Changeset 416f5c7 in sasmodels
- Timestamp:
- Oct 7, 2016 3:51:36 PM (8 years ago)
- Branches:
- master, core_shell_microgels, costrafo411, magnetic_model, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
- Children:
- 5df888c
- Parents:
- 8749c1c4
- Location:
- sasmodels/models
- Files:
-
- 7 edited
Legend:
- Unmodified
- Added
- Removed
-
sasmodels/models/core_shell_bicelle.py
radc753d r416f5c7 42 42 I(Q,\alpha) = \frac{\text{scale}}{V} \cdot 43 43 F(Q,\alpha)^2 + \text{background} 44 44 45 where 45 46 46 47 .. math:: 47 48 48 \begin{align}49 F(Q,\alpha) = &\ frac{1}{V_t} \bigg[50 (\rho_c - \rho_f) V_c \frac{J_1(QRsin \alpha)}{QRsin\alpha}\frac{2 \cdot QLcos\alpha}{QLcos\alpha} \\51 &+(\rho_f - \rho_r) V_{c+f} \frac{J_1(QRsin\alpha)}{QRsin\alpha}\frac{2 \cdot Q(L+t_f)cos\alpha}{Q(L+t_f)cos\alpha} \\52 &+(\rho_r - \rho_s) V_t \frac{J_1(Q(R+t_r)sin\alpha)}{Q(R+t_r)sin\alpha}\frac{2 \cdot Q(L+t_f)cos\alpha}{Q(L+t_f)cos\alpha}49 \begin{align} 50 F(Q,\alpha) = &\bigg[ 51 (\rho_c - \rho_f) V_c \frac{J_1(QRsin \alpha)}{QRsin\alpha}\frac{2 \cdot sin(QLcos\alpha/2)}{QLcos\alpha} \\ 52 &+(\rho_f - \rho_r) V_{c+f} \frac{J_1(QRsin\alpha)}{QRsin\alpha}\frac{2 \cdot sin(Q(L/2+t_f)cos\alpha)}{Q(L+2t_f)cos\alpha} \\ 53 &+(\rho_r - \rho_s) V_t \frac{J_1(Q(R+t_r)sin\alpha)}{Q(R+t_r)sin\alpha}\frac{2 \cdot sin(Q(L/2+t_f)cos\alpha)}{Q(L+2t_f)cos\alpha} 53 54 \bigg] 54 55 \end{align} … … 130 131 # ["name", "units", default, [lower, upper], "type", "description"], 131 132 parameters = [ 132 ["radius", "Ang", 20, [0, inf], "volume", "Cylinder core radius"],133 ["radius", "Ang", 80, [0, inf], "volume", "Cylinder core radius"], 133 134 ["thick_rim", "Ang", 10, [0, inf], "volume", "Rim shell thickness"], 134 135 ["thick_face", "Ang", 10, [0, inf], "volume", "Cylinder face thickness"], 135 ["length", "Ang", 400, [0, inf], "volume", "Cylinder length"],136 ["length", "Ang", 50, [0, inf], "volume", "Cylinder length"], 136 137 ["sld_core", "1e-6/Ang^2", 1, [-inf, inf], "sld", "Cylinder core scattering length density"], 137 138 ["sld_face", "1e-6/Ang^2", 4, [-inf, inf], "sld", "Cylinder face scattering length density"], -
sasmodels/models/core_shell_ellipsoid.py
r9272cbd r416f5c7 12 12 13 13 The geometric parameters of this model are shown in the diagram above, which 14 shows (a) a c ross section ofthe circular equator and (b) a cross section through14 shows (a) a cut through at the circular equator and (b) a cross section through 15 15 the poles, of a prolate ellipsoid. 16 16 … … 19 19 20 20 For a fixed shell thickness *XpolarShell = 1*, to scale the shell thickness 21 pro-rata with the radius *XpolarShell = X_core*.21 pro-rata with the radius set or constrain *XpolarShell = X_core*. 22 22 23 23 When including an $S(q)$, the radius in $S(q)$ is calculated to be that of … … 33 33 this moves to the $S(q)$ volume fraction, and scale should then be 1.0, 34 34 or contain some other units conversion factor (for example, if you have SAXS data). 35 36 The calculation of intensity follows that for the solid ellipsoid, but with separate 37 terms for the core-shell and shell-solvent boundaries. 38 39 .. math:: 40 41 P(q,\alpha) = \frac{\text{scale}}{V} F^2(q,\alpha) + \text{background} 42 43 where 44 45 .. math:: 46 \begin{align} 47 F(q,\alpha) = &f(q,radius\_equat\_core,radius\_equat\_core.x\_core,\alpha) \\ 48 &+ f(q,radius\_equat\_core + thick\_shell,radius\_equat\_core.x\_core + thick\_shell.x\_polar\_shell,\alpha) 49 \end{align} 50 51 where 52 53 .. math:: 54 55 f(q,R_e,R_p,\alpha) = \frac{3 \Delta \rho V (\sin[qr(R_p,R_e,\alpha)] 56 - \cos[qr(R_p,R_e,\alpha)])} 57 {[qr(R_p,R_e,\alpha)]^3} 58 59 and 60 61 .. math:: 62 63 r(R_e,R_p,\alpha) = \left[ R_e^2 \sin^2 \alpha 64 + R_p^2 \cos^2 \alpha \right]^{1/2} 65 66 67 $\alpha$ is the angle between the axis of the ellipsoid and $\vec q$, 68 $V = (4/3)\pi R_pR_e^2$ is the volume of the ellipsoid , $R_p$ is the polar radius along the 69 rotational axis of the ellipsoid, $R_e$ is the equatorial radius perpendicular 70 to the rotational axis of the ellipsoid and $\Delta \rho$ (contrast) is the 71 scattering length density difference, either $(sld\_core - sld\_shell)$ or $(sld\_shell - sld\_solvent)$. 72 73 For randomly oriented particles: 74 75 .. math:: 76 77 F^2(q)=\int_{0}^{\pi/2}{F^2(q,\alpha)\sin(\alpha)d\alpha} 78 35 79 36 80 References -
sasmodels/models/cylinder.py
r551398c r416f5c7 14 14 .. math:: 15 15 16 P(q,\alpha) = \frac{\text{scale}}{V} F^2(q ) + \text{background}16 P(q,\alpha) = \frac{\text{scale}}{V} F^2(q,\alpha) + \text{background} 17 17 18 18 where … … 20 20 .. math:: 21 21 22 F(q ) = 2 (\Delta \rho) V22 F(q,\alpha) = 2 (\Delta \rho) V 23 23 \frac{\sin \left(\tfrac12 qL\cos\alpha \right)} 24 24 {\tfrac12 qL \cos \alpha} … … 31 31 first order Bessel function. 32 32 33 For randomly oriented particles: 34 35 .. math:: 36 37 F^2(q)=\int_{0}^{\pi/2}{F^2(q,\alpha)\sin(\alpha)d\alpha} 38 39 33 40 To provide easy access to the orientation of the cylinder, we define the 34 41 axis of the cylinder using two angles $\theta$ and $\phi$. Those angles 35 are defined in :numref:`cylinder-angle-definition` .42 are defined in :numref:`cylinder-angle-definition` . 36 43 37 44 .. _cylinder-angle-definition: -
sasmodels/models/ellipsoid.py
ra807206 r416f5c7 35 35 to the rotational axis of the ellipsoid and $\Delta \rho$ (contrast) is the 36 36 scattering length density difference between the scatterer and the solvent. 37 38 For randomly oriented particles: 39 40 .. math:: 41 42 F^2(q)=\int_{0}^{\pi/2}{F^2(q,\alpha)\sin(\alpha)d\alpha} 43 37 44 38 45 To provide easy access to the orientation of the ellipsoid, we define -
sasmodels/models/parallelepiped.py
ra807206 r416f5c7 10 10 11 11 | This model calculates the scattering from a rectangular parallelepiped 12 | ( :numref:`parallelepiped-image`).12 | (\:numref:`parallelepiped-image`\). 13 13 | If you need to apply polydispersity, see also :ref:`rectangular-prism`. 14 14 -
sasmodels/models/triaxial_ellipsoid.py
ra807206 r416f5c7 36 36 we define the axis of the cylinder using the angles $\theta$, $\phi$ 37 37 and $\psi$. These angles are defined on 38 :numref:`triaxial-ellipsoid-angles` .38 :numref:`triaxial-ellipsoid-angles` . 39 39 The angle $\psi$ is the rotational angle around its own $c$ axis 40 40 against the $q$ plane. For example, $\psi = 0$ when the
Note: See TracChangeset
for help on using the changeset viewer.