cn*cn); \181 } while (0)182 #endif183 184 #if 1185 #define ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, xhat, yhat, zhat) do { \186 q = sqrt(qx*qx + qy*qy); \187 const double qxhat = qx/q; \188 const double qyhat = qy/q; \189 double sin_theta, cos_theta; \190 double sin_phi, cos_phi; \191 double sin_psi, cos_psi; \192 SINCOS(theta*M_PI_180, sin_theta, cos_theta); \193 SINCOS(phi*M_PI_180, sin_phi, cos_phi); \194 SINCOS(psi*M_PI_180, sin_psi, cos_psi); \195 xhat = qxhat*(-sin_phi*sin_psi + cos_theta*cos_phi*cos_psi) \196 + qyhat*( cos_phi*sin_psi + cos_theta*sin_phi*cos_psi); \197 yhat = qxhat*(-sin_phi*cos_psi - cos_theta*cos_phi*sin_psi) \198 + qyhat*( cos_phi*cos_psi - cos_theta*sin_phi*sin_psi); \199 zhat = qxhat*(-sin_theta*cos_phi) \200 + qyhat*(-sin_theta*sin_phi); \201 } while (0)202 #else203 // SasView 3.x definition of orientation204 #define ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, cos_alpha, cos_mu, cos_nu) do { \205 q = sqrt(qx*qx + qy*qy); \206 const double qxhat = qx/q; \207 const double qyhat = qy/q; \208 double sin_theta, cos_theta; \209 double sin_phi, cos_phi; \210 double sin_psi, cos_psi; \211 SINCOS(theta*M_PI_180, sin_theta, cos_theta); \212 SINCOS(phi*M_PI_180, sin_phi, cos_phi); \213 SINCOS(psi*M_PI_180, sin_psi, cos_psi); \214 cos_alpha = cos_theta*cos_phi*qxhat + sin_theta*qyhat; \215 cos_mu = (-sin_theta*cos_psi*cos_phi - sin_psi*sin_phi)*qxhat + cos_theta*cos_psi*qyhat; \216 cos_nu = (-cos_phi*sin_psi*sin_theta + sin_phi*cos_psi)*qxhat + sin_psi*cos_theta*qyhat; \217 } while (0)218 #endif -
sasmodels/kernel_iq.c
r108e70e r6aee3ab 31 31 // CALL_IQ_AC(qa, qc, table) : call the Iqxy function for symmetric shapes 32 32 // CALL_IQ_ABC(qa, qc, table) : call the Iqxy function for asymmetric shapes 33 // CALL_IQ_XY(qx, qy, table) : call the Iqxy function for arbitrary models34 33 // INVALID(table) : test if the current point is feesible to calculate. This 35 34 // will be defined in the kernel definition file. … … 470 469 #define APPLY_ROTATION() qabc_apply(rotation, qx, qy, &qa, &qb, &qc) 471 470 #define CALL_KERNEL() CALL_IQ_ABC(qa, qb, qc, local_values.table) 472 #elif defined(CALL_IQ_XY)473 // direct call to qx,qy calculator474 double qx, qy;475 #define FETCH_Q() do { qx = q[2*q_index]; qy = q[2*q_index+1]; } while (0)476 #define BUILD_ROTATION() do {} while(0)477 #define APPLY_ROTATION() do {} while(0)478 #define CALL_KERNEL() CALL_IQ_XY(qx, qy, local_values.table)479 471 #endif 480 472 … … 485 477 #if defined(CALL_IQ) || defined(CALL_IQ_A) 486 478 #define APPLY_PROJECTION() const double weight=weight0 487 #elif defined(CALL_IQ_XY)488 // CRUFT: support oriented model which define Iqxy rather than Iqac or Iqabc489 // Need to plug the values for the orientation angles back into parameter490 // table in case they were overridden by the orientation offset. This491 // means that orientation dispersity will not work for these models, but492 // it was broken anyway, so no matter. Still want to provide Iqxy in case493 // the user model wants full control of orientation/magnetism.494 #if defined(HAVE_PSI)495 const double theta = values[details->theta_par+2];496 const double phi = values[details->theta_par+3];497 const double psi = values[details->theta_par+4];498 double weight;499 #define APPLY_PROJECTION() do { \500 local_values.table.theta = theta; \501 local_values.table.phi = phi; \502 local_values.table.psi = psi; \503 weight=weight0; \504 } while (0)505 #elif defined(HAVE_THETA)506 const double theta = values[details->theta_par+2];507 const double phi = values[details->theta_par+3];508 double weight;509 #define APPLY_PROJECTION() do { \510 local_values.table.theta = theta; \511 local_values.table.phi = phi; \512 weight=weight0; \513 } while (0)514 #else515 #define APPLY_PROJECTION() const double weight=weight0516 #endif517 479 #else // !spherosymmetric projection 518 480 // Grab the "view" angles (theta, phi, psi) from the initial parameter table. -
sasmodels/kernelpy.py
r108e70e r2d81cfe 26 26 # pylint: enable=unused-import 27 27 28 logger = logging.getLogger(__name__)29 30 28 class PyModel(KernelModel): 31 29 """ … … 33 31 """ 34 32 def __init__(self, model_info): 35 # Make sure Iq isavailable and vectorized33 # Make sure Iq and Iqxy are available and vectorized 36 34 _create_default_functions(model_info) 37 35 self.info = model_info 38 36 self.dtype = np.dtype('d') 39 logg er.info("load python model " + self.info.name)37 logging.info("load python model " + self.info.name) 40 38 41 39 def make_kernel(self, q_vectors): 42 40 q_input = PyInput(q_vectors, dtype=F64) 43 return PyKernel(self.info, q_input) 41 kernel = self.info.Iqxy if q_input.is_2d else self.info.Iq 42 return PyKernel(kernel, self.info, q_input) 44 43 45 44 def release(self): … … 90 89 Callable SAS kernel. 91 90 92 *kernel* is the kernel object to call.91 *kernel* is the DllKernel object to call. 93 92 94 93 *model_info* is the module information … … 105 104 Call :meth:`release` when done with the kernel instance. 106 105 """ 107 def __init__(self, model_info, q_input):106 def __init__(self, kernel, model_info, q_input): 108 107 # type: (callable, ModelInfo, List[np.ndarray]) -> None 109 108 self.dtype = np.dtype('d') … … 111 110 self.q_input = q_input 112 111 self.res = np.empty(q_input.nq, q_input.dtype) 112 self.kernel = kernel 113 113 self.dim = '2d' if q_input.is_2d else '1d' 114 114 … … 159 159 # Generate a closure which calls the form_volume if it exists. 160 160 form_volume = model_info.form_volume 161 self._volume = ((lambda: form_volume(*volume_args)) if form_volume else162 (lambda: 1.0))161 self._volume = ((lambda: form_volume(*volume_args)) if form_volume 162 else (lambda: 1.0)) 163 163 164 164 def __call__(self, call_details, values, cutoff, magnetic): … … 261 261 any functions that are not already marked as vectorized. 262 262 """ 263 # Note: must call create_vector_Iq before create_vector_Iqxy264 263 _create_vector_Iq(model_info) 265 _create_vector_Iqxy(model_info) 264 _create_vector_Iqxy(model_info) # call create_vector_Iq() first 266 265 267 266 … … 281 280 model_info.Iq = vector_Iq 282 281 283 284 282 def _create_vector_Iqxy(model_info): 285 283 """ 286 284 Define Iqxy as a vector function if it exists, or default it from Iq(). 287 285 """ 288 Iq xy = getattr(model_info, 'Iqxy', None)286 Iq, Iqxy = model_info.Iq, model_info.Iqxy 289 287 if callable(Iqxy): 290 288 if not getattr(Iqxy, 'vectorized', False): … … 297 295 vector_Iqxy.vectorized = True 298 296 model_info.Iqxy = vector_Iqxy 299 el se:297 elif callable(Iq): 300 298 #print("defaulting Iqxy") 301 299 # Iq is vectorized because create_vector_Iq was already called. 302 Iq = model_info.Iq303 300 def default_Iqxy(qx, qy, *args): 304 301 """ -
sasmodels/modelinfo.py
r108e70e rdb03406 42 42 43 43 # assumptions about common parameters exist throughout the code, such as: 44 # (1) kernel functions Iq, Iqxy, Iqac, Iqabc,form_volume, ... don't see them44 # (1) kernel functions Iq, Iqxy, form_volume, ... don't see them 45 45 # (2) kernel drivers assume scale is par[0] and background is par[1] 46 46 # (3) mixture models drop the background on components and replace the scale … … 261 261 262 262 *type* indicates how the parameter will be used. "volume" parameters 263 will be used in all functions. "orientation" parameters are not passed,264 but will be used to convert from *qx*, *qy* to *qa*, *qb*, *qc* in calls to265 *I qxy* and *Imagnetic*. If *type* is the empty string, the parameter will263 will be used in all functions. "orientation" parameters will be used 264 in *Iqxy* and *Imagnetic*. "magnetic* parameters will be used in 265 *Imagnetic* only. If *type* is the empty string, the parameter will 266 266 be used in all of *Iq*, *Iqxy* and *Imagnetic*. "sld" parameters 267 267 can automatically be promoted to magnetic parameters, each of which … … 391 391 with vector parameter p sent as p[]. 392 392 393 * [removed] *iqxy_parameters* is the list of parameters to the Iqxy(qx, qy, ...) 394 function, with vector parameter p sent as p[]. 395 393 396 * *form_volume_parameters* is the list of parameters to the form_volume(...) 394 397 function, with vector parameter p sent as p[]. … … 445 448 self.iq_parameters = [p for p in self.kernel_parameters 446 449 if p.type not in ('orientation', 'magnetic')] 447 self.orientation_parameters = [p for p in self.kernel_parameters 448 if p.type == 'orientation'] 450 # note: orientation no longer sent to Iqxy, so its the same as 451 #self.iqxy_parameters = [p for p in self.kernel_parameters 452 # if p.type != 'magnetic'] 449 453 self.form_volume_parameters = [p for p in self.kernel_parameters 450 454 if p.type == 'volume'] … … 491 495 if p.type != 'orientation': 492 496 raise TypeError("psi must be an orientation parameter") 493 elif p.type == 'orientation':494 raise TypeError("only theta, phi and psi can be orientation parameters")495 497 if theta >= 0 and phi >= 0: 496 last_par = len(self.kernel_parameters) - 1497 498 if phi != theta+1: 498 499 raise TypeError("phi must follow theta") 499 500 if psi >= 0 and psi != phi+1: 500 501 raise TypeError("psi must follow phi") 501 #if (psi >= 0 and psi != last_par) or (psi < 0 and phi != last_par):502 # raise TypeError("orientation parameters must appear at the "503 # "end of the parameter table")504 502 elif theta >= 0 or phi >= 0 or psi >= 0: 505 503 raise TypeError("oriented shapes must have both theta and phi and maybe psi") … … 722 720 723 721 724 #: Set of variables defined in the model that might contain C code725 C_SYMBOLS = ['Imagnetic', 'Iq', 'Iqxy', 'Iqac', 'Iqabc', 'form_volume', 'c_code']726 727 722 def _find_source_lines(model_info, kernel_module): 728 723 # type: (ModelInfo, ModuleType) -> None … … 730 725 Identify the location of the C source inside the model definition file. 731 726 732 This code runs through the source of the kernel module looking for lines 733 that contain C code (because it is a c function definition). Clearly 734 there are all sorts of reasons why this might not work (e.g., code 735 commented out in a triple-quoted line block, code built using string 736 concatenation, code defined in the branch of an 'if' block, code imported 737 from another file), but it should work properly in the 95% case, and for 738 the remainder, getting the incorrect line number will merely be 739 inconvenient. 740 """ 741 # Only need line numbers if we are creating a C module and the C symbols 742 # are defined. 743 if (callable(model_info.Iq) 744 or not any(hasattr(model_info, s) for s in C_SYMBOLS)): 727 This code runs through the source of the kernel module looking for 728 lines that start with 'Iq', 'Iqxy' or 'form_volume'. Clearly there are 729 all sorts of reasons why this might not work (e.g., code commented out 730 in a triple-quoted line block, code built using string concatenation, 731 or code defined in the branch of an 'if' block), but it should work 732 properly in the 95% case, and getting the incorrect line number will 733 be harmless. 734 """ 735 # Check if we need line numbers at all 736 if callable(model_info.Iq): 737 return None 738 739 if (model_info.Iq is None 740 and model_info.Iqxy is None 741 and model_info.Imagnetic is None 742 and model_info.form_volume is None): 745 743 return 746 744 747 # load the module source if we can745 # find the defintion lines for the different code blocks 748 746 try: 749 747 source = inspect.getsource(kernel_module) 750 748 except IOError: 751 749 return 752 753 # look for symbol at the start of the line 754 for lineno, line in enumerate(source.split('\n')): 755 for name in C_SYMBOLS: 756 if line.startswith(name): 757 # Add 1 since some compilers complain about "#line 0" 758 model_info.lineno[name] = lineno + 1 759 break 750 for k, v in enumerate(source.split('\n')): 751 if v.startswith('Imagnetic'): 752 model_info._Imagnetic_line = k+1 753 elif v.startswith('Iqxy'): 754 model_info._Iqxy_line = k+1 755 elif v.startswith('Iq'): 756 model_info._Iq_line = k+1 757 elif v.startswith('form_volume'): 758 model_info._form_volume_line = k+1 759 760 760 761 761 def make_model_info(kernel_module): … … 766 766 Fill in default values for parts of the module that are not provided. 767 767 768 Note: vectorized Iq and Iq ac/Iqabcfunctions will be created for python768 Note: vectorized Iq and Iqxy functions will be created for python 769 769 models when the model is first called, not when the model is loaded. 770 770 """ … … 796 796 info.c_code = getattr(kernel_module, 'c_code', None) 797 797 info.source = getattr(kernel_module, 'source', []) 798 info.c_code = getattr(kernel_module, 'c_code', None)799 798 # TODO: check the structure of the tests 800 799 info.tests = getattr(kernel_module, 'tests', []) … … 804 803 info.Iq = getattr(kernel_module, 'Iq', None) # type: ignore 805 804 info.Iqxy = getattr(kernel_module, 'Iqxy', None) # type: ignore 806 info.Iqac = getattr(kernel_module, 'Iqac', None) # type: ignore807 info.Iqabc = getattr(kernel_module, 'Iqabc', None) # type: ignore808 805 info.Imagnetic = getattr(kernel_module, 'Imagnetic', None) # type: ignore 809 806 info.profile = getattr(kernel_module, 'profile', None) # type: ignore … … 820 817 info.hidden = getattr(kernel_module, 'hidden', None) # type: ignore 821 818 822 if callable(info.Iq) and parameters.has_2d:823 raise ValueError("oriented python models not supported")824 825 info.lineno = {}826 819 _find_source_lines(info, kernel_module) 827 820 try: … … 842 835 843 836 The structure should be mostly static, other than the delayed definition 844 of *Iq* , *Iqac* and *Iqabc* if they need to be defined.837 of *Iq* and *Iqxy* if they need to be defined. 845 838 """ 846 839 #: Full path to the file defining the kernel, if any. … … 924 917 structure_factor = None # type: bool 925 918 #: List of C source files used to define the model. The source files 926 #: should define the *Iq* function, and possibly *Iq ac* or *Iqabc* if the927 #: model defines orientation parameters. Files containing the most basic928 #: functions must appear first in the list, followed by the files that929 #: use those functions. Form factors are indicated by providing930 #: an:attr:`ER` function.919 #: should define the *Iq* function, and possibly *Iqxy*, though a default 920 #: *Iqxy = Iq(sqrt(qx**2+qy**2)* will be created if no *Iqxy* is provided. 921 #: Files containing the most basic functions must appear first in the list, 922 #: followed by the files that use those functions. Form factors are 923 #: indicated by providing a :attr:`ER` function. 931 924 source = None # type: List[str] 932 925 #: The set of tests that must pass. The format of the tests is described … … 977 970 #: include the decimal point. See :mod:`generate` for more details. 978 971 Iq = None # type: Union[None, str, Callable[[np.ndarray], np.ndarray]] 979 #: Returns *I(qab, qc, a, b, ...)*. The interface follows :attr:`Iq`. 980 Iqac = None # type: Union[None, str, Callable[[np.ndarray], np.ndarray]] 981 #: Returns *I(qa, qb, qc, a, b, ...)*. The interface follows :attr:`Iq`. 982 Iqabc = None # type: Union[None, str, Callable[[np.ndarray], np.ndarray]] 972 #: Returns *I(qx, qy, a, b, ...)*. The interface follows :attr:`Iq`. 973 Iqxy = None # type: Union[None, str, Callable[[np.ndarray], np.ndarray]] 983 974 #: Returns *I(qx, qy, a, b, ...)*. The interface follows :attr:`Iq`. 984 975 Imagnetic = None # type: Union[None, str, Callable[[np.ndarray], np.ndarray]] … … 996 987 #: Returns a random parameter set for the model 997 988 random = None # type: Optional[Callable[[], Dict[str, float]]] 998 #: Line numbers for symbols defining C code 999 lineno = None # type: Dict[str, int] 989 990 # line numbers within the python file for bits of C source, if defined 991 # NB: some compilers fail with a "#line 0" directive, so default to 1. 992 _Imagnetic_line = 1 993 _Iqxy_line = 1 994 _Iq_line = 1 995 _form_volume_line = 1 996 1000 997 1001 998 def __init__(self): -
sasmodels/models/_spherepy.py
r108e70e ref07e95 88 88 Iq.vectorized = True # Iq accepts an array of q values 89 89 90 def Iqxy(qx, qy, sld, sld_solvent, radius): 91 return Iq(sqrt(qx ** 2 + qy ** 2), sld, sld_solvent, radius) 92 Iqxy.vectorized = True # Iqxy accepts arrays of qx, qy values 93 90 94 def sesans(z, sld, sld_solvent, radius): 91 95 """ -
sasmodels/models/barbell.c
r108e70e rbecded3 23 23 const double qab_r = radius_bell*qab; // Q*R*sin(theta) 24 24 double total = 0.0; 25 for (int i = 0; i < GAUSS_N; i++){26 const double t = G AUSS_Z[i]*zm + zb;25 for (int i = 0; i < 76; i++){ 26 const double t = Gauss76Z[i]*zm + zb; 27 27 const double radical = 1.0 - t*t; 28 28 const double bj = sas_2J1x_x(qab_r*sqrt(radical)); 29 29 const double Fq = cos(m*t + b) * radical * bj; 30 total += G AUSS_W[i] * Fq;30 total += Gauss76Wt[i] * Fq; 31 31 } 32 32 // translate dx in [-1,1] to dx in [lower,upper] … … 73 73 const double zb = M_PI_4; 74 74 double total = 0.0; 75 for (int i = 0; i < GAUSS_N; i++){76 const double alpha= G AUSS_Z[i]*zm + zb;75 for (int i = 0; i < 76; i++){ 76 const double alpha= Gauss76Z[i]*zm + zb; 77 77 double sin_alpha, cos_alpha; // slots to hold sincos function output 78 78 SINCOS(alpha, sin_alpha, cos_alpha); 79 79 const double Aq = _fq(q*sin_alpha, q*cos_alpha, h, radius_bell, radius, half_length); 80 total += G AUSS_W[i] * Aq * Aq * sin_alpha;80 total += Gauss76Wt[i] * Aq * Aq * sin_alpha; 81 81 } 82 82 // translate dx in [-1,1] to dx in [lower,upper] … … 90 90 91 91 static double 92 Iq ac(double qab, double qc,92 Iqxy(double qab, double qc, 93 93 double sld, double solvent_sld, 94 94 double radius_bell, double radius, double length) -
sasmodels/models/bcc_paracrystal.c
r108e70e rea60e08 81 81 82 82 double outer_sum = 0.0; 83 for(int i=0; i< GAUSS_N; i++) {83 for(int i=0; i<150; i++) { 84 84 double inner_sum = 0.0; 85 const double theta = G AUSS_Z[i]*theta_m + theta_b;85 const double theta = Gauss150Z[i]*theta_m + theta_b; 86 86 double sin_theta, cos_theta; 87 87 SINCOS(theta, sin_theta, cos_theta); 88 88 const double qc = q*cos_theta; 89 89 const double qab = q*sin_theta; 90 for(int j=0;j< GAUSS_N;j++) {91 const double phi = G AUSS_Z[j]*phi_m + phi_b;90 for(int j=0;j<150;j++) { 91 const double phi = Gauss150Z[j]*phi_m + phi_b; 92 92 double sin_phi, cos_phi; 93 93 SINCOS(phi, sin_phi, cos_phi); … … 95 95 const double qb = qab*sin_phi; 96 96 const double form = bcc_Zq(qa, qb, qc, dnn, d_factor); 97 inner_sum += G AUSS_W[j] * form;97 inner_sum += Gauss150Wt[j] * form; 98 98 } 99 99 inner_sum *= phi_m; // sum(f(x)dx) = sum(f(x)) dx 100 outer_sum += G AUSS_W[i] * inner_sum * sin_theta;100 outer_sum += Gauss150Wt[i] * inner_sum * sin_theta; 101 101 } 102 102 outer_sum *= theta_m; … … 107 107 108 108 109 static double Iq abc(double qa, double qb, double qc,109 static double Iqxy(double qa, double qb, double qc, 110 110 double dnn, double d_factor, double radius, 111 111 double sld, double solvent_sld) -
sasmodels/models/capped_cylinder.c
r108e70e rbecded3 30 30 const double qab_r = radius_cap*qab; // Q*R*sin(theta) 31 31 double total = 0.0; 32 for (int i=0; i< GAUSS_N;i++) {33 const double t = G AUSS_Z[i]*zm + zb;32 for (int i=0; i<76 ;i++) { 33 const double t = Gauss76Z[i]*zm + zb; 34 34 const double radical = 1.0 - t*t; 35 35 const double bj = sas_2J1x_x(qab_r*sqrt(radical)); 36 36 const double Fq = cos(m*t + b) * radical * bj; 37 total += G AUSS_W[i] * Fq;37 total += Gauss76Wt[i] * Fq; 38 38 } 39 39 // translate dx in [-1,1] to dx in [lower,upper] … … 95 95 const double zb = M_PI_4; 96 96 double total = 0.0; 97 for (int i=0; i< GAUSS_N;i++) {98 const double theta = G AUSS_Z[i]*zm + zb;97 for (int i=0; i<76 ;i++) { 98 const double theta = Gauss76Z[i]*zm + zb; 99 99 double sin_theta, cos_theta; // slots to hold sincos function output 100 100 SINCOS(theta, sin_theta, cos_theta); … … 103 103 const double Aq = _fq(qab, qc, h, radius_cap, radius, half_length); 104 104 // scale by sin_theta for spherical coord integration 105 total += G AUSS_W[i] * Aq * Aq * sin_theta;105 total += Gauss76Wt[i] * Aq * Aq * sin_theta; 106 106 } 107 107 // translate dx in [-1,1] to dx in [lower,upper] … … 115 115 116 116 static double 117 Iq ac(double qab, double qc,117 Iqxy(double qab, double qc, 118 118 double sld, double solvent_sld, double radius, 119 119 double radius_cap, double length) -
sasmodels/models/core_shell_bicelle.c
r108e70e rbecded3 52 52 53 53 double total = 0.0; 54 for(int i=0;i< GAUSS_N;i++) {55 double theta = (G AUSS_Z[i] + 1.0)*uplim;54 for(int i=0;i<N_POINTS_76;i++) { 55 double theta = (Gauss76Z[i] + 1.0)*uplim; 56 56 double sin_theta, cos_theta; // slots to hold sincos function output 57 57 SINCOS(theta, sin_theta, cos_theta); 58 58 double fq = bicelle_kernel(q*sin_theta, q*cos_theta, radius, thick_radius, thick_face, 59 59 halflength, sld_core, sld_face, sld_rim, sld_solvent); 60 total += G AUSS_W[i]*fq*fq*sin_theta;60 total += Gauss76Wt[i]*fq*fq*sin_theta; 61 61 } 62 62 … … 67 67 68 68 static double 69 Iq ac(double qab, double qc,69 Iqxy(double qab, double qc, 70 70 double radius, 71 71 double thick_rim, -
sasmodels/models/core_shell_bicelle_elliptical.c
r108e70e r82592da 37 37 //initialize integral 38 38 double outer_sum = 0.0; 39 for(int i=0;i< GAUSS_N;i++) {39 for(int i=0;i<76;i++) { 40 40 //setup inner integral over the ellipsoidal cross-section 41 41 //const double va = 0.0; 42 42 //const double vb = 1.0; 43 //const double cos_theta = ( G AUSS_Z[i]*(vb-va) + va + vb )/2.0;44 const double cos_theta = ( G AUSS_Z[i] + 1.0 )/2.0;43 //const double cos_theta = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; 44 const double cos_theta = ( Gauss76Z[i] + 1.0 )/2.0; 45 45 const double sin_theta = sqrt(1.0 - cos_theta*cos_theta); 46 46 const double qab = q*sin_theta; … … 49 49 const double si2 = sas_sinx_x((halfheight+thick_face)*qc); 50 50 double inner_sum=0.0; 51 for(int j=0;j< GAUSS_N;j++) {51 for(int j=0;j<76;j++) { 52 52 //76 gauss points for the inner integral (WAS 20 points,so this may make unecessarily slow, but playing safe) 53 53 // inner integral limits 54 54 //const double vaj=0.0; 55 55 //const double vbj=M_PI; 56 //const double phi = ( G AUSS_Z[j]*(vbj-vaj) + vaj + vbj )/2.0;57 const double phi = ( G AUSS_Z[j] +1.0)*M_PI_2;56 //const double phi = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; 57 const double phi = ( Gauss76Z[j] +1.0)*M_PI_2; 58 58 const double rr = sqrt(r2A - r2B*cos(phi)); 59 59 const double be1 = sas_2J1x_x(rr*qab); … … 61 61 const double fq = dr1*si1*be1 + dr2*si2*be2 + dr3*si2*be1; 62 62 63 inner_sum += G AUSS_W[j] * fq * fq;63 inner_sum += Gauss76Wt[j] * fq * fq; 64 64 } 65 65 //now calculate outer integral 66 outer_sum += G AUSS_W[i] * inner_sum;66 outer_sum += Gauss76Wt[i] * inner_sum; 67 67 } 68 68 … … 71 71 72 72 static double 73 Iq abc(double qa, double qb, double qc,73 Iqxy(double qa, double qb, double qc, 74 74 double r_minor, 75 75 double x_core, -
sasmodels/models/core_shell_bicelle_elliptical_belt_rough.c
r108e70e r82592da 7 7 double length) 8 8 { 9 return M_PI*( (r_minor + thick_rim)*(r_minor*x_core + thick_rim)* length + 9 return M_PI*( (r_minor + thick_rim)*(r_minor*x_core + thick_rim)* length + 10 10 square(r_minor)*x_core*2.0*thick_face ); 11 11 } … … 47 47 //initialize integral 48 48 double outer_sum = 0.0; 49 for(int i=0;i< GAUSS_N;i++) {49 for(int i=0;i<76;i++) { 50 50 //setup inner integral over the ellipsoidal cross-section 51 51 // since we generate these lots of times, why not store them somewhere? 52 //const double cos_alpha = ( G AUSS_Z[i]*(vb-va) + va + vb )/2.0;53 const double cos_alpha = ( G AUSS_Z[i] + 1.0 )/2.0;52 //const double cos_alpha = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; 53 const double cos_alpha = ( Gauss76Z[i] + 1.0 )/2.0; 54 54 const double sin_alpha = sqrt(1.0 - cos_alpha*cos_alpha); 55 55 double inner_sum=0; … … 58 58 si1 = sas_sinx_x(sinarg1); 59 59 si2 = sas_sinx_x(sinarg2); 60 for(int j=0;j< GAUSS_N;j++) {60 for(int j=0;j<76;j++) { 61 61 //76 gauss points for the inner integral (WAS 20 points,so this may make unecessarily slow, but playing safe) 62 //const double beta = ( G AUSS_Z[j]*(vbj-vaj) + vaj + vbj )/2.0;63 const double beta = ( G AUSS_Z[j] +1.0)*M_PI_2;62 //const double beta = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; 63 const double beta = ( Gauss76Z[j] +1.0)*M_PI_2; 64 64 const double rr = sqrt(r2A - r2B*cos(beta)); 65 65 double besarg1 = q*rr*sin_alpha; … … 67 67 be1 = sas_2J1x_x(besarg1); 68 68 be2 = sas_2J1x_x(besarg2); 69 inner_sum += G AUSS_W[j] *square(dr1*si1*be1 +69 inner_sum += Gauss76Wt[j] *square(dr1*si1*be1 + 70 70 dr2*si1*be2 + 71 71 dr3*si2*be1); 72 72 } 73 73 //now calculate outer integral 74 outer_sum += G AUSS_W[i] * inner_sum;74 outer_sum += Gauss76Wt[i] * inner_sum; 75 75 } 76 76 … … 79 79 80 80 static double 81 Iq abc(double qa, double qb, double qc,81 Iqxy(double qa, double qb, double qc, 82 82 double r_minor, 83 83 double x_core, … … 114 114 return 1.0e-4 * Aq*exp(-0.5*(square(qa) + square(qb) + square(qc) )*square(sigma)); 115 115 } 116 -
sasmodels/models/core_shell_bicelle_elliptical_belt_rough.py
r108e70e r110f69c 149 149 ["sld_rim", "1e-6/Ang^2", 1, [-inf, inf], "sld", "Cylinder rim scattering length density"], 150 150 ["sld_solvent", "1e-6/Ang^2", 6, [-inf, inf], "sld", "Solvent scattering length density"], 151 ["sigma", "Ang", 0, [0, inf], "", "interfacial roughness"],152 151 ["theta", "degrees", 90.0, [-360, 360], "orientation", "cylinder axis to beam angle"], 153 152 ["phi", "degrees", 0, [-360, 360], "orientation", "rotation about beam"], 154 153 ["psi", "degrees", 0, [-360, 360], "orientation", "rotation about cylinder axis"], 154 ["sigma", "Ang", 0, [0, inf], "", "interfacial roughness"] 155 155 ] 156 156 -
sasmodels/models/core_shell_cylinder.c
r108e70e rbecded3 30 30 const double shell_vd = form_volume(radius,thickness,length) * (shell_sld-solvent_sld); 31 31 double total = 0.0; 32 for (int i=0; i< GAUSS_N;i++) {32 for (int i=0; i<76 ;i++) { 33 33 // translate a point in [-1,1] to a point in [0, pi/2] 34 //const double theta = ( G AUSS_Z[i]*(upper-lower) + upper + lower )/2.0;34 //const double theta = ( Gauss76Z[i]*(upper-lower) + upper + lower )/2.0; 35 35 double sin_theta, cos_theta; 36 const double theta = G AUSS_Z[i]*M_PI_4 + M_PI_4;36 const double theta = Gauss76Z[i]*M_PI_4 + M_PI_4; 37 37 SINCOS(theta, sin_theta, cos_theta); 38 38 const double qab = q*sin_theta; … … 40 40 const double fq = _cyl(core_vd, core_r*qab, core_h*qc) 41 41 + _cyl(shell_vd, shell_r*qab, shell_h*qc); 42 total += G AUSS_W[i] * fq * fq * sin_theta;42 total += Gauss76Wt[i] * fq * fq * sin_theta; 43 43 } 44 44 // translate dx in [-1,1] to dx in [lower,upper] … … 48 48 49 49 50 double Iq ac(double qab, double qc,50 double Iqxy(double qab, double qc, 51 51 double core_sld, 52 52 double shell_sld, -
sasmodels/models/core_shell_ellipsoid.c
r108e70e rbecded3 59 59 const double b = 0.5; 60 60 double total = 0.0; //initialize intergral 61 for(int i=0;i< GAUSS_N;i++) {62 const double cos_theta = G AUSS_Z[i]*m + b;61 for(int i=0;i<76;i++) { 62 const double cos_theta = Gauss76Z[i]*m + b; 63 63 const double sin_theta = sqrt(1.0 - cos_theta*cos_theta); 64 64 double fq = _cs_ellipsoid_kernel(q*sin_theta, q*cos_theta, … … 66 66 equat_shell, polar_shell, 67 67 sld_core_shell, sld_shell_solvent); 68 total += G AUSS_W[i] * fq * fq;68 total += Gauss76Wt[i] * fq * fq; 69 69 } 70 70 total *= m; … … 75 75 76 76 static double 77 Iq ac(double qab, double qc,77 Iqxy(double qab, double qc, 78 78 double radius_equat_core, 79 79 double x_core, -
sasmodels/models/core_shell_parallelepiped.c
r108e70e rc69d6d6 1 // Set OVERLAPPING to 1 in order to fill in the edges of the box, with2 // c endcaps and b overlapping a. With the proper choice of parameters,3 // (setting rim slds to sld, core sld to solvent, rim thickness to thickness4 // and subtracting 2*thickness from length, this should match the hollow5 // rectangular prism.) Set it to 0 for the documented behaviour.6 #define OVERLAPPING 07 1 static double 8 2 form_volume(double length_a, double length_b, double length_c, 9 3 double thick_rim_a, double thick_rim_b, double thick_rim_c) 10 4 { 11 return 12 #if OVERLAPPING 13 // Hollow rectangular prism only includes the volume of the shell 14 // so uncomment the next line when comparing. Solid rectangular 15 // prism, or parallelepiped want filled cores, so comment when 16 // comparing. 17 //-length_a * length_b * length_c + 18 (length_a + 2.0*thick_rim_a) * 19 (length_b + 2.0*thick_rim_b) * 20 (length_c + 2.0*thick_rim_c); 21 #else 22 length_a * length_b * length_c + 23 2.0 * thick_rim_a * length_b * length_c + 24 2.0 * length_a * thick_rim_b * length_c + 25 2.0 * length_a * length_b * thick_rim_c; 26 #endif 5 //return length_a * length_b * length_c; 6 return length_a * length_b * length_c + 7 2.0 * thick_rim_a * length_b * length_c + 8 2.0 * thick_rim_b * length_a * length_c + 9 2.0 * thick_rim_c * length_a * length_b; 27 10 } 28 11 … … 41 24 double thick_rim_c) 42 25 { 43 // Code converted from functions CSPPKernel and CSParallelepiped in libCylinder.c 26 // Code converted from functions CSPPKernel and CSParallelepiped in libCylinder.c_scaled 44 27 // Did not understand the code completely, it should be rechecked (Miguel Gonzalez) 45 // Code is rewritten,the code is compliant with Diva Singhs thesis now (Dirk Honecker) 46 // Code rewritten (PAK) 28 //Code is rewritten,the code is compliant with Diva Singhs thesis now (Dirk Honecker) 47 29 48 const double half_q = 0.5*q;30 const double mu = 0.5 * q * length_b; 49 31 50 const double tA = length_a + 2.0*thick_rim_a; 51 const double tB = length_b + 2.0*thick_rim_b; 52 const double tC = length_c + 2.0*thick_rim_c; 32 //calculate volume before rescaling (in original code, but not used) 33 //double vol = form_volume(length_a, length_b, length_c, thick_rim_a, thick_rim_b, thick_rim_c); 34 //double vol = length_a * length_b * length_c + 35 // 2.0 * thick_rim_a * length_b * length_c + 36 // 2.0 * thick_rim_b * length_a * length_c + 37 // 2.0 * thick_rim_c * length_a * length_b; 53 38 54 // Scale factors 55 const double dr0 = (core_sld-solvent_sld); 56 const double drA = (arim_sld-solvent_sld); 57 const double drB = (brim_sld-solvent_sld); 58 const double drC = (crim_sld-solvent_sld); 39 // Scale sides by B 40 const double a_scaled = length_a / length_b; 41 const double c_scaled = length_c / length_b; 42 43 double ta = a_scaled + 2.0*thick_rim_a/length_b; // incorrect ta = (a_scaled + 2.0*thick_rim_a)/length_b; 44 double tb = 1+ 2.0*thick_rim_b/length_b; // incorrect tb = (a_scaled + 2.0*thick_rim_b)/length_b; 45 double tc = c_scaled + 2.0*thick_rim_c/length_b; //not present 46 47 double Vin = length_a * length_b * length_c; 48 //double Vot = (length_a * length_b * length_c + 49 // 2.0 * thick_rim_a * length_b * length_c + 50 // 2.0 * length_a * thick_rim_b * length_c + 51 // 2.0 * length_a * length_b * thick_rim_c); 52 double V1 = (2.0 * thick_rim_a * length_b * length_c); // incorrect V1 (aa*bb*cc+2*ta*bb*cc) 53 double V2 = (2.0 * length_a * thick_rim_b * length_c); // incorrect V2(aa*bb*cc+2*aa*tb*cc) 54 double V3 = (2.0 * length_a * length_b * thick_rim_c); //not present 55 56 // Scale factors (note that drC is not used later) 57 const double drho0 = (core_sld-solvent_sld); 58 const double drhoA = (arim_sld-solvent_sld); 59 const double drhoB = (brim_sld-solvent_sld); 60 const double drhoC = (crim_sld-solvent_sld); // incorrect const double drC_Vot = (crim_sld-solvent_sld)*Vot; 61 62 63 // Precompute scale factors for combining cross terms from the shape 64 const double scale23 = drhoA*V1; 65 const double scale14 = drhoB*V2; 66 const double scale24 = drhoC*V3; 67 const double scale11 = drho0*Vin; 68 const double scale12 = drho0*Vin - scale23 - scale14 - scale24; 59 69 60 70 // outer integral (with gauss points), integration limits = 0, 1 61 double outer_sum = 0; //initialize integral 62 for( int i=0; i<GAUSS_N; i++) { 63 const double cos_alpha = 0.5 * ( GAUSS_Z[i] + 1.0 ); 64 const double mu = half_q * sqrt(1.0-cos_alpha*cos_alpha); 71 double outer_total = 0; //initialize integral 65 72 66 // inner integral (with gauss points), integration limits = 0, pi/2 67 const double siC = length_c * sas_sinx_x(length_c * cos_alpha * half_q); 68 const double siCt = tC * sas_sinx_x(tC * cos_alpha * half_q); 69 double inner_sum = 0.0; 70 for(int j=0; j<GAUSS_N; j++) { 71 const double beta = 0.5 * ( GAUSS_Z[j] + 1.0 ); 72 double sin_beta, cos_beta; 73 SINCOS(M_PI_2*beta, sin_beta, cos_beta); 74 const double siA = length_a * sas_sinx_x(length_a * mu * sin_beta); 75 const double siB = length_b * sas_sinx_x(length_b * mu * cos_beta); 76 const double siAt = tA * sas_sinx_x(tA * mu * sin_beta); 77 const double siBt = tB * sas_sinx_x(tB * mu * cos_beta); 73 for( int i=0; i<76; i++) { 74 double sigma = 0.5 * ( Gauss76Z[i] + 1.0 ); 75 double mu_proj = mu * sqrt(1.0-sigma*sigma); 78 76 79 #if OVERLAPPING 80 const double f = dr0*siA*siB*siC81 + drA*(siAt-siA)*siB*siC82 + drB*siAt*(siBt-siB)*siC83 + drC*siAt*siBt*(siCt-siC);84 #else 85 const double f = dr0*siA*siB*siC86 + drA*(siAt-siA)*siB*siC87 + drB*siA*(siBt-siB)*siC88 + drC*siA*siB*(siCt-siC);89 #endif 77 // inner integral (with gauss points), integration limits = 0, 1 78 double inner_total = 0.0; 79 double inner_total_crim = 0.0; 80 for(int j=0; j<76; j++) { 81 const double uu = 0.5 * ( Gauss76Z[j] + 1.0 ); 82 double sin_uu, cos_uu; 83 SINCOS(M_PI_2*uu, sin_uu, cos_uu); 84 const double si1 = sas_sinx_x(mu_proj * sin_uu * a_scaled); 85 const double si2 = sas_sinx_x(mu_proj * cos_uu ); 86 const double si3 = sas_sinx_x(mu_proj * sin_uu * ta); 87 const double si4 = sas_sinx_x(mu_proj * cos_uu * tb); 90 88 91 inner_sum += GAUSS_W[j] * f * f; 89 // Expression in libCylinder.c (neither drC nor Vot are used) 90 const double form = scale12*si1*si2 + scale23*si2*si3 + scale14*si1*si4; 91 const double form_crim = scale11*si1*si2; 92 93 // correct FF : sum of square of phase factors 94 inner_total += Gauss76Wt[j] * form * form; 95 inner_total_crim += Gauss76Wt[j] * form_crim * form_crim; 92 96 } 93 inner_sum *= 0.5; 97 inner_total *= 0.5; 98 inner_total_crim *= 0.5; 94 99 // now sum up the outer integral 95 outer_sum += GAUSS_W[i] * inner_sum; 100 const double si = sas_sinx_x(mu * c_scaled * sigma); 101 const double si_crim = sas_sinx_x(mu * tc * sigma); 102 outer_total += Gauss76Wt[i] * (inner_total * si * si + inner_total_crim * si_crim * si_crim); 96 103 } 97 outer_ sum*= 0.5;104 outer_total *= 0.5; 98 105 99 106 //convert from [1e-12 A-1] to [cm-1] 100 return 1.0e-4 * outer_ sum;107 return 1.0e-4 * outer_total; 101 108 } 102 109 103 110 static double 104 Iq abc(double qa, double qb, double qc,111 Iqxy(double qa, double qb, double qc, 105 112 double core_sld, 106 113 double arim_sld, … … 121 128 const double drC = crim_sld-solvent_sld; 122 129 130 double Vin = length_a * length_b * length_c; 131 double V1 = 2.0 * thick_rim_a * length_b * length_c; // incorrect V1(aa*bb*cc+2*ta*bb*cc) 132 double V2 = 2.0 * length_a * thick_rim_b * length_c; // incorrect V2(aa*bb*cc+2*aa*tb*cc) 133 double V3 = 2.0 * length_a * length_b * thick_rim_c; 134 // As for the 1D case, Vot is not used 135 //double Vot = (length_a * length_b * length_c + 136 // 2.0 * thick_rim_a * length_b * length_c + 137 // 2.0 * length_a * thick_rim_b * length_c + 138 // 2.0 * length_a * length_b * thick_rim_c); 139 123 140 // The definitions of ta, tb, tc are not the same as in the 1D case because there is no 124 141 // the scaling by B. 125 const double tA = length_a + 2.0*thick_rim_a; 126 const double tB = length_b + 2.0*thick_rim_b; 127 const double tC = length_c + 2.0*thick_rim_c; 128 const double siA = length_a*sas_sinx_x(0.5*length_a*qa); 129 const double siB = length_b*sas_sinx_x(0.5*length_b*qb); 130 const double siC = length_c*sas_sinx_x(0.5*length_c*qc); 131 const double siAt = tA*sas_sinx_x(0.5*tA*qa); 132 const double siBt = tB*sas_sinx_x(0.5*tB*qb); 133 const double siCt = tC*sas_sinx_x(0.5*tC*qc); 142 double ta = length_a + 2.0*thick_rim_a; 143 double tb = length_b + 2.0*thick_rim_b; 144 double tc = length_c + 2.0*thick_rim_c; 145 //handle arg=0 separately, as sin(t)/t -> 1 as t->0 146 double siA = sas_sinx_x(0.5*length_a*qa); 147 double siB = sas_sinx_x(0.5*length_b*qb); 148 double siC = sas_sinx_x(0.5*length_c*qc); 149 double siAt = sas_sinx_x(0.5*ta*qa); 150 double siBt = sas_sinx_x(0.5*tb*qb); 151 double siCt = sas_sinx_x(0.5*tc*qc); 134 152 135 #if OVERLAPPING 136 const double f = dr0*siA*siB*siC 137 + drA*(siAt-siA)*siB*siC 138 + drB*siAt*(siBt-siB)*siC 139 + drC*siAt*siBt*(siCt-siC); 140 #else 141 const double f = dr0*siA*siB*siC 142 + drA*(siAt-siA)*siB*siC 143 + drB*siA*(siBt-siB)*siC 144 + drC*siA*siB*(siCt-siC); 145 #endif 153 154 // f uses Vin, V1, V2, and V3 and it seems to have more sense than the value computed 155 // in the 1D code, but should be checked! 156 double f = ( dr0*siA*siB*siC*Vin 157 + drA*(siAt-siA)*siB*siC*V1 158 + drB*siA*(siBt-siB)*siC*V2 159 + drC*siA*siB*(siCt-siC)*V3); 146 160 147 161 return 1.0e-4 * f * f; -
sasmodels/models/core_shell_parallelepiped.py
r10ee838 r2d81cfe 5 5 Calculates the form factor for a rectangular solid with a core-shell structure. 6 6 The thickness and the scattering length density of the shell or 7 "rim" can be different on each (pair) of faces. 7 "rim" can be different on each (pair) of faces. However at this time the 1D 8 calculation does **NOT** actually calculate a c face rim despite the presence 9 of the parameter. Some other aspects of the 1D calculation may be wrong. 10 11 .. note:: 12 This model was originally ported from NIST IGOR macros. However, it is not 13 yet fully understood by the SasView developers and is currently under review. 8 14 9 15 The form factor is normalized by the particle volume $V$ such that … … 15 21 where $\langle \ldots \rangle$ is an average over all possible orientations 16 22 of the rectangular solid. 23 17 24 18 25 The function calculated is the form factor of the rectangular solid below. … … 34 41 V = ABC + 2t_ABC + 2t_BAC + 2t_CAB 35 42 36 **meaning that there are "gaps" at the corners of the solid.** 43 **meaning that there are "gaps" at the corners of the solid.** Again note that 44 $t_C = 0$ currently. 37 45 38 46 The intensity calculated follows the :ref:`parallelepiped` model, with the 39 47 core-shell intensity being calculated as the square of the sum of the 40 amplitudes of the core and the slabs on the edges. 41 42 the scattering amplitude is computed for a particular orientation of the 43 core-shell parallelepiped with respect to the scattering vector and then 44 averaged over all possible orientations, where $\alpha$ is the angle between 45 the $z$ axis and the $C$ axis of the parallelepiped, $\beta$ is 46 the angle between projection of the particle in the $xy$ detector plane 47 and the $y$ axis. 48 amplitudes of the core and shell, in the same manner as a core-shell model. 48 49 49 50 .. math:: 50 51 51 F(Q) 52 &= (\rho_\text{core}-\rho_\text{solvent}) 53 S(Q_A, A) S(Q_B, B) S(Q_C, C) \\ 54 &+ (\rho_\text{A}-\rho_\text{solvent}) 55 \left[S(Q_A, A+2t_A) - S(Q_A, Q)\right] S(Q_B, B) S(Q_C, C) \\ 56 &+ (\rho_\text{B}-\rho_\text{solvent}) 57 S(Q_A, A) \left[S(Q_B, B+2t_B) - S(Q_B, B)\right] S(Q_C, C) \\ 58 &+ (\rho_\text{C}-\rho_\text{solvent}) 59 S(Q_A, A) S(Q_B, B) \left[S(Q_C, C+2t_C) - S(Q_C, C)\right] 60 61 with 62 63 .. math:: 64 65 S(Q, L) = L \frac{\sin \tfrac{1}{2} Q L}{\tfrac{1}{2} Q L} 66 67 and 68 69 .. math:: 70 71 Q_A &= \sin\alpha \sin\beta \\ 72 Q_B &= \sin\alpha \cos\beta \\ 73 Q_C &= \cos\alpha 74 75 76 where $\rho_\text{core}$, $\rho_\text{A}$, $\rho_\text{B}$ and $\rho_\text{C}$ 77 are the scattering length of the parallelepiped core, and the rectangular 78 slabs of thickness $t_A$, $t_B$ and $t_C$, respectively. $\rho_\text{solvent}$ 79 is the scattering length of the solvent. 52 F_{a}(Q,\alpha,\beta)= 53 \left[\frac{\sin(\tfrac{1}{2}Q(L_A+2t_A)\sin\alpha \sin\beta) 54 }{\tfrac{1}{2}Q(L_A+2t_A)\sin\alpha\sin\beta} 55 - \frac{\sin(\tfrac{1}{2}QL_A\sin\alpha \sin\beta) 56 }{\tfrac{1}{2}QL_A\sin\alpha \sin\beta} \right] 57 \left[\frac{\sin(\tfrac{1}{2}QL_B\sin\alpha \sin\beta) 58 }{\tfrac{1}{2}QL_B\sin\alpha \sin\beta} \right] 59 \left[\frac{\sin(\tfrac{1}{2}QL_C\sin\alpha \sin\beta) 60 }{\tfrac{1}{2}QL_C\sin\alpha \sin\beta} \right] 61 62 .. note:: 63 64 Why does t_B not appear in the above equation? 65 For the calculation of the form factor to be valid, the sides of the solid 66 MUST (perhaps not any more?) be chosen such that** $A < B < C$. 67 If this inequality is not satisfied, the model will not report an error, 68 but the calculation will not be correct and thus the result wrong. 80 69 81 70 FITTING NOTES 82 ~~~~~~~~~~~~~83 84 71 If the scale is set equal to the particle volume fraction, $\phi$, the returned 85 value is the scattered intensity per unit volume, $I(q) = \phi P(q)$. However, 86 **no interparticle interference effects are included in this calculation.** 72 value is the scattered intensity per unit volume, $I(q) = \phi P(q)$. 73 However, **no interparticle interference effects are included in this 74 calculation.** 87 75 88 76 There are many parameters in this model. Hold as many fixed as possible with 89 77 known values, or you will certainly end up at a solution that is unphysical. 90 78 79 Constraints must be applied during fitting to ensure that the inequality 80 $A < B < C$ is not violated. The calculation will not report an error, 81 but the results will not be correct. 82 91 83 The returned value is in units of |cm^-1|, on absolute scale. 92 84 93 85 NB: The 2nd virial coefficient of the core_shell_parallelepiped is calculated 94 86 based on the the averaged effective radius $(=\sqrt{(A+2t_A)(B+2t_B)/\pi})$ 95 and length $(C+2t_C)$ values, after appropriately sorting the three dimensions96 to give an oblate or prolate particle, to give an effective radius, 97 for $S(Q)$ when $P(Q) * S(Q)$ is applied.87 and length $(C+2t_C)$ values, after appropriately 88 sorting the three dimensions to give an oblate or prolate particle, to give an 89 effective radius, for $S(Q)$ when $P(Q) * S(Q)$ is applied. 98 90 99 91 For 2d data the orientation of the particle is required, described using 100 angles $\theta$, $\phi$ and $\Psi$ as in the diagrams below, for further 101 details of the calculation and angular dispersions see :ref:`orientation`.92 angles $\theta$, $\phi$ and $\Psi$ as in the diagrams below, for further details 93 of the calculation and angular dispersions see :ref:`orientation` . 102 94 The angle $\Psi$ is the rotational angle around the *long_c* axis. For example, 103 95 $\Psi = 0$ when the *short_b* axis is parallel to the *x*-axis of the detector. 104 105 For 2d, constraints must be applied during fitting to ensure that the106 inequality $A < B < C$ is not violated, and hence the correct definition107 of angles is preserved. The calculation will not report an error,108 but the results may be not correct.109 96 110 97 .. figure:: img/parallelepiped_angle_definition.png … … 127 114 Equations (1), (13-14). (in German) 128 115 .. [#] D Singh (2009). *Small angle scattering studies of self assembly in 129 lipid mixtures*, John s Hopkins University Thesis (2009) 223-225. `Available116 lipid mixtures*, John's Hopkins University Thesis (2009) 223-225. `Available 130 117 from Proquest <http://search.proquest.com/docview/304915826?accountid 131 118 =26379>`_ … … 188 175 Return equivalent radius (ER) 189 176 """ 190 from .parallelepiped import ER as ER_p 191 192 a = length_a + 2*thick_rim_a 193 b = length_b + 2*thick_rim_b 194 c = length_c + 2*thick_rim_c 195 return ER_p(a, b, c) 177 178 # surface average radius (rough approximation) 179 surf_rad = sqrt((length_a + 2.0*thick_rim_a) * (length_b + 2.0*thick_rim_b) / pi) 180 181 height = length_c + 2.0*thick_rim_c 182 183 ddd = 0.75 * surf_rad * (2 * surf_rad * height + (height + surf_rad) * (height + pi * surf_rad)) 184 return 0.5 * (ddd) ** (1. / 3.) 196 185 197 186 # VR defaults to 1.0 … … 227 216 psi_pd=10, psi_pd_n=1) 228 217 229 # rkh 7/4/17 add random unit test for 2d, note make all params different, 230 # 2d values not tested against other codes or models 218 # rkh 7/4/17 add random unit test for 2d, note make all params different, 2d values not tested against other codes or models 231 219 if 0: # pak: model rewrite; need to update tests 232 220 qx, qy = 0.2 * cos(pi/6.), 0.2 * sin(pi/6.) -
sasmodels/models/cylinder.c
r108e70e rbecded3 21 21 22 22 double total = 0.0; 23 for (int i=0; i< GAUSS_N;i++) {24 const double theta = G AUSS_Z[i]*zm + zb;23 for (int i=0; i<76 ;i++) { 24 const double theta = Gauss76Z[i]*zm + zb; 25 25 double sin_theta, cos_theta; // slots to hold sincos function output 26 26 // theta (theta,phi) the projection of the cylinder on the detector plane 27 27 SINCOS(theta , sin_theta, cos_theta); 28 28 const double form = fq(q*sin_theta, q*cos_theta, radius, length); 29 total += G AUSS_W[i] * form * form * sin_theta;29 total += Gauss76Wt[i] * form * form * sin_theta; 30 30 } 31 31 // translate dx in [-1,1] to dx in [lower,upper] … … 45 45 46 46 static double 47 Iq ac(double qab, double qc,47 Iqxy(double qab, double qc, 48 48 double sld, 49 49 double solvent_sld, -
sasmodels/models/ellipsoid.c
r108e70e rbecded3 22 22 23 23 // translate a point in [-1,1] to a point in [0, 1] 24 // const double u = G AUSS_Z[i]*(upper-lower)/2 + (upper+lower)/2;24 // const double u = Gauss76Z[i]*(upper-lower)/2 + (upper+lower)/2; 25 25 const double zm = 0.5; 26 26 const double zb = 0.5; 27 27 double total = 0.0; 28 for (int i=0;i< GAUSS_N;i++) {29 const double u = G AUSS_Z[i]*zm + zb;28 for (int i=0;i<76;i++) { 29 const double u = Gauss76Z[i]*zm + zb; 30 30 const double r = radius_equatorial*sqrt(1.0 + u*u*v_square_minus_one); 31 31 const double f = sas_3j1x_x(q*r); 32 total += G AUSS_W[i] * f * f;32 total += Gauss76Wt[i] * f * f; 33 33 } 34 34 // translate dx in [-1,1] to dx in [lower,upper] … … 39 39 40 40 static double 41 Iq ac(double qab, double qc,41 Iqxy(double qab, double qc, 42 42 double sld, 43 43 double sld_solvent, -
sasmodels/models/elliptical_cylinder.c
r108e70e r82592da 22 22 //initialize integral 23 23 double outer_sum = 0.0; 24 for(int i=0;i< GAUSS_N;i++) {24 for(int i=0;i<76;i++) { 25 25 //setup inner integral over the ellipsoidal cross-section 26 const double cos_val = ( G AUSS_Z[i]*(vb-va) + va + vb )/2.0;26 const double cos_val = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; 27 27 const double sin_val = sqrt(1.0 - cos_val*cos_val); 28 28 //const double arg = radius_minor*sin_val; 29 29 double inner_sum=0; 30 for(int j=0;j<GAUSS_N;j++) { 31 const double theta = ( GAUSS_Z[j]*(vbj-vaj) + vaj + vbj )/2.0; 30 for(int j=0;j<76;j++) { 31 //20 gauss points for the inner integral, increase to 76, RKH 6Nov2017 32 const double theta = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; 32 33 const double r = sin_val*sqrt(rA - rB*cos(theta)); 33 34 const double be = sas_2J1x_x(q*r); 34 inner_sum += G AUSS_W[j] * be * be;35 inner_sum += Gauss76Wt[j] * be * be; 35 36 } 36 37 //now calculate the value of the inner integral … … 39 40 //now calculate outer integral 40 41 const double si = sas_sinx_x(q*0.5*length*cos_val); 41 outer_sum += G AUSS_W[i] * inner_sum * si * si;42 outer_sum += Gauss76Wt[i] * inner_sum * si * si; 42 43 } 43 44 outer_sum *= 0.5*(vb-va); … … 54 55 55 56 static double 56 Iq abc(double qa, double qb, double qc,57 Iqxy(double qa, double qb, double qc, 57 58 double radius_minor, double r_ratio, double length, 58 59 double sld, double solvent_sld) -
sasmodels/models/elliptical_cylinder.py
r2d81cfe r2d81cfe 121 121 # pylint: enable=bad-whitespace, line-too-long 122 122 123 source = ["lib/polevl.c", "lib/sas_J1.c", "lib/gauss76.c", "elliptical_cylinder.c"] 123 source = ["lib/polevl.c", "lib/sas_J1.c", "lib/gauss76.c", "lib/gauss20.c", 124 "elliptical_cylinder.c"] 124 125 125 126 demo = dict(scale=1, background=0, radius_minor=100, axis_ratio=1.5, length=400.0, -
sasmodels/models/fcc_paracrystal.c
r108e70e rf728001 53 53 54 54 double outer_sum = 0.0; 55 for(int i=0; i< GAUSS_N; i++) {55 for(int i=0; i<150; i++) { 56 56 double inner_sum = 0.0; 57 const double theta = G AUSS_Z[i]*theta_m + theta_b;57 const double theta = Gauss150Z[i]*theta_m + theta_b; 58 58 double sin_theta, cos_theta; 59 59 SINCOS(theta, sin_theta, cos_theta); 60 60 const double qc = q*cos_theta; 61 61 const double qab = q*sin_theta; 62 for(int j=0;j< GAUSS_N;j++) {63 const double phi = G AUSS_Z[j]*phi_m + phi_b;62 for(int j=0;j<150;j++) { 63 const double phi = Gauss150Z[j]*phi_m + phi_b; 64 64 double sin_phi, cos_phi; 65 65 SINCOS(phi, sin_phi, cos_phi); … … 67 67 const double qb = qab*sin_phi; 68 68 const double form = fcc_Zq(qa, qb, qc, dnn, d_factor); 69 inner_sum += G AUSS_W[j] * form;69 inner_sum += Gauss150Wt[j] * form; 70 70 } 71 71 inner_sum *= phi_m; // sum(f(x)dx) = sum(f(x)) dx 72 outer_sum += G AUSS_W[i] * inner_sum * sin_theta;72 outer_sum += Gauss150Wt[i] * inner_sum * sin_theta; 73 73 } 74 74 outer_sum *= theta_m; … … 80 80 81 81 82 static double Iq abc(double qa, double qb, double qc,82 static double Iqxy(double qa, double qb, double qc, 83 83 double dnn, double d_factor, double radius, 84 84 double sld, double solvent_sld) -
sasmodels/models/flexible_cylinder_elliptical.c
r74768cb r592343f 17 17 double sum=0.0; 18 18 19 for(int i=0;i< GAUSS_N;i++) {20 const double zi = ( G AUSS_Z[i] + 1.0 )*M_PI_4;19 for(int i=0;i<N_POINTS_76;i++) { 20 const double zi = ( Gauss76Z[i] + 1.0 )*M_PI_4; 21 21 double sn, cn; 22 22 SINCOS(zi, sn, cn); 23 23 const double arg = q*sqrt(a*a*sn*sn + b*b*cn*cn); 24 24 const double yyy = sas_2J1x_x(arg); 25 sum += G AUSS_W[i] * yyy * yyy;25 sum += Gauss76Wt[i] * yyy * yyy; 26 26 } 27 27 sum *= 0.5; -
sasmodels/models/hollow_cylinder.c
r108e70e rbecded3 38 38 39 39 double summ = 0.0; //initialize intergral 40 for (int i=0;i< GAUSS_N;i++) {41 const double cos_theta = 0.5*( G AUSS_Z[i] * (upper-lower) + lower + upper );40 for (int i=0;i<76;i++) { 41 const double cos_theta = 0.5*( Gauss76Z[i] * (upper-lower) + lower + upper ); 42 42 const double sin_theta = sqrt(1.0 - cos_theta*cos_theta); 43 43 const double form = _fq(q*sin_theta, q*cos_theta, 44 44 radius, thickness, length); 45 summ += G AUSS_W[i] * form * form;45 summ += Gauss76Wt[i] * form * form; 46 46 } 47 47 … … 52 52 53 53 static double 54 Iq ac(double qab, double qc,54 Iqxy(double qab, double qc, 55 55 double radius, double thickness, double length, 56 56 double sld, double solvent_sld) -
sasmodels/models/hollow_rectangular_prism.c
r108e70e r1e7b0db0 1 1 double form_volume(double length_a, double b2a_ratio, double c2a_ratio, double thickness); 2 double Iq(double q, double sld, double solvent_sld, double length_a, 2 double Iq(double q, double sld, double solvent_sld, double length_a, 3 3 double b2a_ratio, double c2a_ratio, double thickness); 4 4 … … 37 37 const double v2a = 0.0; 38 38 const double v2b = M_PI_2; //phi integration limits 39 40 double outer_sum = 0.0; 41 for(int i=0; i<76; i++) { 39 42 40 double outer_sum = 0.0; 41 for(int i=0; i<GAUSS_N; i++) { 42 43 const double theta = 0.5 * ( GAUSS_Z[i]*(v1b-v1a) + v1a + v1b ); 43 const double theta = 0.5 * ( Gauss76Z[i]*(v1b-v1a) + v1a + v1b ); 44 44 double sin_theta, cos_theta; 45 45 SINCOS(theta, sin_theta, cos_theta); … … 49 49 50 50 double inner_sum = 0.0; 51 for(int j=0; j< GAUSS_N; j++) {51 for(int j=0; j<76; j++) { 52 52 53 const double phi = 0.5 * ( G AUSS_Z[j]*(v2b-v2a) + v2a + v2b );53 const double phi = 0.5 * ( Gauss76Z[j]*(v2b-v2a) + v2a + v2b ); 54 54 double sin_phi, cos_phi; 55 55 SINCOS(phi, sin_phi, cos_phi); … … 66 66 const double AP2 = vol_core * termA2 * termB2 * termC2; 67 67 68 inner_sum += G AUSS_W[j] * square(AP1-AP2);68 inner_sum += Gauss76Wt[j] * square(AP1-AP2); 69 69 } 70 70 inner_sum *= 0.5 * (v2b-v2a); 71 71 72 outer_sum += G AUSS_W[i] * inner_sum * sin(theta);72 outer_sum += Gauss76Wt[i] * inner_sum * sin(theta); 73 73 } 74 74 outer_sum *= 0.5*(v1b-v1a); … … 84 84 return 1.0e-4 * delrho * delrho * form; 85 85 } 86 87 double Iqabc(double qa, double qb, double qc,88 double sld,89 double solvent_sld,90 double length_a,91 double b2a_ratio,92 double c2a_ratio,93 double thickness)94 {95 const double length_b = length_a * b2a_ratio;96 const double length_c = length_a * c2a_ratio;97 const double a_half = 0.5 * length_a;98 const double b_half = 0.5 * length_b;99 const double c_half = 0.5 * length_c;100 const double vol_total = length_a * length_b * length_c;101 const double vol_core = 8.0 * (a_half-thickness) * (b_half-thickness) * (c_half-thickness);102 103 // Amplitude AP from eqn. (13)104 105 const double termA1 = sas_sinx_x(qa * a_half);106 const double termA2 = sas_sinx_x(qa * (a_half-thickness));107 108 const double termB1 = sas_sinx_x(qb * b_half);109 const double termB2 = sas_sinx_x(qb * (b_half-thickness));110 111 const double termC1 = sas_sinx_x(qc * c_half);112 const double termC2 = sas_sinx_x(qc * (c_half-thickness));113 114 const double AP1 = vol_total * termA1 * termB1 * termC1;115 const double AP2 = vol_core * termA2 * termB2 * termC2;116 117 // Multiply by contrast^2. Factor corresponding to volume^2 cancels with previous normalization.118 const double delrho = sld - solvent_sld;119 120 // Convert from [1e-12 A-1] to [cm-1]121 return 1.0e-4 * square(delrho * (AP1-AP2));122 } -
sasmodels/models/hollow_rectangular_prism.py
r2d81cfe r2d81cfe 5 5 This model provides the form factor, $P(q)$, for a hollow rectangular 6 6 parallelepiped with a wall of thickness $\Delta$. 7 7 It computes only the 1D scattering, not the 2D. 8 8 9 9 Definition … … 66 66 (which is unitless). 67 67 68 For 2d data the orientation of the particle is required, described using 69 angles $\theta$, $\phi$ and $\Psi$ as in the diagrams below, for further details 70 of the calculation and angular dispersions see :ref:`orientation` . 71 The angle $\Psi$ is the rotational angle around the long *C* axis. For example, 72 $\Psi = 0$ when the *B* axis is parallel to the *x*-axis of the detector. 73 74 For 2d, constraints must be applied during fitting to ensure that the inequality 75 $A < B < C$ is not violated, and hence the correct definition of angles is preserved. The calculation will not report an error, 76 but the results may be not correct. 77 78 .. figure:: img/parallelepiped_angle_definition.png 79 80 Definition of the angles for oriented hollow rectangular prism. 81 Note that rotation $\theta$, initially in the $xz$ plane, is carried out first, then 82 rotation $\phi$ about the $z$ axis, finally rotation $\Psi$ is now around the axis of the prism. 83 The neutron or X-ray beam is along the $z$ axis. 84 85 .. figure:: img/parallelepiped_angle_projection.png 86 87 Examples of the angles for oriented hollow rectangular prisms against the 88 detector plane. 68 **The 2D scattering intensity is not computed by this model.** 89 69 90 70 … … 133 113 ["thickness", "Ang", 1, [0, inf], "volume", 134 114 "Thickness of parallelepiped"], 135 ["theta", "degrees", 0, [-360, 360], "orientation",136 "c axis to beam angle"],137 ["phi", "degrees", 0, [-360, 360], "orientation",138 "rotation about beam"],139 ["psi", "degrees", 0, [-360, 360], "orientation",140 "rotation about c axis"],141 115 ] 142 116 -
sasmodels/models/hollow_rectangular_prism_thin_walls.c
r74768cb rab2aea8 1 1 double form_volume(double length_a, double b2a_ratio, double c2a_ratio); 2 double Iq(double q, double sld, double solvent_sld, double length_a, 2 double Iq(double q, double sld, double solvent_sld, double length_a, 3 3 double b2a_ratio, double c2a_ratio); 4 4 … … 29 29 const double v2a = 0.0; 30 30 const double v2b = M_PI_2; //phi integration limits 31 31 32 32 double outer_sum = 0.0; 33 for(int i=0; i< GAUSS_N; i++) {34 const double theta = 0.5 * ( G AUSS_Z[i]*(v1b-v1a) + v1a + v1b );33 for(int i=0; i<76; i++) { 34 const double theta = 0.5 * ( Gauss76Z[i]*(v1b-v1a) + v1a + v1b ); 35 35 36 36 double sin_theta, cos_theta; … … 44 44 45 45 double inner_sum = 0.0; 46 for(int j=0; j< GAUSS_N; j++) {47 const double phi = 0.5 * ( G AUSS_Z[j]*(v2b-v2a) + v2a + v2b );46 for(int j=0; j<76; j++) { 47 const double phi = 0.5 * ( Gauss76Z[j]*(v2b-v2a) + v2a + v2b ); 48 48 49 49 double sin_phi, cos_phi; … … 62 62 * ( cos_a*sin_b/cos_phi + cos_b*sin_a/sin_phi ); 63 63 64 inner_sum += G AUSS_W[j] * square(AL+AT);64 inner_sum += Gauss76Wt[j] * square(AL+AT); 65 65 } 66 66 67 67 inner_sum *= 0.5 * (v2b-v2a); 68 outer_sum += G AUSS_W[i] * inner_sum * sin_theta;68 outer_sum += Gauss76Wt[i] * inner_sum * sin_theta; 69 69 } 70 70 -
sasmodels/models/lib/gauss150.c
r74768cb r994d77f 7 7 * 8 8 */ 9 #ifdef GAUSS_N10 # undef GAUSS_N11 # undef GAUSS_Z12 # undef GAUSS_W13 #endif14 #define GAUSS_N 15015 #define GAUSS_Z Gauss150Z16 #define GAUSS_W Gauss150Wt17 18 // Note: using array size 152 so that it is a multiple of 419 9 20 10 // Gaussians 21 constant double Gauss150Z[15 2]={11 constant double Gauss150Z[150]={ 22 12 -0.9998723404457334, 23 13 -0.9993274305065947, … … 169 159 0.9983473449340834, 170 160 0.9993274305065947, 171 0.9998723404457334, 172 0., 173 0. 161 0.9998723404457334 174 162 }; 175 163 176 constant double Gauss150Wt[15 2]={164 constant double Gauss150Wt[150]={ 177 165 0.0003276086705538, 178 166 0.0007624720924706, … … 324 312 0.0011976474864367, 325 313 0.0007624720924706, 326 0.0003276086705538, 327 0., 328 0. 314 0.0003276086705538 329 315 }; -
sasmodels/models/lib/gauss20.c
r74768cb r994d77f 7 7 * 8 8 */ 9 #ifdef GAUSS_N10 # undef GAUSS_N11 # undef GAUSS_Z12 # undef GAUSS_W13 #endif14 #define GAUSS_N 2015 #define GAUSS_Z Gauss20Z16 #define GAUSS_W Gauss20Wt17 9 18 10 // Gaussians -
sasmodels/models/lib/gauss76.c
r74768cb r66d119f 7 7 * 8 8 */ 9 #ifdef GAUSS_N 10 # undef GAUSS_N 11 # undef GAUSS_Z 12 # undef GAUSS_W 13 #endif 14 #define GAUSS_N 76 15 #define GAUSS_Z Gauss76Z 16 #define GAUSS_W Gauss76Wt 9 #define N_POINTS_76 76 17 10 18 11 // Gaussians 19 constant double Gauss76Wt[ 76]={12 constant double Gauss76Wt[N_POINTS_76]={ 20 13 .00126779163408536, //0 21 14 .00294910295364247, … … 96 89 }; 97 90 98 constant double Gauss76Z[ 76]={91 constant double Gauss76Z[N_POINTS_76]={ 99 92 -.999505948362153, //0 100 93 -.997397786355355, -
sasmodels/models/line.py
r108e70e r2d81cfe 57 57 Iq.vectorized = True # Iq accepts an array of q values 58 58 59 60 59 def Iqxy(qx, qy, *args): 61 60 """ … … 70 69 71 70 Iqxy.vectorized = True # Iqxy accepts an array of qx qy values 72 73 # uncomment the following to test Iqxy in C models74 #del Iq, Iqxy75 #c_code = """76 #static double Iq(double q, double b, double m) { return m*q+b; }77 #static double Iqxy(double qx, double qy, double b, double m)78 #{ return (m*qx+b)*(m*qy+b); }79 #"""80 71 81 72 def random(): -
sasmodels/models/parallelepiped.c
r108e70e r9b7b23f 23 23 double outer_total = 0; //initialize integral 24 24 25 for( int i=0; i< GAUSS_N; i++) {26 const double sigma = 0.5 * ( G AUSS_Z[i] + 1.0 );25 for( int i=0; i<76; i++) { 26 const double sigma = 0.5 * ( Gauss76Z[i] + 1.0 ); 27 27 const double mu_proj = mu * sqrt(1.0-sigma*sigma); 28 28 … … 30 30 // corresponding to angles from 0 to pi/2. 31 31 double inner_total = 0.0; 32 for(int j=0; j< GAUSS_N; j++) {33 const double uu = 0.5 * ( G AUSS_Z[j] + 1.0 );32 for(int j=0; j<76; j++) { 33 const double uu = 0.5 * ( Gauss76Z[j] + 1.0 ); 34 34 double sin_uu, cos_uu; 35 35 SINCOS(M_PI_2*uu, sin_uu, cos_uu); 36 36 const double si1 = sas_sinx_x(mu_proj * sin_uu * a_scaled); 37 37 const double si2 = sas_sinx_x(mu_proj * cos_uu); 38 inner_total += G AUSS_W[j] * square(si1 * si2);38 inner_total += Gauss76Wt[j] * square(si1 * si2); 39 39 } 40 40 inner_total *= 0.5; 41 41 42 42 const double si = sas_sinx_x(mu * c_scaled * sigma); 43 outer_total += G AUSS_W[i] * inner_total * si * si;43 outer_total += Gauss76Wt[i] * inner_total * si * si; 44 44 } 45 45 outer_total *= 0.5; … … 53 53 54 54 static double 55 Iq abc(double qa, double qb, double qc,55 Iqxy(double qa, double qb, double qc, 56 56 double sld, 57 57 double solvent_sld, -
sasmodels/models/pringle.c
r74768cb r1e7b0db0 29 29 double sumC = 0.0; // initialize integral 30 30 double r; 31 for (int i=0; i < GAUSS_N; i++) {32 r = G AUSS_Z[i]*zm + zb;31 for (int i=0; i < 76; i++) { 32 r = Gauss76Z[i]*zm + zb; 33 33 34 34 const double qrs = r*q_sin_psi; 35 35 const double qrrc = r*r*q_cos_psi; 36 36 37 double y = G AUSS_W[i] * r * sas_JN(n, beta*qrrc) * sas_JN(2*n, qrs);37 double y = Gauss76Wt[i] * r * sas_JN(n, beta*qrrc) * sas_JN(2*n, qrs); 38 38 double S, C; 39 39 SINCOS(alpha*qrrc, S, C); … … 86 86 87 87 double sum = 0.0; 88 for (int i = 0; i < GAUSS_N; i++) {89 double psi = G AUSS_Z[i]*zm + zb;88 for (int i = 0; i < 76; i++) { 89 double psi = Gauss76Z[i]*zm + zb; 90 90 double sin_psi, cos_psi; 91 91 SINCOS(psi, sin_psi, cos_psi); … … 93 93 double sinc_term = square(sas_sinx_x(q * thickness * cos_psi / 2.0)); 94 94 double pringle_kernel = 4.0 * sin_psi * bessel_term * sinc_term; 95 sum += G AUSS_W[i] * pringle_kernel;95 sum += Gauss76Wt[i] * pringle_kernel; 96 96 } 97 97 -
sasmodels/models/rectangular_prism.c
r108e70e r1e7b0db0 1 1 double form_volume(double length_a, double b2a_ratio, double c2a_ratio); 2 double Iq(double q, double sld, double solvent_sld, double length_a, 2 double Iq(double q, double sld, double solvent_sld, double length_a, 3 3 double b2a_ratio, double c2a_ratio); 4 4 … … 26 26 const double v2a = 0.0; 27 27 const double v2b = M_PI_2; //phi integration limits 28 28 29 29 double outer_sum = 0.0; 30 for(int i=0; i< GAUSS_N; i++) {31 const double theta = 0.5 * ( G AUSS_Z[i]*(v1b-v1a) + v1a + v1b );30 for(int i=0; i<76; i++) { 31 const double theta = 0.5 * ( Gauss76Z[i]*(v1b-v1a) + v1a + v1b ); 32 32 double sin_theta, cos_theta; 33 33 SINCOS(theta, sin_theta, cos_theta); … … 36 36 37 37 double inner_sum = 0.0; 38 for(int j=0; j< GAUSS_N; j++) {39 double phi = 0.5 * ( G AUSS_Z[j]*(v2b-v2a) + v2a + v2b );38 for(int j=0; j<76; j++) { 39 double phi = 0.5 * ( Gauss76Z[j]*(v2b-v2a) + v2a + v2b ); 40 40 double sin_phi, cos_phi; 41 41 SINCOS(phi, sin_phi, cos_phi); … … 45 45 const double termB = sas_sinx_x(q * b_half * sin_theta * cos_phi); 46 46 const double AP = termA * termB * termC; 47 inner_sum += G AUSS_W[j] * AP * AP;47 inner_sum += Gauss76Wt[j] * AP * AP; 48 48 } 49 49 inner_sum = 0.5 * (v2b-v2a) * inner_sum; 50 outer_sum += G AUSS_W[i] * inner_sum * sin_theta;50 outer_sum += Gauss76Wt[i] * inner_sum * sin_theta; 51 51 } 52 52 53 53 double answer = 0.5*(v1b-v1a)*outer_sum; 54 54 55 // Normalize by Pi (Eqn. 16). 56 // The term (ABC)^2 does not appear because it was introduced before on 55 // Normalize by Pi (Eqn. 16). 56 // The term (ABC)^2 does not appear because it was introduced before on 57 57 // the definitions of termA, termB, termC. 58 // The factor 2 appears because the theta integral has been defined between 58 // The factor 2 appears because the theta integral has been defined between 59 59 // 0 and pi/2, instead of 0 to pi. 60 60 answer /= M_PI_2; //Form factor P(q) … … 64 64 answer *= square((sld-solvent_sld)*volume); 65 65 66 // Convert from [1e-12 A-1] to [cm-1] 66 // Convert from [1e-12 A-1] to [cm-1] 67 67 answer *= 1.0e-4; 68 68 69 69 return answer; 70 70 } 71 72 73 double Iqabc(double qa, double qb, double qc,74 double sld,75 double solvent_sld,76 double length_a,77 double b2a_ratio,78 double c2a_ratio)79 {80 const double length_b = length_a * b2a_ratio;81 const double length_c = length_a * c2a_ratio;82 const double a_half = 0.5 * length_a;83 const double b_half = 0.5 * length_b;84 const double c_half = 0.5 * length_c;85 const double volume = length_a * length_b * length_c;86 87 // Amplitude AP from eqn. (13)88 89 const double termA = sas_sinx_x(qa * a_half);90 const double termB = sas_sinx_x(qb * b_half);91 const double termC = sas_sinx_x(qc * c_half);92 93 const double AP = termA * termB * termC;94 95 // Multiply by contrast^2. Factor corresponding to volume^2 cancels with previous normalization.96 const double delrho = sld - solvent_sld;97 98 // Convert from [1e-12 A-1] to [cm-1]99 return 1.0e-4 * square(volume * delrho * AP);100 } -
sasmodels/models/rectangular_prism.py
r2d81cfe r2d81cfe 12 12 the prism (e.g. setting $b/a = 1$ and $c/a = 1$ and applying polydispersity 13 13 to *a* will generate a distribution of cubes of different sizes). 14 Note also that, contrary to :ref:`parallelepiped`, it does not compute 15 the 2D scattering. 14 16 15 17 … … 24 26 that reference), with $\theta$ corresponding to $\alpha$ in that paper, 25 27 and not to the usual convention used for example in the 26 :ref:`parallelepiped` model. 28 :ref:`parallelepiped` model. As the present model does not compute 29 the 2D scattering, this has no further consequences. 27 30 28 31 In this model the scattering from a massive parallelepiped with an … … 62 65 units) *scale* represents the volume fraction (which is unitless). 63 66 64 For 2d data the orientation of the particle is required, described using 65 angles $\theta$, $\phi$ and $\Psi$ as in the diagrams below, for further details 66 of the calculation and angular dispersions see :ref:`orientation` . 67 The angle $\Psi$ is the rotational angle around the long *C* axis. For example, 68 $\Psi = 0$ when the *B* axis is parallel to the *x*-axis of the detector. 69 70 For 2d, constraints must be applied during fitting to ensure that the inequality 71 $A < B < C$ is not violated, and hence the correct definition of angles is preserved. The calculation will not report an error, 72 but the results may be not correct. 73 74 .. figure:: img/parallelepiped_angle_definition.png 75 76 Definition of the angles for oriented core-shell parallelepipeds. 77 Note that rotation $\theta$, initially in the $xz$ plane, is carried out first, then 78 rotation $\phi$ about the $z$ axis, finally rotation $\Psi$ is now around the axis of the cylinder. 79 The neutron or X-ray beam is along the $z$ axis. 80 81 .. figure:: img/parallelepiped_angle_projection.png 82 83 Examples of the angles for oriented rectangular prisms against the 84 detector plane. 85 67 **The 2D scattering intensity is not computed by this model.** 86 68 87 69 … … 126 108 ["c2a_ratio", "", 1, [0, inf], "volume", 127 109 "Ratio sides c/a"], 128 ["theta", "degrees", 0, [-360, 360], "orientation",129 "c axis to beam angle"],130 ["phi", "degrees", 0, [-360, 360], "orientation",131 "rotation about beam"],132 ["psi", "degrees", 0, [-360, 360], "orientation",133 "rotation about c axis"],134 110 ] 135 111 -
sasmodels/models/sc_paracrystal.c
r108e70e rf728001 54 54 55 55 double outer_sum = 0.0; 56 for(int i=0; i< GAUSS_N; i++) {56 for(int i=0; i<150; i++) { 57 57 double inner_sum = 0.0; 58 const double theta = G AUSS_Z[i]*theta_m + theta_b;58 const double theta = Gauss150Z[i]*theta_m + theta_b; 59 59 double sin_theta, cos_theta; 60 60 SINCOS(theta, sin_theta, cos_theta); 61 61 const double qc = q*cos_theta; 62 62 const double qab = q*sin_theta; 63 for(int j=0;j< GAUSS_N;j++) {64 const double phi = G AUSS_Z[j]*phi_m + phi_b;63 for(int j=0;j<150;j++) { 64 const double phi = Gauss150Z[j]*phi_m + phi_b; 65 65 double sin_phi, cos_phi; 66 66 SINCOS(phi, sin_phi, cos_phi); … … 68 68 const double qb = qab*sin_phi; 69 69 const double form = sc_Zq(qa, qb, qc, dnn, d_factor); 70 inner_sum += G AUSS_W[j] * form;70 inner_sum += Gauss150Wt[j] * form; 71 71 } 72 72 inner_sum *= phi_m; // sum(f(x)dx) = sum(f(x)) dx 73 outer_sum += G AUSS_W[i] * inner_sum * sin_theta;73 outer_sum += Gauss150Wt[i] * inner_sum * sin_theta; 74 74 } 75 75 outer_sum *= theta_m; … … 82 82 83 83 static double 84 Iq abc(double qa, double qb, double qc,84 Iqxy(double qa, double qb, double qc, 85 85 double dnn, double d_factor, double radius, 86 86 double sld, double solvent_sld) -
sasmodels/models/stacked_disks.c
r108e70e rbecded3 81 81 double halfheight = 0.5*thick_core; 82 82 83 for(int i=0; i< GAUSS_N; i++) {84 double zi = (G AUSS_Z[i] + 1.0)*M_PI_4;83 for(int i=0; i<N_POINTS_76; i++) { 84 double zi = (Gauss76Z[i] + 1.0)*M_PI_4; 85 85 double sin_alpha, cos_alpha; // slots to hold sincos function output 86 86 SINCOS(zi, sin_alpha, cos_alpha); … … 95 95 solvent_sld, 96 96 d); 97 summ += G AUSS_W[i] * yyy * sin_alpha;97 summ += Gauss76Wt[i] * yyy * sin_alpha; 98 98 } 99 99 … … 142 142 143 143 static double 144 Iq ac(double qab, double qc,144 Iqxy(double qab, double qc, 145 145 double thick_core, 146 146 double thick_layer, -
sasmodels/models/triaxial_ellipsoid.c
r108e70e rbecded3 21 21 const double zb = M_PI_4; 22 22 double outer = 0.0; 23 for (int i=0;i< GAUSS_N;i++) {24 //const double u = G AUSS_Z[i]*(upper-lower)/2 + (upper + lower)/2;25 const double phi = G AUSS_Z[i]*zm + zb;23 for (int i=0;i<76;i++) { 24 //const double u = Gauss76Z[i]*(upper-lower)/2 + (upper + lower)/2; 25 const double phi = Gauss76Z[i]*zm + zb; 26 26 const double pa_sinsq_phi = pa*square(sin(phi)); 27 27 … … 29 29 const double um = 0.5; 30 30 const double ub = 0.5; 31 for (int j=0;j< GAUSS_N;j++) {31 for (int j=0;j<76;j++) { 32 32 // translate a point in [-1,1] to a point in [0, 1] 33 const double usq = square(G AUSS_Z[j]*um + ub);33 const double usq = square(Gauss76Z[j]*um + ub); 34 34 const double r = radius_equat_major*sqrt(pa_sinsq_phi*(1.0-usq) + 1.0 + pc*usq); 35 35 const double fq = sas_3j1x_x(q*r); 36 inner += G AUSS_W[j] * fq * fq;36 inner += Gauss76Wt[j] * fq * fq; 37 37 } 38 outer += G AUSS_W[i] * inner; // correcting for dx later38 outer += Gauss76Wt[i] * inner; // correcting for dx later 39 39 } 40 40 // translate integration ranges from [-1,1] to [lower,upper] and normalize by 4 pi … … 46 46 47 47 static double 48 Iq abc(double qa, double qb, double qc,48 Iqxy(double qa, double qb, double qc, 49 49 double sld, 50 50 double sld_solvent,
Note: See TracChangeset
for help on using the changeset viewer.