Ignore:
Timestamp:
Oct 7, 2016 1:51:36 PM (8 years ago)
Author:
richardh
Branches:
master, core_shell_microgels, costrafo411, magnetic_model, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
Children:
5df888c
Parents:
8749c1c4
Message:

fixes for numref warnings in docu, new equations core_shell_bicelle core_shell_ellipsoid

File:
1 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/models/core_shell_ellipsoid.py

    r9272cbd r416f5c7  
    1212 
    1313The geometric parameters of this model are shown in the diagram above, which 
    14 shows (a) a cross section of the circular equator and (b) a cross section through 
     14shows (a) a cut through at the circular equator and (b) a cross section through 
    1515the poles, of a prolate ellipsoid. 
    1616 
     
    1919 
    2020For a fixed shell thickness *XpolarShell = 1*, to scale the shell thickness 
    21 pro-rata with the radius *XpolarShell = X_core*. 
     21pro-rata with the radius set or constrain *XpolarShell = X_core*. 
    2222 
    2323When including an $S(q)$, the radius in $S(q)$ is calculated to be that of 
     
    3333this moves to the $S(q)$ volume fraction, and scale should then be 1.0, 
    3434or contain some other units conversion factor (for example, if you have SAXS data). 
     35 
     36The calculation of intensity follows that for the solid ellipsoid, but with separate 
     37terms for the core-shell and shell-solvent boundaries. 
     38 
     39.. math:: 
     40 
     41    P(q,\alpha) = \frac{\text{scale}}{V} F^2(q,\alpha) + \text{background} 
     42 
     43where 
     44 
     45.. math:: 
     46    \begin{align}     
     47    F(q,\alpha) = &f(q,radius\_equat\_core,radius\_equat\_core.x\_core,\alpha) \\ 
     48    &+ f(q,radius\_equat\_core + thick\_shell,radius\_equat\_core.x\_core + thick\_shell.x\_polar\_shell,\alpha) 
     49    \end{align}  
     50 
     51where 
     52  
     53.. math:: 
     54 
     55    f(q,R_e,R_p,\alpha) = \frac{3 \Delta \rho V (\sin[qr(R_p,R_e,\alpha)] 
     56                - \cos[qr(R_p,R_e,\alpha)])} 
     57                {[qr(R_p,R_e,\alpha)]^3} 
     58 
     59and 
     60 
     61.. math:: 
     62 
     63    r(R_e,R_p,\alpha) = \left[ R_e^2 \sin^2 \alpha 
     64        + R_p^2 \cos^2 \alpha \right]^{1/2} 
     65 
     66 
     67$\alpha$ is the angle between the axis of the ellipsoid and $\vec q$, 
     68$V = (4/3)\pi R_pR_e^2$ is the volume of the ellipsoid , $R_p$ is the polar radius along the 
     69rotational axis of the ellipsoid, $R_e$ is the equatorial radius perpendicular 
     70to the rotational axis of the ellipsoid and $\Delta \rho$ (contrast) is the 
     71scattering length density difference, either $(sld\_core - sld\_shell)$ or $(sld\_shell - sld\_solvent)$. 
     72 
     73For randomly oriented particles: 
     74 
     75.. math:: 
     76 
     77   F^2(q)=\int_{0}^{\pi/2}{F^2(q,\alpha)\sin(\alpha)d\alpha} 
     78 
    3579 
    3680References 
Note: See TracChangeset for help on using the changeset viewer.