source: sasmodels/sasmodels/modelinfo.py @ db03406

Last change on this file since db03406 was db03406, checked in by Paul Kienzle <pkienzle@…>, 6 years ago

first pass at python to C translator for kernels

  • Property mode set to 100644
File size: 44.5 KB
Line 
1"""
2Model Info and Parameter Tables
3===============================
4
5Defines :class:`ModelInfo` and :class:`ParameterTable` and the routines for
6manipulating them.  In particular, :func:`make_model_info` converts a kernel
7module into the model info block as seen by the rest of the sasmodels library.
8"""
9from __future__ import print_function
10
11from copy import copy
12from os.path import abspath, basename, splitext
13import inspect
14import logging
15
16import numpy as np  # type: ignore
17
18from . import autoc
19
20# Optional typing
21# pylint: disable=unused-import
22try:
23    from typing import Tuple, List, Union, Dict, Optional, Any, Callable, Sequence, Set
24    from types import ModuleType
25except ImportError:
26    pass
27else:
28    Limits = Tuple[float, float]
29    #LimitsOrChoice = Union[Limits, Tuple[Sequence[str]]]
30    ParameterDef = Tuple[str, str, float, Limits, str, str]
31    ParameterSetUser = Dict[str, Union[float, List[float]]]
32    ParameterSet = Dict[str, float]
33    TestInput = Union[str, float, List[float], Tuple[float, float], List[Tuple[float, float]]]
34    TestValue = Union[float, List[float]]
35    TestCondition = Tuple[ParameterSetUser, TestInput, TestValue]
36# pylint: enable=unused-import
37
38logger = logging.getLogger(__name__)
39
40# If MAX_PD changes, need to change the loop macros in kernel_iq.c
41MAX_PD = 5 #: Maximum number of simultaneously polydisperse parameters
42
43# assumptions about common parameters exist throughout the code, such as:
44# (1) kernel functions Iq, Iqxy, form_volume, ... don't see them
45# (2) kernel drivers assume scale is par[0] and background is par[1]
46# (3) mixture models drop the background on components and replace the scale
47#     with a scale that varies from [-inf, inf]
48# (4) product models drop the background and reassign scale
49# and maybe other places.
50# Note that scale and background cannot be coordinated parameters whose value
51# depends on the some polydisperse parameter with the current implementation
52COMMON_PARAMETERS = [
53    ("scale", "", 1, (0.0, np.inf), "", "Source intensity"),
54    ("background", "1/cm", 1e-3, (-np.inf, np.inf), "", "Source background"),
55]
56assert (len(COMMON_PARAMETERS) == 2
57        and COMMON_PARAMETERS[0][0] == "scale"
58        and COMMON_PARAMETERS[1][0] == "background"), "don't change common parameters"
59
60
61def make_parameter_table(pars):
62    # type: (List[ParameterDef]) -> ParameterTable
63    """
64    Construct a parameter table from a list of parameter definitions.
65
66    This is used by the module processor to convert the parameter block into
67    the parameter table seen in the :class:`ModelInfo` for the module.
68    """
69    processed = []
70    for p in pars:
71        if not isinstance(p, (list, tuple)) or len(p) != 6:
72            raise ValueError("Parameter should be [name, units, default, limits, type, desc], but got %r"
73                             %str(p))
74        processed.append(parse_parameter(*p))
75    partable = ParameterTable(processed)
76    return partable
77
78def parse_parameter(name, units='', default=np.NaN,
79                    user_limits=None, ptype='', description=''):
80    # type: (str, str, float, Sequence[Any], str, str) -> Parameter
81    """
82    Parse an individual parameter from the parameter definition block.
83
84    This does type and value checking on the definition, leading
85    to early failure in the model loading process and easier debugging.
86    """
87    # Parameter is a user facing class.  Do robust type checking.
88    if not isstr(name):
89        raise ValueError("expected string for parameter name %r"%name)
90    if not isstr(units):
91        raise ValueError("expected units to be a string for %s"%name)
92
93    # Process limits as [float, float] or [[str, str, ...]]
94    choices = []  # type: List[str]
95    if user_limits is None:
96        limits = (-np.inf, np.inf)
97    elif not isinstance(user_limits, (tuple, list)):
98        raise ValueError("invalid limits for %s"%name)
99    else:
100        # if limits is [[str,...]], then this is a choice list field,
101        # and limits are 1 to length of string list
102        if isinstance(user_limits[0], (tuple, list)):
103            choices = user_limits[0]
104            limits = (0., len(choices)-1.)
105            if not all(isstr(k) for k in choices):
106                raise ValueError("choices must be strings for %s"%name)
107        else:
108            try:
109                low, high = user_limits
110                limits = (float(low), float(high))
111            except Exception:
112                raise ValueError("invalid limits for %s: %r"%(name, user_limits))
113            if low >= high:
114                raise ValueError("require lower limit < upper limit")
115
116    # Process default value as float, making sure it is in range
117    if not isinstance(default, (int, float)):
118        raise ValueError("expected default %r to be a number for %s"
119                         % (default, name))
120    if default < limits[0] or default > limits[1]:
121        raise ValueError("default value %r not in range for %s"
122                         % (default, name))
123
124    # Check for valid parameter type
125    if ptype not in ("volume", "orientation", "sld", "magnetic", ""):
126        raise ValueError("unexpected type %r for %s" % (ptype, name))
127
128    # Check for valid parameter description
129    if not isstr(description):
130        raise ValueError("expected description to be a string")
131
132    # Parameter id for name[n] does not include [n]
133    if "[" in name:
134        if not name.endswith(']'):
135            raise ValueError("Expected name[len] for vector parameter %s"%name)
136        pid, ref = name[:-1].split('[', 1)
137        ref = ref.strip()
138    else:
139        pid, ref = name, None
140
141    # automatically identify sld types
142    if ptype == '' and (pid.startswith('sld') or pid.endswith('sld')):
143        ptype = 'sld'
144
145    # Check if using a vector definition, name[k], as the parameter name
146    if ref:
147        if ref == '':
148            raise ValueError("Need to specify vector length for %s"%name)
149        try:
150            length = int(ref)
151            control = None
152        except ValueError:
153            length = None
154            control = ref
155    else:
156        length = 1
157        control = None
158
159    # Build the parameter
160    parameter = Parameter(name=name, units=units, default=default,
161                          limits=limits, ptype=ptype, description=description)
162
163    # TODO: need better control over whether a parameter is polydisperse
164    parameter.polydisperse = ptype in ('orientation', 'volume')
165    parameter.relative_pd = ptype == 'volume'
166    parameter.choices = choices
167    parameter.length = length
168    parameter.length_control = control
169
170    return parameter
171
172
173def expand_pars(partable, pars):
174    # type: (ParameterTable, ParameterSetUser) ->  ParameterSet
175    """
176    Create demo parameter set from key-value pairs.
177
178    *pars* are the key-value pairs to use for the parameters.  Any
179    parameters not specified in *pars* are set from the *partable* defaults.
180
181    If *pars* references vector fields, such as thickness[n], then support
182    different ways of assigning the demo values, including assigning a
183    specific value (e.g., thickness3=50.0), assigning a new value to all
184    (e.g., thickness=50.0) or assigning values using list notation.
185    """
186    if pars is None:
187        result = partable.defaults
188    else:
189        lookup = dict((p.id, p) for p in partable.kernel_parameters)
190        result = partable.defaults.copy()
191        scalars = dict((name, value) for name, value in pars.items()
192                       if name not in lookup or lookup[name].length == 1)
193        vectors = dict((name, value) for name, value in pars.items()
194                       if name in lookup and lookup[name].length > 1)
195        #print("lookup", lookup)
196        #print("scalars", scalars)
197        #print("vectors", vectors)
198        if vectors:
199            for name, value in vectors.items():
200                if np.isscalar(value):
201                    # support for the form
202                    #    dict(thickness=0, thickness2=50)
203                    for k in range(1, lookup[name].length+1):
204                        key = name+str(k)
205                        if key not in scalars:
206                            scalars[key] = value
207                else:
208                    # supoprt for the form
209                    #    dict(thickness=[20,10,3])
210                    for (k, v) in enumerate(value):
211                        scalars[name+str(k+1)] = v
212        result.update(scalars)
213        #print("expanded", result)
214
215    return result
216
217def prefix_parameter(par, prefix):
218    # type: (Parameter, str) -> Parameter
219    """
220    Return a copy of the parameter with its name prefixed.
221    """
222    new_par = copy(par)
223    new_par.name = prefix + par.name
224    new_par.id = prefix + par.id
225
226def suffix_parameter(par, suffix):
227    # type: (Parameter, str) -> Parameter
228    """
229    Return a copy of the parameter with its name prefixed.
230    """
231    new_par = copy(par)
232    # If name has the form x[n], replace with x_suffix[n]
233    new_par.name = par.id + suffix + par.name[len(par.id):]
234    new_par.id = par.id + suffix
235
236class Parameter(object):
237    """
238    The available kernel parameters are defined as a list, with each parameter
239    defined as a sublist with the following elements:
240
241    *name* is the name that will be displayed to the user.  Names
242    should be lower case, with words separated by underscore.  If
243    acronyms are used, the whole acronym should be upper case. For vector
244    parameters, the name will be followed by *[len]* where *len* is an
245    integer length of the vector, or the name of the parameter which
246    controls the length.  The attribute *id* will be created from name
247    without the length.
248
249    *units* should be one of *degrees* for angles, *Ang* for lengths,
250    *1e-6/Ang^2* for SLDs.
251
252    *default value* will be the initial value for  the model when it
253    is selected, or when an initial value is not otherwise specified.
254
255    *limits = [lb, ub]* are the hard limits on the parameter value, used to
256    limit the polydispersity density function.  In the fit, the parameter limits
257    given to the fit are the limits  on the central value of the parameter.
258    If there is polydispersity, it will evaluate parameter values outside
259    the fit limits, but not outside the hard limits specified in the model.
260    If there are no limits, use +/-inf imported from numpy.
261
262    *type* indicates how the parameter will be used.  "volume" parameters
263    will be used in all functions.  "orientation" parameters will be used
264    in *Iqxy* and *Imagnetic*.  "magnetic* parameters will be used in
265    *Imagnetic* only.  If *type* is the empty string, the parameter will
266    be used in all of *Iq*, *Iqxy* and *Imagnetic*.  "sld" parameters
267    can automatically be promoted to magnetic parameters, each of which
268    will have a magnitude and a direction, which may be different from
269    other sld parameters. The volume parameters are used for calls
270    to form_volume within the kernel (required for volume normalization)
271    and for calls to ER and VR for effective radius and volume ratio
272    respectively.
273
274    *description* is a short description of the parameter.  This will
275    be displayed in the parameter table and used as a tool tip for the
276    parameter value in the user interface.
277
278    Additional values can be set after the parameter is created:
279
280    * *length* is the length of the field if it is a vector field
281
282    * *length_control* is the parameter which sets the vector length
283
284    * *is_control* is True if the parameter is a control parameter for a vector
285
286    * *polydisperse* is true if the parameter accepts a polydispersity
287
288    * *relative_pd* is true if that polydispersity is a portion of the
289      value (so a 10% length dipsersity would use a polydispersity value
290      of 0.1) rather than absolute dispersisity (such as an angle plus or
291      minus 15 degrees).
292
293    *choices* is the option names for a drop down list of options, as for
294    example, might be used to set the value of a shape parameter.
295
296    These values are set by :func:`make_parameter_table` and
297    :func:`parse_parameter` therein.
298    """
299    def __init__(self, name, units='', default=None, limits=(-np.inf, np.inf),
300                 ptype='', description=''):
301        # type: (str, str, float, Limits, str, str) -> None
302        self.id = name.split('[')[0].strip() # type: str
303        self.name = name                     # type: str
304        self.units = units                   # type: str
305        self.default = default               # type: float
306        self.limits = limits                 # type: Limits
307        self.type = ptype                    # type: str
308        self.description = description       # type: str
309
310        # Length and length_control will be filled in once the complete
311        # parameter table is available.
312        self.length = 1                      # type: int
313        self.length_control = None           # type: Optional[str]
314        self.is_control = False              # type: bool
315
316        # TODO: need better control over whether a parameter is polydisperse
317        self.polydisperse = False            # type: bool
318        self.relative_pd = False             # type: bool
319
320        # choices are also set externally.
321        self.choices = []                    # type: List[str]
322
323    def as_definition(self):
324        # type: () -> str
325        """
326        Declare space for the variable in a parameter structure.
327
328        For example, the parameter thickness with length 3 will
329        return "double thickness[3];", with no spaces before and
330        no new line character afterward.
331        """
332        if self.length == 1:
333            return "double %s;"%self.id
334        else:
335            return "double %s[%d];"%(self.id, self.length)
336
337    def as_function_argument(self):
338        # type: () -> str
339        r"""
340        Declare the variable as a function argument.
341
342        For example, the parameter thickness with length 3 will
343        return "double \*thickness", with no spaces before and
344        no comma afterward.
345        """
346        if self.length == 1:
347            return "double %s"%self.id
348        else:
349            return "double *%s"%self.id
350
351    def as_call_reference(self, prefix=""):
352        # type: (str) -> str
353        """
354        Return *prefix* + parameter name.  For struct references, use "v."
355        as the prefix.
356        """
357        # Note: if the parameter is a struct type, then we will need to use
358        # &prefix+id.  For scalars and vectors we can just use prefix+id.
359        return prefix + self.id
360
361    def __str__(self):
362        # type: () -> str
363        return "<%s>"%self.name
364
365    def __repr__(self):
366        # type: () -> str
367        return "P<%s>"%self.name
368
369
370class ParameterTable(object):
371    """
372    ParameterTable manages the list of available parameters.
373
374    There are a couple of complications which mean that the list of parameters
375    for the kernel differs from the list of parameters that the user sees.
376
377    (1) Common parameters.  Scale and background are implicit to every model,
378    but are not passed to the kernel.
379
380    (2) Vector parameters.  Vector parameters are passed to the kernel as a
381    pointer to an array, e.g., thick[], but they are seen by the user as n
382    separate parameters thick1, thick2, ...
383
384    Therefore, the parameter table is organized by how it is expected to be
385    used. The following information is needed to set up the kernel functions:
386
387    * *kernel_parameters* is the list of parameters in the kernel parameter
388      table, with vector parameter p declared as p[].
389
390    * *iq_parameters* is the list of parameters to the Iq(q, ...) function,
391      with vector parameter p sent as p[].
392
393    * [removed] *iqxy_parameters* is the list of parameters to the Iqxy(qx, qy, ...)
394      function, with vector parameter p sent as p[].
395
396    * *form_volume_parameters* is the list of parameters to the form_volume(...)
397      function, with vector parameter p sent as p[].
398
399    Problem details, which sets up the polydispersity loops, requires the
400    following:
401
402    * *theta_offset* is the offset of the theta parameter in the kernel parameter
403      table, with vector parameters counted as n individual parameters
404      p1, p2, ..., or offset is -1 if there is no theta parameter.
405
406    * *max_pd* is the maximum number of polydisperse parameters, with vector
407      parameters counted as n individual parameters p1, p2, ...  Note that
408      this number is limited to sasmodels.modelinfo.MAX_PD.
409
410    * *npars* is the total number of parameters to the kernel, with vector
411      parameters counted as n individual parameters p1, p2, ...
412
413    * *call_parameters* is the complete list of parameters to the kernel,
414      including scale and background, with vector parameters recorded as
415      individual parameters p1, p2, ...
416
417    * *active_1d* is the set of names that may be polydisperse for 1d data
418
419    * *active_2d* is the set of names that may be polydisperse for 2d data
420
421    User parameters are the set of parameters visible to the user, including
422    the scale and background parameters that the kernel does not see.  User
423    parameters don't use vector notation, and instead use p1, p2, ...
424    """
425    # scale and background are implicit parameters
426    COMMON = [Parameter(*p) for p in COMMON_PARAMETERS]
427
428    def __init__(self, parameters):
429        # type: (List[Parameter]) -> None
430        self.kernel_parameters = parameters
431        self._check_angles()
432        self._set_vector_lengths()
433
434        self.npars = sum(p.length for p in self.kernel_parameters)
435        self.nmagnetic = sum(p.length for p in self.kernel_parameters
436                             if p.type == 'sld')
437        self.nvalues = 2 + self.npars
438        if self.nmagnetic:
439            self.nvalues += 3 + 3*self.nmagnetic
440
441        self.call_parameters = self._get_call_parameters()
442        self.defaults = self._get_defaults()
443        #self._name_table= dict((p.id, p) for p in parameters)
444
445        # Set the kernel parameters.  Assumes background and scale are the
446        # first two parameters in the parameter list, but these are not sent
447        # to the underlying kernel functions.
448        self.iq_parameters = [p for p in self.kernel_parameters
449                              if p.type not in ('orientation', 'magnetic')]
450        # note: orientation no longer sent to Iqxy, so its the same as
451        #self.iqxy_parameters = [p for p in self.kernel_parameters
452        #                        if p.type != 'magnetic']
453        self.form_volume_parameters = [p for p in self.kernel_parameters
454                                       if p.type == 'volume']
455
456        # Theta offset
457        offset = 0
458        for p in self.kernel_parameters:
459            if p.name == 'theta':
460                self.theta_offset = offset
461                break
462            offset += p.length
463        else:
464            self.theta_offset = -1
465
466        # number of polydisperse parameters
467        num_pd = sum(p.length for p in self.kernel_parameters if p.polydisperse)
468        # Don't use more polydisperse parameters than are available in the model
469        self.max_pd = min(num_pd, MAX_PD)
470
471        # true if has 2D parameters
472        self.has_2d = any(p.type in ('orientation', 'magnetic')
473                          for p in self.kernel_parameters)
474        self.is_asymmetric = any(p.name == 'psi' for p in self.kernel_parameters)
475        self.magnetism_index = [k for k, p in enumerate(self.call_parameters)
476                                if p.id.startswith('M0:')]
477
478        self.pd_1d = set(p.name for p in self.call_parameters
479                         if p.polydisperse and p.type not in ('orientation', 'magnetic'))
480        self.pd_2d = set(p.name for p in self.call_parameters if p.polydisperse)
481
482    def _check_angles(self):
483        theta = phi = psi = -1
484        for k, p in enumerate(self.kernel_parameters):
485            if p.name == 'theta':
486                theta = k
487                if p.type != 'orientation':
488                    raise TypeError("theta must be an orientation parameter")
489            elif p.name == 'phi':
490                phi = k
491                if p.type != 'orientation':
492                    raise TypeError("phi must be an orientation parameter")
493            elif p.name == 'psi':
494                psi = k
495                if p.type != 'orientation':
496                    raise TypeError("psi must be an orientation parameter")
497        if theta >= 0 and phi >= 0:
498            if phi != theta+1:
499                raise TypeError("phi must follow theta")
500            if psi >= 0 and psi != phi+1:
501                raise TypeError("psi must follow phi")
502        elif theta >= 0 or phi >= 0 or psi >= 0:
503            raise TypeError("oriented shapes must have both theta and phi and maybe psi")
504
505    def __getitem__(self, key):
506        # Find the parameter definition
507        for par in self.call_parameters:
508            if par.name == key:
509                return par
510        raise KeyError("unknown parameter %r"%key)
511
512    def __contains__(self, key):
513        for par in self.call_parameters:
514            if par.name == key:
515                return True
516        return False
517
518    def _set_vector_lengths(self):
519        # type: () -> List[str]
520        """
521        Walk the list of kernel parameters, setting the length field of the
522        vector parameters from the upper limit of the reference parameter.
523
524        This needs to be done once the entire parameter table is available
525        since the reference may still be undefined when the parameter is
526        initially created.
527
528        Returns the list of control parameter names.
529
530        Note: This modifies the underlying parameter object.
531        """
532        # Sort out the length of the vector parameters such as thickness[n]
533        for p in self.kernel_parameters:
534            if p.length_control:
535                ref = self._get_ref(p)
536                ref.is_control = True
537                ref.polydisperse = False
538                low, high = ref.limits
539                if int(low) != low or int(high) != high or low < 0 or high > 20:
540                    raise ValueError("expected limits on %s to be within [0, 20]"
541                                     % ref.name)
542                p.length = int(high)
543
544    def _get_ref(self, p):
545        # type: (Parameter) -> Parameter
546        for ref in self.kernel_parameters:
547            if ref.id == p.length_control:
548                return ref
549        raise ValueError("no reference variable %r for %s"
550                         % (p.length_control, p.name))
551
552    def _get_defaults(self):
553        # type: () -> ParameterSet
554        """
555        Get a list of parameter defaults from the parameters.
556
557        Expands vector parameters into parameter id+number.
558        """
559        # Construct default values, including vector defaults
560        defaults = {}
561        for p in self.call_parameters:
562            if p.length == 1:
563                defaults[p.id] = p.default
564            else:
565                for k in range(1, p.length+1):
566                    defaults["%s%d"%(p.id, k)] = p.default
567        return defaults
568
569    def _get_call_parameters(self):
570        # type: () -> List[Parameter]
571        full_list = self.COMMON[:]
572        for p in self.kernel_parameters:
573            if p.length == 1:
574                full_list.append(p)
575            else:
576                for k in range(1, p.length+1):
577                    pk = Parameter(p.id+str(k), p.units, p.default,
578                                   p.limits, p.type, p.description)
579                    pk.polydisperse = p.polydisperse
580                    pk.relative_pd = p.relative_pd
581                    pk.choices = p.choices
582                    full_list.append(pk)
583
584        # Add the magnetic parameters to the end of the call parameter list.
585        if self.nmagnetic > 0:
586            full_list.extend([
587                Parameter('up:frac_i', '', 0., [0., 1.],
588                          'magnetic', 'fraction of spin up incident'),
589                Parameter('up:frac_f', '', 0., [0., 1.],
590                          'magnetic', 'fraction of spin up final'),
591                Parameter('up:angle', 'degress', 0., [0., 360.],
592                          'magnetic', 'spin up angle'),
593            ])
594            slds = [p for p in full_list if p.type == 'sld']
595            for p in slds:
596                full_list.extend([
597                    Parameter('M0:'+p.id, '1e-6/Ang^2', 0., [-np.inf, np.inf],
598                              'magnetic', 'magnetic amplitude for '+p.description),
599                    Parameter('mtheta:'+p.id, 'degrees', 0., [-90., 90.],
600                              'magnetic', 'magnetic latitude for '+p.description),
601                    Parameter('mphi:'+p.id, 'degrees', 0., [-180., 180.],
602                              'magnetic', 'magnetic longitude for '+p.description),
603                ])
604        #print("call parameters", full_list)
605        return full_list
606
607    def user_parameters(self, pars, is2d=True):
608        # type: (Dict[str, float], bool) -> List[Parameter]
609        """
610        Return the list of parameters for the given data type.
611
612        Vector parameters are expanded in place.  If multiple parameters
613        share the same vector length, then the parameters will be interleaved
614        in the result.  The control parameters come first.  For example,
615        if the parameter table is ordered as::
616
617            sld_core
618            sld_shell[num_shells]
619            sld_solvent
620            thickness[num_shells]
621            num_shells
622
623        and *pars[num_shells]=2* then the returned list will be::
624
625            num_shells
626            scale
627            background
628            sld_core
629            sld_shell1
630            thickness1
631            sld_shell2
632            thickness2
633            sld_solvent
634
635        Note that shell/thickness pairs are grouped together in the result
636        even though they were not grouped in the incoming table.  The control
637        parameter is always returned first since the GUI will want to set it
638        early, and rerender the table when it is changed.
639
640        Parameters marked as sld will automatically have a set of associated
641        magnetic parameters (m0:p, mtheta:p, mphi:p), as well as polarization
642        information (up:theta, up:frac_i, up:frac_f).
643        """
644        # control parameters go first
645        control = [p for p in self.kernel_parameters if p.is_control]
646
647        # Gather entries such as name[n] into groups of the same n
648        dependent = {} # type: Dict[str, List[Parameter]]
649        dependent.update((p.id, []) for p in control)
650        for p in self.kernel_parameters:
651            if p.length_control is not None:
652                dependent[p.length_control].append(p)
653
654        # Gather entries such as name[4] into groups of the same length
655        fixed_length = {}  # type: Dict[int, List[Parameter]]
656        for p in self.kernel_parameters:
657            if p.length > 1 and p.length_control is None:
658                fixed_length.setdefault(p.length, []).append(p)
659
660        # Using the call_parameters table, we already have expanded forms
661        # for each of the vector parameters; put them in a lookup table
662        # Note: p.id and p.name are currently identical for the call parameters
663        expanded_pars = dict((p.id, p) for p in self.call_parameters)
664
665        def append_group(name):
666            """add the named parameter, and related magnetic parameters if any"""
667            result.append(expanded_pars[name])
668            if is2d:
669                for tag in 'M0:', 'mtheta:', 'mphi:':
670                    if tag+name in expanded_pars:
671                        result.append(expanded_pars[tag+name])
672
673        # Gather the user parameters in order
674        result = control + self.COMMON
675        for p in self.kernel_parameters:
676            if not is2d and p.type in ('orientation', 'magnetic'):
677                pass
678            elif p.is_control:
679                pass # already added
680            elif p.length_control is not None:
681                table = dependent.get(p.length_control, [])
682                if table:
683                    # look up length from incoming parameters
684                    table_length = int(pars.get(p.length_control, p.length))
685                    del dependent[p.length_control] # first entry seen
686                    for k in range(1, table_length+1):
687                        for entry in table:
688                            append_group(entry.id+str(k))
689                else:
690                    pass # already processed all entries
691            elif p.length > 1:
692                table = fixed_length.get(p.length, [])
693                if table:
694                    table_length = p.length
695                    del fixed_length[p.length]
696                    for k in range(1, table_length+1):
697                        for entry in table:
698                            append_group(entry.id+str(k))
699                else:
700                    pass # already processed all entries
701            else:
702                append_group(p.id)
703
704        if is2d and 'up:angle' in expanded_pars:
705            result.extend([
706                expanded_pars['up:frac_i'],
707                expanded_pars['up:frac_f'],
708                expanded_pars['up:angle'],
709            ])
710
711        return result
712
713def isstr(x):
714    # type: (Any) -> bool
715    """
716    Return True if the object is a string.
717    """
718    # TODO: 2-3 compatible tests for str, including unicode strings
719    return isinstance(x, str)
720
721
722def _find_source_lines(model_info, kernel_module):
723    # type: (ModelInfo, ModuleType) -> None
724    """
725    Identify the location of the C source inside the model definition file.
726
727    This code runs through the source of the kernel module looking for
728    lines that start with 'Iq', 'Iqxy' or 'form_volume'.  Clearly there are
729    all sorts of reasons why this might not work (e.g., code commented out
730    in a triple-quoted line block, code built using string concatenation,
731    or code defined in the branch of an 'if' block), but it should work
732    properly in the 95% case, and getting the incorrect line number will
733    be harmless.
734    """
735    # Check if we need line numbers at all
736    if callable(model_info.Iq):
737        return None
738
739    if (model_info.Iq is None
740            and model_info.Iqxy is None
741            and model_info.Imagnetic is None
742            and model_info.form_volume is None):
743        return
744
745    # find the defintion lines for the different code blocks
746    try:
747        source = inspect.getsource(kernel_module)
748    except IOError:
749        return
750    for k, v in enumerate(source.split('\n')):
751        if v.startswith('Imagnetic'):
752            model_info._Imagnetic_line = k+1
753        elif v.startswith('Iqxy'):
754            model_info._Iqxy_line = k+1
755        elif v.startswith('Iq'):
756            model_info._Iq_line = k+1
757        elif v.startswith('form_volume'):
758            model_info._form_volume_line = k+1
759
760
761def make_model_info(kernel_module):
762    # type: (module) -> ModelInfo
763    """
764    Extract the model definition from the loaded kernel module.
765
766    Fill in default values for parts of the module that are not provided.
767
768    Note: vectorized Iq and Iqxy functions will be created for python
769    models when the model is first called, not when the model is loaded.
770    """
771    if hasattr(kernel_module, "model_info"):
772        # Custom sum/multi models
773        return kernel_module.model_info
774    info = ModelInfo()
775    #print("make parameter table", kernel_module.parameters)
776    parameters = make_parameter_table(getattr(kernel_module, 'parameters', []))
777    demo = expand_pars(parameters, getattr(kernel_module, 'demo', None))
778    filename = abspath(kernel_module.__file__).replace('.pyc', '.py')
779    kernel_id = splitext(basename(filename))[0]
780    name = getattr(kernel_module, 'name', None)
781    if name is None:
782        name = " ".join(w.capitalize() for w in kernel_id.split('_'))
783
784    info.id = kernel_id  # string used to load the kernel
785    info.filename = filename
786    info.name = name
787    info.title = getattr(kernel_module, 'title', name+" model")
788    info.description = getattr(kernel_module, 'description', 'no description')
789    info.parameters = parameters
790    info.demo = demo
791    info.composition = None
792    info.docs = kernel_module.__doc__
793    info.category = getattr(kernel_module, 'category', None)
794    info.structure_factor = getattr(kernel_module, 'structure_factor', False)
795    info.profile_axes = getattr(kernel_module, 'profile_axes', ['x', 'y'])
796    info.c_code = getattr(kernel_module, 'c_code', None)
797    info.source = getattr(kernel_module, 'source', [])
798    # TODO: check the structure of the tests
799    info.tests = getattr(kernel_module, 'tests', [])
800    info.ER = getattr(kernel_module, 'ER', None) # type: ignore
801    info.VR = getattr(kernel_module, 'VR', None) # type: ignore
802    info.form_volume = getattr(kernel_module, 'form_volume', None) # type: ignore
803    info.Iq = getattr(kernel_module, 'Iq', None) # type: ignore
804    info.Iqxy = getattr(kernel_module, 'Iqxy', None) # type: ignore
805    info.Imagnetic = getattr(kernel_module, 'Imagnetic', None) # type: ignore
806    info.profile = getattr(kernel_module, 'profile', None) # type: ignore
807    info.sesans = getattr(kernel_module, 'sesans', None) # type: ignore
808    # Default single and opencl to True for C models.  Python models have callable Iq.
809    info.opencl = getattr(kernel_module, 'opencl', not callable(info.Iq))
810    info.single = getattr(kernel_module, 'single', not callable(info.Iq))
811    info.random = getattr(kernel_module, 'random', None)
812
813    # multiplicity info
814    control_pars = [p.id for p in parameters.kernel_parameters if p.is_control]
815    default_control = control_pars[0] if control_pars else None
816    info.control = getattr(kernel_module, 'control', default_control)
817    info.hidden = getattr(kernel_module, 'hidden', None) # type: ignore
818
819    _find_source_lines(info, kernel_module)
820    try:
821        autoc.convert(info, kernel_module)
822    except Exception as exc:
823        raise
824        logger.warn(str(exc))
825
826    return info
827
828class ModelInfo(object):
829    """
830    Interpret the model definition file, categorizing the parameters.
831
832    The module can be loaded with a normal python import statement if you
833    know which module you need, or with __import__('sasmodels.model.'+name)
834    if the name is in a string.
835
836    The structure should be mostly static, other than the delayed definition
837    of *Iq* and *Iqxy* if they need to be defined.
838    """
839    #: Full path to the file defining the kernel, if any.
840    filename = None         # type: Optional[str]
841    #: Id of the kernel used to load it from the filesystem.
842    id = None               # type: str
843    #: Display name of the model, which defaults to the model id but with
844    #: capitalization of the parts so for example core_shell defaults to
845    #: "Core Shell".
846    name = None             # type: str
847    #: Short description of the model.
848    title = None            # type: str
849    #: Long description of the model.
850    description = None      # type: str
851    #: Model parameter table. Parameters are defined using a list of parameter
852    #: definitions, each of which is contains parameter name, units,
853    #: default value, limits, type and description.  See :class:`Parameter`
854    #: for details on the individual parameters.  The parameters are gathered
855    #: into a :class:`ParameterTable`, which provides various views into the
856    #: parameter list.
857    parameters = None       # type: ParameterTable
858    #: Demo parameters as a *parameter:value* map used as the default values
859    #: for :mod:`compare`.  Any parameters not set in *demo* will use the
860    #: defaults from the parameter table.  That means no polydispersity, and
861    #: in the case of multiplicity models, a minimal model with no interesting
862    #: scattering.
863    demo = None             # type: Dict[str, float]
864    #: Composition is None if this is an independent model, or it is a
865    #: tuple with comoposition type ('product' or 'misture') and a list of
866    #: :class:`ModelInfo` blocks for the composed objects.  This allows us
867    #: to rebuild a complete mixture or product model from the info block.
868    #: *composition* is not given in the model definition file, but instead
869    #: arises when the model is constructed using names such as
870    #: *sphere*hardsphere* or *cylinder+sphere*.
871    composition = None      # type: Optional[Tuple[str, List[ModelInfo]]]
872    #: Name of the control parameter for a variant model such as :ref:`rpa`.
873    #: The *control* parameter should appear in the parameter table, with
874    #: limits defined as *[CASES]*, for case names such as
875    #: *CASES = ["diblock copolymer", "triblock copolymer", ...]*.
876    #: This should give *limits=[[case1, case2, ...]]*, but the
877    #: model loader translates this to *limits=[0, len(CASES)-1]*, and adds
878    #: *choices=CASES* to the :class:`Parameter` definition. Note that
879    #: models can use a list of cases as a parameter without it being a
880    #: control parameter.  Either way, the parameter is sent to the model
881    #: evaluator as *float(choice_num)*, where choices are numbered from 0.
882    #: See also :attr:`hidden`.
883    control = None          # type: str
884    #: Different variants require different parameters.  In order to show
885    #: just the parameters needed for the variant selected by :attr:`control`,
886    #: you should provide a function *hidden(control) -> set(['a', 'b', ...])*
887    #: indicating which parameters need to be hidden.  For multiplicity
888    #: models, you need to use the complete name of the parameter, including
889    #: its number.  So for example, if variant "a" uses only *sld1* and *sld2*,
890    #: then *sld3*, *sld4* and *sld5* of multiplicity parameter *sld[5]*
891    #: should be in the hidden set.
892    hidden = None           # type: Optional[Callable[[int], Set[str]]]
893    #: Doc string from the top of the model file.  This should be formatted
894    #: using ReStructuredText format, with latex markup in ".. math"
895    #: environments, or in dollar signs.  This will be automatically
896    #: extracted to a .rst file by :func:`generate.make_docs`, then
897    #: converted to HTML or PDF by Sphinx.
898    docs = None             # type: str
899    #: Location of the model description in the documentation.  This takes the
900    #: form of "section" or "section:subsection".  So for example,
901    #: :ref:`porod` uses *category="shape-independent"* so it is in the
902    #: :ref:`shape-independent` section whereas
903    #: :ref:`capped-cylinder` uses: *category="shape:cylinder"*, which puts
904    #: it in the :ref:`shape-cylinder` section.
905    category = None         # type: Optional[str]
906    #: True if the model can be computed accurately with single precision.
907    #: This is True by default, but models such as :ref:`bcc-paracrystal` set
908    #: it to False because they require double precision calculations.
909    single = None           # type: bool
910    #: True if the model can be run as an opencl model.  If for some reason
911    #: the model cannot be run in opencl (e.g., because the model passes
912    #: functions by reference), then set this to false.
913    opencl = None           # type: bool
914    #: True if the model is a structure factor used to model the interaction
915    #: between form factor models.  This will default to False if it is not
916    #: provided in the file.
917    structure_factor = None # type: bool
918    #: List of C source files used to define the model.  The source files
919    #: should define the *Iq* function, and possibly *Iqxy*, though a default
920    #: *Iqxy = Iq(sqrt(qx**2+qy**2)* will be created if no *Iqxy* is provided.
921    #: Files containing the most basic functions must appear first in the list,
922    #: followed by the files that use those functions.  Form factors are
923    #: indicated by providing a :attr:`ER` function.
924    source = None           # type: List[str]
925    #: The set of tests that must pass.  The format of the tests is described
926    #: in :mod:`model_test`.
927    tests = None            # type: List[TestCondition]
928    #: Returns the effective radius of the model given its volume parameters.
929    #: The presence of *ER* indicates that the model is a form factor model
930    #: that may be used together with a structure factor to form an implicit
931    #: multiplication model.
932    #:
933    #: The parameters to the *ER* function must be marked with type *volume*.
934    #: in the parameter table.  They will appear in the same order as they
935    #: do in the table.  The values passed to *ER* will be vectors, with one
936    #: value for each polydispersity condition.  For example, if the model
937    #: is polydisperse over both length and radius, then both length and
938    #: radius will have the same number of values in the vector, with one
939    #: value for each *length X radius*.  If only *radius* is polydisperse,
940    #: then the value for *length* will be repeated once for each value of
941    #: *radius*.  The *ER* function should return one effective radius for
942    #: each parameter set.  Multiplicity parameters will be received as
943    #: arrays, with one row per polydispersity condition.
944    ER = None               # type: Optional[Callable[[np.ndarray], np.ndarray]]
945    #: Returns the occupied volume and the total volume for each parameter set.
946    #: See :attr:`ER` for details on the parameters.
947    VR = None               # type: Optional[Callable[[np.ndarray], Tuple[np.ndarray, np.ndarray]]]
948    #: Arbitrary C code containing supporting functions, etc., to be inserted
949    #: after everything in source.  This can include Iq and Iqxy functions with
950    #: the full function signature, including all parameters.
951    c_code = None
952    #: Returns the form volume for python-based models.  Form volume is needed
953    #: for volume normalization in the polydispersity integral.  If no
954    #: parameters are *volume* parameters, then form volume is not needed.
955    #: For C-based models, (with :attr:`sources` defined, or with :attr:`Iq`
956    #: defined using a string containing C code), form_volume must also be
957    #: C code, either defined as a string, or in the sources.
958    form_volume = None      # type: Union[None, str, Callable[[np.ndarray], float]]
959    #: Returns *I(q, a, b, ...)* for parameters *a*, *b*, etc. defined
960    #: by the parameter table.  *Iq* can be defined as a python function, or
961    #: as a C function.  If it is defined in C, then set *Iq* to the body of
962    #: the C function, including the return statement.  This function takes
963    #: values for *q* and each of the parameters as separate *double* values
964    #: (which may be converted to float or long double by sasmodels).  All
965    #: source code files listed in :attr:`sources` will be loaded before the
966    #: *Iq* function is defined.  If *Iq* is not present, then sources should
967    #: define *static double Iq(double q, double a, double b, ...)* which
968    #: will return *I(q, a, b, ...)*.  Multiplicity parameters are sent as
969    #: pointers to doubles.  Constants in floating point expressions should
970    #: include the decimal point. See :mod:`generate` for more details.
971    Iq = None               # type: Union[None, str, Callable[[np.ndarray], np.ndarray]]
972    #: Returns *I(qx, qy, a, b, ...)*.  The interface follows :attr:`Iq`.
973    Iqxy = None             # type: Union[None, str, Callable[[np.ndarray], np.ndarray]]
974    #: Returns *I(qx, qy, a, b, ...)*.  The interface follows :attr:`Iq`.
975    Imagnetic = None        # type: Union[None, str, Callable[[np.ndarray], np.ndarray]]
976    #: Returns a model profile curve *x, y*.  If *profile* is defined, this
977    #: curve will appear in response to the *Show* button in SasView.  Use
978    #: :attr:`profile_axes` to set the axis labels.  Note that *y* values
979    #: will be scaled by 1e6 before plotting.
980    profile = None          # type: Optional[Callable[[np.ndarray], None]]
981    #: Axis labels for the :attr:`profile` plot.  The default is *['x', 'y']*.
982    #: Only the *x* component is used for now.
983    profile_axes = None     # type: Tuple[str, str]
984    #: Returns *sesans(z, a, b, ...)* for models which can directly compute
985    #: the SESANS correlation function.  Note: not currently implemented.
986    sesans = None           # type: Optional[Callable[[np.ndarray], np.ndarray]]
987    #: Returns a random parameter set for the model
988    random = None           # type: Optional[Callable[[], Dict[str, float]]]
989
990    # line numbers within the python file for bits of C source, if defined
991    # NB: some compilers fail with a "#line 0" directive, so default to 1.
992    _Imagnetic_line = 1
993    _Iqxy_line = 1
994    _Iq_line = 1
995    _form_volume_line = 1
996
997
998    def __init__(self):
999        # type: () -> None
1000        pass
1001
1002    def get_hidden_parameters(self, control):
1003        """
1004        Returns the set of hidden parameters for the model.  *control* is the
1005        value of the control parameter.  Note that multiplicity models have
1006        an implicit control parameter, which is the parameter that controls
1007        the multiplicity.
1008        """
1009        if self.hidden is not None:
1010            hidden = self.hidden(control)
1011        else:
1012            controls = [p for p in self.parameters.kernel_parameters
1013                        if p.is_control]
1014            if len(controls) != 1:
1015                raise ValueError("more than one control parameter")
1016            hidden = set(p.id+str(k)
1017                         for p in self.parameters.kernel_parameters
1018                         for k in range(control+1, p.length+1)
1019                         if p.length > 1)
1020        return hidden
Note: See TracBrowser for help on using the repository browser.