source: sasmodels/sasmodels/models/cylinder.py @ 416f5c7

core_shell_microgelscostrafo411magnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 416f5c7 was 416f5c7, checked in by richardh, 8 years ago

fixes for numref warnings in docu, new equations core_shell_bicelle core_shell_ellipsoid

  • Property mode set to 100644
File size: 5.2 KB
Line 
1# cylinder model
2# Note: model title and parameter table are inserted automatically
3r"""
4The form factor is normalized by the particle volume V = \piR^2L.
5For information about polarised and magnetic scattering, see
6the :ref:`magnetism` documentation.
7
8Definition
9----------
10
11The output of the 2D scattering intensity function for oriented cylinders is
12given by (Guinier, 1955)
13
14.. math::
15
16    P(q,\alpha) = \frac{\text{scale}}{V} F^2(q,\alpha) + \text{background}
17
18where
19
20.. math::
21
22    F(q,\alpha) = 2 (\Delta \rho) V
23           \frac{\sin \left(\tfrac12 qL\cos\alpha \right)}
24                {\tfrac12 qL \cos \alpha}
25           \frac{J_1 \left(q R \sin \alpha\right)}{q R \sin \alpha}
26
27and $\alpha$ is the angle between the axis of the cylinder and $\vec q$, $V$
28is the volume of the cylinder, $L$ is the length of the cylinder, $R$ is the
29radius of the cylinder, and $\Delta\rho$ (contrast) is the scattering length
30density difference between the scatterer and the solvent. $J_1$ is the
31first order Bessel function.
32
33For randomly oriented particles:
34
35.. math::
36
37    F^2(q)=\int_{0}^{\pi/2}{F^2(q,\alpha)\sin(\alpha)d\alpha}
38
39
40To provide easy access to the orientation of the cylinder, we define the
41axis of the cylinder using two angles $\theta$ and $\phi$. Those angles
42are defined in :numref:`cylinder-angle-definition` .
43
44.. _cylinder-angle-definition:
45
46.. figure:: img/cylinder_angle_definition.jpg
47
48    Definition of the angles for oriented cylinders.
49
50.. figure:: img/cylinder_angle_projection.jpg
51
52    Examples of the angles for oriented cylinders against the detector plane.
53
54NB: The 2nd virial coefficient of the cylinder is calculated based on the
55radius and length values, and used as the effective radius for $S(q)$
56when $P(q) \cdot S(q)$ is applied.
57
58The output of the 1D scattering intensity function for randomly oriented
59cylinders is then given by
60
61.. math::
62
63    P(q) = \frac{\text{scale}}{V}
64        \int_0^{\pi/2} F^2(q,\alpha) \sin \alpha\ d\alpha + \text{background}
65
66The $\theta$ and $\phi$ parameters are not used for the 1D output.
67
68Validation
69----------
70
71Validation of the code was done by comparing the output of the 1D model
72to the output of the software provided by the NIST (Kline, 2006).
73The implementation of the intensity for fully oriented cylinders was done
74by averaging over a uniform distribution of orientations using
75
76.. math::
77
78    P(q) = \int_0^{\pi/2} d\phi
79        \int_0^\pi p(\theta, \phi) P_0(q,\alpha) \sin \theta\ d\theta
80
81
82where $p(\theta,\phi)$ is the probability distribution for the orientation
83and $P_0(q,\alpha)$ is the scattering intensity for the fully oriented
84system, and then comparing to the 1D result.
85
86References
87----------
88
89None
90
91"""
92
93import numpy as np  # type: ignore
94from numpy import pi, inf  # type: ignore
95
96name = "cylinder"
97title = "Right circular cylinder with uniform scattering length density."
98description = """
99     f(q,alpha) = 2*(sld - sld_solvent)*V*sin(qLcos(alpha)/2))
100                /[qLcos(alpha)/2]*J1(qRsin(alpha))/[qRsin(alpha)]
101
102            P(q,alpha)= scale/V*f(q,alpha)^(2)+background
103            V: Volume of the cylinder
104            R: Radius of the cylinder
105            L: Length of the cylinder
106            J1: The bessel function
107            alpha: angle between the axis of the
108            cylinder and the q-vector for 1D
109            :the ouput is P(q)=scale/V*integral
110            from pi/2 to zero of...
111            f(q,alpha)^(2)*sin(alpha)*dalpha + background
112"""
113category = "shape:cylinder"
114
115#             [ "name", "units", default, [lower, upper], "type", "description"],
116parameters = [["sld", "4e-6/Ang^2", 4, [-inf, inf], "sld",
117               "Cylinder scattering length density"],
118              ["sld_solvent", "1e-6/Ang^2", 1, [-inf, inf], "sld",
119               "Solvent scattering length density"],
120              ["radius", "Ang", 20, [0, inf], "volume",
121               "Cylinder radius"],
122              ["length", "Ang", 400, [0, inf], "volume",
123               "Cylinder length"],
124              ["theta", "degrees", 60, [-inf, inf], "orientation",
125               "In plane angle"],
126              ["phi", "degrees", 60, [-inf, inf], "orientation",
127               "Out of plane angle"],
128             ]
129
130source = ["lib/polevl.c", "lib/sas_J1.c", "lib/gauss76.c", "cylinder.c"]
131
132def ER(radius, length):
133    """
134        Return equivalent radius (ER)
135    """
136    ddd = 0.75 * radius * (2 * radius * length + (length + radius) * (length + pi * radius))
137    return 0.5 * (ddd) ** (1. / 3.)
138
139# parameters for demo
140demo = dict(scale=1, background=0,
141            sld=6, sld_solvent=1,
142            radius=20, length=300,
143            theta=60, phi=60,
144            radius_pd=.2, radius_pd_n=9,
145            length_pd=.2, length_pd_n=10,
146            theta_pd=10, theta_pd_n=5,
147            phi_pd=10, phi_pd_n=5)
148
149qx, qy = 0.2 * np.cos(2.5), 0.2 * np.sin(2.5)
150tests = [[{}, 0.2, 0.042761386790780453],
151         [{}, [0.2], [0.042761386790780453]],
152         [{'theta':10.0, 'phi':10.0}, (qx, qy), 0.03514647218513852],
153         [{'theta':10.0, 'phi':10.0}, [(qx, qy)], [0.03514647218513852]],
154        ]
155del qx, qy  # not necessary to delete, but cleaner
156# ADDED by:  RKH  ON: 18Mar2016 renamed sld's etc
Note: See TracBrowser for help on using the repository browser.