Changes in / [587ce8c:46f798f] in sasview
- Files:
-
- 1 added
- 1 deleted
- 9 edited
Legend:
- Unmodified
- Added
- Removed
-
src/sas/sascalc/data_util/qsmearing.py
rd3911e3 r2ffe241 13 13 import logging 14 14 import sys 15 15 import numpy as np # type: ignore 16 from numpy import pi, exp # type:ignore 16 17 from sasmodels.resolution import Slit1D, Pinhole1D 18 from sasmodels.sesans import SesansTransform 17 19 from sasmodels.resolution2d import Pinhole2D 20 from src.sas.sascalc.data_util.nxsunit import Converter 18 21 19 22 def smear_selection(data, model = None): … … 36 39 # Sanity check. If we are not dealing with a SAS Data1D 37 40 # object, just return None 41 # This checks for 2D data (does not throw exception because fail is common) 38 42 if data.__class__.__name__ not in ['Data1D', 'Theory1D']: 39 43 if data == None: … … 41 45 elif data.dqx_data == None or data.dqy_data == None: 42 46 return None 43 return PySmear2D(data , model)44 47 return PySmear2D(data) 48 # This checks for 1D data with smearing info in the data itself (again, fail is likely; no exceptions) 45 49 if not hasattr(data, "dx") and not hasattr(data, "dxl")\ 46 50 and not hasattr(data, "dxw"): … … 48 52 49 53 # Look for resolution smearing data 54 # This is the code that checks for SESANS data; it looks for the file loader 55 # TODO: change other sanity checks to check for file loader instead of data structure? 56 _found_sesans = False 57 #if data.dx is not None and data.meta_data['loader']=='SESANS': 58 if data.dx is not None and data.isSesans: 59 #if data.dx[0] > 0.0: 60 if numpy.size(data.dx[data.dx <= 0]) == 0: 61 _found_sesans = True 62 # if data.dx[0] <= 0.0: 63 if numpy.size(data.dx[data.dx <= 0]) > 0: 64 raise ValueError('one or more of your dx values are negative, please check the data file!') 65 66 if _found_sesans == True: 67 #Pre-compute the Hankel matrix (H) 68 qmax, qunits = data.sample.zacceptance 69 SElength = Converter(data._xunit)(data.x, "A") 70 zaccept = Converter(qunits)(qmax, "1/A"), 71 Rmax = 10000000 72 hankel = SesansTransform(data.x, SElength, zaccept, Rmax) 73 # Then return the actual transform, as if it were a smearing function 74 return PySmear(hankel, model, offset=0) 75 50 76 _found_resolution = False 51 77 if data.dx is not None and len(data.dx) == len(data.x): … … 89 115 Wrapper for pure python sasmodels resolution functions. 90 116 """ 91 def __init__(self, resolution, model ):117 def __init__(self, resolution, model, offset=None): 92 118 self.model = model 93 119 self.resolution = resolution 94 self.offset = numpy.searchsorted(self.resolution.q_calc, self.resolution.q[0]) 120 if offset is None: 121 offset = numpy.searchsorted(self.resolution.q_calc, self.resolution.q[0]) 122 self.offset = offset 95 123 96 124 def apply(self, iq_in, first_bin=0, last_bin=None): -
src/sas/sascalc/dataloader/data_info.py
r345e7e4 r2ffe241 25 25 import numpy 26 26 import math 27 28 class plottable_sesans1D(object):29 """30 SESANS is a place holder for 1D SESANS plottables.31 32 #TODO: This was directly copied from the plottables_1D. Modified Somewhat.33 #Class has been updated.34 """35 # The presence of these should be mutually36 # exclusive with the presence of Qdev (dx)37 x = None38 y = None39 lam = None40 dx = None41 dy = None42 dlam = None43 ## Slit smearing length44 dxl = None45 ## Slit smearing width46 dxw = None47 48 # Units49 _xaxis = ''50 _xunit = ''51 _yaxis = ''52 _yunit = ''53 54 def __init__(self, x, y, lam, dx=None, dy=None, dlam=None):55 # print "SESANS plottable working"56 self.x = numpy.asarray(x)57 self.y = numpy.asarray(y)58 self.lam = numpy.asarray(lam)59 if dx is not None:60 self.dx = numpy.asarray(dx)61 if dy is not None:62 self.dy = numpy.asarray(dy)63 if dlam is not None:64 self.dlam = numpy.asarray(dlam)65 66 def xaxis(self, label, unit):67 """68 set the x axis label and unit69 """70 self._xaxis = label71 self._xunit = unit72 73 def yaxis(self, label, unit):74 """75 set the y axis label and unit76 """77 self._yaxis = label78 self._yunit = unit79 80 27 81 28 class plottable_1D(object): … … 93 40 ## Slit smearing width 94 41 dxw = None 42 ## SESANS specific params (wavelengths for spin echo length calculation) 43 lam = None 44 dlam = None 95 45 96 46 # Units … … 100 50 _yunit = '' 101 51 102 def __init__(self, x, y, dx=None, dy=None, dxl=None, dxw=None ):52 def __init__(self, x, y, dx=None, dy=None, dxl=None, dxw=None, lam=None, dlam=None): 103 53 self.x = numpy.asarray(x) 104 54 self.y = numpy.asarray(y) … … 111 61 if dxw is not None: 112 62 self.dxw = numpy.asarray(dxw) 63 if lam is not None: 64 self.lam = numpy.asarray(lam) 65 if dlam is not None: 66 self.dlam = numpy.asarray(dlam) 113 67 114 68 def xaxis(self, label, unit): … … 398 352 ## Details 399 353 details = None 354 ## SESANS zacceptance 355 zacceptance = None 400 356 401 357 def __init__(self): … … 535 491 ## Loading errors 536 492 errors = None 493 ## SESANS data check 494 isSesans = None 495 537 496 538 497 def __init__(self): … … 567 526 ## Loading errors 568 527 self.errors = [] 528 ## SESANS data check 529 self.isSesans = False 569 530 570 531 def append_empty_process(self): … … 586 547 _str += "Title: %s\n" % self.title 587 548 _str += "Run: %s\n" % str(self.run) 549 _str += "SESANS: %s\n" % str(self.isSesans) 588 550 _str += "Instrument: %s\n" % str(self.instrument) 589 551 _str += "%s\n" % str(self.sample) … … 736 698 return self._perform_union(other) 737 699 738 class SESANSData1D(plottable_sesans1D, DataInfo): 739 """ 740 SESANS 1D data class 741 """ 742 x_unit = 'nm' 743 y_unit = 'pol' 744 745 def __init__(self, x=None, y=None, lam=None, dx=None, dy=None, dlam=None): 700 class Data1D(plottable_1D, DataInfo): 701 """ 702 1D data class 703 """ 704 def __init__(self, x=None, y=None, dx=None, dy=None, lam=None, dlam=None, isSesans=None): 746 705 DataInfo.__init__(self) 747 plottable_sesans1D.__init__(self, x, y, lam, dx, dy, dlam) 706 plottable_1D.__init__(self, x, y, dx, dy,None, None, lam, dlam) 707 self.isSesans = isSesans 708 try: 709 if self.isSesans: # the data is SESANS 710 self.x_unit = 'A' 711 self.y_unit = 'pol' 712 elif not self.isSesans: # the data is SANS 713 self.x_unit = '1/A' 714 self.y_unit = '1/cm' 715 except: # the data is not recognized/supported, and the user is notified 716 raise(TypeError, 'data not recognized, check documentation for supported 1D data formats') 748 717 749 718 def __str__(self): … … 759 728 return _str 760 729 761 def clone_without_data(self, length=0, clone=None):762 """763 Clone the current object, without copying the data (which764 will be filled out by a subsequent operation).765 The data arrays will be initialized to zero.766 767 :param length: length of the data array to be initialized768 :param clone: if provided, the data will be copied to clone769 """770 from copy import deepcopy771 if clone is None or not issubclass(clone.__class__, Data1D):772 x = numpy.zeros(length)773 dx = numpy.zeros(length)774 y = numpy.zeros(length)775 dy = numpy.zeros(length)776 clone = Data1D(x, y, dx=dx, dy=dy)777 778 clone.title = self.title779 clone.run = self.run780 clone.filename = self.filename781 clone.instrument = self.instrument782 clone.notes = deepcopy(self.notes)783 clone.process = deepcopy(self.process)784 clone.detector = deepcopy(self.detector)785 clone.sample = deepcopy(self.sample)786 clone.source = deepcopy(self.source)787 clone.collimation = deepcopy(self.collimation)788 clone.trans_spectrum = deepcopy(self.trans_spectrum)789 clone.meta_data = deepcopy(self.meta_data)790 clone.errors = deepcopy(self.errors)791 792 return clone793 794 class Data1D(plottable_1D, DataInfo):795 """796 1D data class797 """798 x_unit = '1/A'799 y_unit = '1/cm'800 801 def __init__(self, x, y, dx=None, dy=None):802 DataInfo.__init__(self)803 plottable_1D.__init__(self, x, y, dx, dy)804 805 def __str__(self):806 """807 Nice printout808 """809 _str = "%s\n" % DataInfo.__str__(self)810 _str += "Data:\n"811 _str += " Type: %s\n" % self.__class__.__name__812 _str += " X-axis: %s\t[%s]\n" % (self._xaxis, self._xunit)813 _str += " Y-axis: %s\t[%s]\n" % (self._yaxis, self._yunit)814 _str += " Length: %g\n" % len(self.x)815 return _str816 817 730 def is_slit_smeared(self): 818 731 """ … … 843 756 y = numpy.zeros(length) 844 757 dy = numpy.zeros(length) 845 clone = Data1D(x, y, dx=dx, dy=dy) 758 lam = numpy.zeros(length) 759 dlam = numpy.zeros(length) 760 clone = Data1D(x, y, lam=lam, dx=dx, dy=dy, dlam=dlam) 846 761 847 762 clone.title = self.title … … 1018 933 ## Vector of Q-values at the center of each bin in y 1019 934 y_bins = None 935 ## No 2D SESANS data as of yet. Always set it to False 936 isSesans = False 1020 937 1021 938 def __init__(self, data=None, err_data=None, qx_data=None, 1022 939 qy_data=None, q_data=None, mask=None, 1023 940 dqx_data=None, dqy_data=None): 1024 self.y_bins = []1025 self.x_bins = []1026 941 DataInfo.__init__(self) 1027 942 plottable_2D.__init__(self, data, err_data, qx_data, 1028 943 qy_data, q_data, mask, dqx_data, dqy_data) 944 self.y_bins = [] 945 self.x_bins = [] 946 1029 947 if len(self.detector) > 0: 1030 948 raise RuntimeError, "Data2D: Detector bank already filled at init" … … 1265 1183 final_dataset.xmin = data.xmin 1266 1184 final_dataset.ymin = data.ymin 1185 final_dataset.isSesans = datainfo.isSesans 1267 1186 final_dataset.title = datainfo.title 1268 1187 final_dataset.run = datainfo.run -
src/sas/sascalc/dataloader/readers/cansas_constants.py
r250fec92 rad4632c 133 133 "variable" : None, 134 134 "children" : {"Idata" : SASDATA_IDATA, 135 "Sesans": {"storeas": "content"}, 136 "zacceptance": {"storeas": "float"}, 135 137 "<any>" : ANY 136 138 } -
src/sas/sascalc/dataloader/readers/cansas_reader.py
rbcabf4e rc221349 261 261 # I and Q - 1D data 262 262 elif tagname == 'I' and isinstance(self.current_dataset, plottable_1D): 263 self.current_dataset.yaxis("Intensity", unit) 263 unit_list = unit.split("|") 264 if len(unit_list) > 1: 265 self.current_dataset.yaxis(unit_list[0].strip(), 266 unit_list[1].strip()) 267 else: 268 self.current_dataset.yaxis("Intensity", unit) 264 269 self.current_dataset.y = np.append(self.current_dataset.y, data_point) 265 270 elif tagname == 'Idev' and isinstance(self.current_dataset, plottable_1D): 266 271 self.current_dataset.dy = np.append(self.current_dataset.dy, data_point) 267 272 elif tagname == 'Q': 268 self.current_dataset.xaxis("Q", unit) 273 unit_list = unit.split("|") 274 if len(unit_list) > 1: 275 self.current_dataset.xaxis(unit_list[0].strip(), 276 unit_list[1].strip()) 277 else: 278 self.current_dataset.xaxis("Q", unit) 269 279 self.current_dataset.x = np.append(self.current_dataset.x, data_point) 270 280 elif tagname == 'Qdev': … … 278 288 elif tagname == 'Shadowfactor': 279 289 pass 290 elif tagname == 'Sesans': 291 self.current_datainfo.isSesans = bool(data_point) 292 elif tagname == 'zacceptance': 293 self.current_datainfo.sample.zacceptance = (data_point, unit) 280 294 281 295 # I and Qx, Qy - 2D data … … 1020 1034 node.append(point) 1021 1035 self.write_node(point, "Q", datainfo.x[i], 1022 {'unit': datainfo. x_unit})1036 {'unit': datainfo._xaxis + " | " + datainfo._xunit}) 1023 1037 if len(datainfo.y) >= i: 1024 1038 self.write_node(point, "I", datainfo.y[i], 1025 {'unit': datainfo. y_unit})1039 {'unit': datainfo._yaxis + " | " + datainfo._yunit}) 1026 1040 if datainfo.dy is not None and len(datainfo.dy) > i: 1027 1041 self.write_node(point, "Idev", datainfo.dy[i], 1028 {'unit': datainfo. y_unit})1042 {'unit': datainfo._yaxis + " | " + datainfo._yunit}) 1029 1043 if datainfo.dx is not None and len(datainfo.dx) > i: 1030 1044 self.write_node(point, "Qdev", datainfo.dx[i], 1031 {'unit': datainfo. x_unit})1045 {'unit': datainfo._xaxis + " | " + datainfo._xunit}) 1032 1046 if datainfo.dxw is not None and len(datainfo.dxw) > i: 1033 1047 self.write_node(point, "dQw", datainfo.dxw[i], 1034 {'unit': datainfo. x_unit})1048 {'unit': datainfo._xaxis + " | " + datainfo._xunit}) 1035 1049 if datainfo.dxl is not None and len(datainfo.dxl) > i: 1036 1050 self.write_node(point, "dQl", datainfo.dxl[i], 1037 {'unit': datainfo.x_unit}) 1051 {'unit': datainfo._xaxis + " | " + datainfo._xunit}) 1052 if datainfo.isSesans: 1053 sesans = self.create_element("Sesans") 1054 sesans.text = str(datainfo.isSesans) 1055 node.append(sesans) 1056 self.write_node(node, "zacceptance", datainfo.sample.zacceptance[0], 1057 {'unit': datainfo.sample.zacceptance[1]}) 1058 1038 1059 1039 1060 def _write_data_2d(self, datainfo, entry_node): -
src/sas/sascalc/dataloader/readers/sesans_reader.py
r9525358 r9525358 8 8 import numpy 9 9 import os 10 from sas.sascalc.dataloader.data_info import SESANSData1D10 from sas.sascalc.dataloader.data_info import Data1D 11 11 12 12 # Check whether we have a converter available … … 59 59 raise RuntimeError, "sesans_reader: cannot open %s" % path 60 60 buff = input_f.read() 61 # print buff62 61 lines = buff.splitlines() 63 # print lines64 #Jae could not find python universal line spliter:65 #keep the below for now66 # some ascii data has \r line separator,67 # try it when the data is on only one long line68 # if len(lines) < 2 :69 # lines = buff.split('\r')70 71 62 x = numpy.zeros(0) 72 63 y = numpy.zeros(0) … … 83 74 tdlam = numpy.zeros(0) 84 75 tdx = numpy.zeros(0) 85 # print "all good" 86 output = SESANSData1D(x=x, y=y, lam=lam, dy=dy, dx=dx, dlam=dlam) 87 # print output 76 output = Data1D(x=x, y=y, lam=lam, dy=dy, dx=dx, dlam=dlam, isSesans=True) 88 77 self.filename = output.filename = basename 89 78 90 # #Initialize counters for data lines and header lines.91 # is_data = False # Has more than 5 lines92 # # More than "5" lines of data is considered as actual93 # # data unless that is the only data94 # mum_data_lines = 595 # # To count # of current data candidate lines96 # i = -197 # # To count total # of previous data candidate lines98 # i1 = -199 # # To count # of header lines100 # j = -1101 # # Helps to count # of header lines102 # j1 = -1103 # #minimum required number of columns of data; ( <= 4).104 # lentoks = 2105 79 paramnames=[] 106 80 paramvals=[] … … 111 85 Pvals=[] 112 86 dPvals=[] 113 # print x 114 # print zvals 87 115 88 for line in lines: 116 89 # Initial try for CSV (split on ,) … … 122 95 if len(toks)>5: 123 96 zvals.append(toks[0]) 124 dzvals.append(toks[ 1])125 lamvals.append(toks[ 2])126 dlamvals.append(toks[ 3])127 Pvals.append(toks[ 4])128 dPvals.append(toks[ 5])97 dzvals.append(toks[3]) 98 lamvals.append(toks[4]) 99 dlamvals.append(toks[5]) 100 Pvals.append(toks[1]) 101 dPvals.append(toks[2]) 129 102 else: 130 103 continue … … 140 113 default_z_unit = "A" 141 114 data_conv_P = None 142 default_p_unit = " " 115 default_p_unit = " " # Adjust unit for axis (L^-3) 143 116 lam_unit = lam_header[1].replace("[","").replace("]","") 117 if lam_unit == 'AA': 118 lam_unit = 'A' 144 119 varheader=[zvals[0],dzvals[0],lamvals[0],dlamvals[0],Pvals[0],dPvals[0]] 145 120 valrange=range(1, len(zvals)) … … 161 136 output.x, output.x_unit = self._unit_conversion(x, lam_unit, default_z_unit) 162 137 output.y = y 138 output.y_unit = r'\AA^{-2} cm^{-1}' # output y_unit added 163 139 output.dx, output.dx_unit = self._unit_conversion(dx, lam_unit, default_z_unit) 164 140 output.dy = dy 165 141 output.lam, output.lam_unit = self._unit_conversion(lam, lam_unit, default_z_unit) 166 142 output.dlam, output.dlam_unit = self._unit_conversion(dlam, lam_unit, default_z_unit) 143 144 output.xaxis(r"\rm{z}", output.x_unit) 145 output.yaxis(r"\rm{ln(P)/(t \lambda^2)}", output.y_unit) # Adjust label to ln P/(lam^2 t), remove lam column refs 167 146 168 output.xaxis(r"\rm{z}", output.x_unit)169 output.yaxis(r"\rm{P/P0}", output.y_unit)170 147 # Store loading process information 171 148 output.meta_data['loader'] = self.type_name 172 output.sample.thickness = float(paramvals[6])149 #output.sample.thickness = float(paramvals[6]) 173 150 output.sample.name = paramvals[1] 174 151 output.sample.ID = paramvals[0] 175 152 zaccept_unit_split = paramnames[7].split("[") 176 153 zaccept_unit = zaccept_unit_split[1].replace("]","") 177 if zaccept_unit.strip() == r'\AA^-1' :154 if zaccept_unit.strip() == r'\AA^-1' or zaccept_unit.strip() == r'\A^-1': 178 155 zaccept_unit = "1/A" 179 156 output.sample.zacceptance=(float(paramvals[7]),zaccept_unit) 180 output.vars =varheader157 output.vars = varheader 181 158 182 159 if len(output.x) < 1: -
src/sas/sascalc/fit/AbstractFitEngine.py
rd3911e3 ra9f579c 131 131 a way to get residuals from data. 132 132 """ 133 def __init__(self, x, y, dx=None, dy=None, smearer=None, data=None ):133 def __init__(self, x, y, dx=None, dy=None, smearer=None, data=None, lam=None, dlam=None): 134 134 """ 135 135 :param smearer: is an object of class QSmearer or SlitSmearer … … 152 152 153 153 """ 154 Data1D.__init__(self, x=x, y=y, dx=dx, dy=dy )154 Data1D.__init__(self, x=x, y=y, dx=dx, dy=dy, lam=lam, dlam=dlam) 155 155 self.num_points = len(x) 156 156 self.sas_data = data -
src/sas/sasgui/guiframe/dataFitting.py
r345e7e4 r68adf86 17 17 """ 18 18 """ 19 def __init__(self, x=None, y=None, dx=None, dy=None): 19 20 def __init__(self, x=None, y=None, dx=None, dy=None, lam=None, dlam=None, isSesans=False): 20 21 """ 21 22 """ … … 24 25 if y is None: 25 26 y = [] 26 PlotData1D.__init__(self, x, y, dx, dy) 27 LoadData1D.__init__(self, x, y, dx, dy) 27 self.isSesans = isSesans 28 PlotData1D.__init__(self, x, y, dx, dy, lam, dlam) 29 LoadData1D.__init__(self, x, y, dx, dy, lam, dlam, isSesans) 30 28 31 self.id = None 29 32 self.list_group_id = [] … … 32 35 self.path = None 33 36 self.xtransform = None 37 if self.isSesans: 38 self.xtransform = "x" 34 39 self.ytransform = None 40 if self.isSesans: 41 self.ytransform = "y" 35 42 self.title = "" 36 43 self.scale = None … … 68 75 # First, check the data compatibility 69 76 dy, dy_other = self._validity_check(other) 70 result = Data1D(x=[], y=[], dx=None, dy=None)77 result = Data1D(x=[], y=[], lam=[], dx=None, dy=None, dlam=None) 71 78 result.clone_without_data(length=len(self.x), clone=self) 72 79 result.copy_from_datainfo(data1d=self) … … 115 122 # First, check the data compatibility 116 123 self._validity_check_union(other) 117 result = Data1D(x=[], y=[], dx=None, dy=None)124 result = Data1D(x=[], y=[], lam=[], dx=None, dy=None, dlam=None) 118 125 tot_length = len(self.x) + len(other.x) 119 126 result = self.clone_without_data(length=tot_length, clone=result) 127 if self.dlam == None or other.dlam is None: 128 result.dlam = None 129 else: 130 result.dlam = numpy.zeros(tot_length) 120 131 if self.dy == None or other.dy is None: 121 132 result.dy = None … … 141 152 result.y = numpy.append(self.y, other.y) 142 153 result.y = result.y[ind] 154 result.lam = numpy.append(self.lam, other.lam) 155 result.lam = result.lam[ind] 156 if result.dlam != None: 157 result.dlam = numpy.append(self.dlam, other.dlam) 158 result.dlam = result.dlam[ind] 143 159 if result.dy != None: 144 160 result.dy = numpy.append(self.dy, other.dy) … … 260 276 # First, check the data compatibility 261 277 self._validity_check_union(other) 262 result = Data1D(x=[], y=[], dx=None, dy=None)278 result = Data1D(x=[], y=[], lam=[], dx=None, dy=None, dlam=[]) 263 279 tot_length = len(self.x)+len(other.x) 264 280 result.clone_without_data(length=tot_length, clone=self) 281 if self.dlam == None or other.dlam is None: 282 result.dlam = None 283 else: 284 result.dlam = numpy.zeros(tot_length) 265 285 if self.dy == None or other.dy is None: 266 286 result.dy = None … … 285 305 result.y = numpy.append(self.y, other.y) 286 306 result.y = result.y[ind] 307 result.lam = numpy.append(self.lam, other.lam) 308 result.lam = result.lam[ind] 287 309 if result.dy != None: 288 310 result.dy = numpy.append(self.dy, other.dy) -
src/sas/sasgui/guiframe/data_manager.py
r345e7e4 r2ffe241 61 61 62 62 if issubclass(Data2D, data.__class__): 63 new_plot = Data2D(image=None, err_image=None) 64 else: 65 new_plot = Data1D(x=[], y=[], dx=None, dy=None) 66 63 new_plot = Data2D(image=None, err_image=None) # For now, isSesans for 2D data is always false 64 else: 65 new_plot = Data1D(x=[], y=[], dx=None, dy=None, lam=None, dlam=None, isSesans=data.isSesans) 66 67 68 #elif data.meta_data['loader'] == 'SESANS': 69 # new_plot = Data1D(x=[], y=[], dx=None, dy=None, lam=None, dlam=None, isSesans=True) 70 #else: 71 # new_plot = Data1D(x=[], y=[], dx=None, dy=None, lam=None, dlam=None) #SESANS check??? 72 67 73 new_plot.copy_from_datainfo(data) 68 74 data.clone_without_data(clone=new_plot) -
src/sas/sasgui/plottools/plottables.py
r345e7e4 ra9f579c 1023 1023 """ 1024 1024 1025 def __init__(self, x, y, dx=None, dy=None ):1025 def __init__(self, x, y, dx=None, dy=None, lam=None, dlam=None): 1026 1026 """ 1027 1027 Draw points specified by x[i],y[i] in the current color/symbol. … … 1037 1037 self.x = x 1038 1038 self.y = y 1039 self.lam = lam 1039 1040 self.dx = dx 1040 1041 self.dy = dy 1042 self.dlam = dlam 1041 1043 self.source = None 1042 1044 self.detector = None
Note: See TracChangeset
for help on using the changeset viewer.