Changeset 30b60d2 in sasmodels for doc/guide/plugin.rst
- Timestamp:
- Sep 5, 2017 2:39:41 PM (7 years ago)
- Branches:
- master, core_shell_microgels, costrafo411, magnetic_model, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
- Children:
- 3a45c2c
- Parents:
- 64eecf7
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/guide/plugin.rst
r870a2f4 r30b60d2 117 117 Models that do not conform to these requirements will *never* be incorporated 118 118 into the built-in library. 119 120 More complete documentation for the sasmodels package can be found at121 `<http://www.sasview.org/sasmodels>`_. In particular,122 `<http://www.sasview.org/sasmodels/api/generate.html#module-sasmodels.generate>`_123 describes the structure of a model.124 119 125 120 … … 613 608 614 609 sas_gamma(x): 615 Gamma function $\text{sas_gamma}(x) = \Gamma(x)$.610 Gamma function sas_gamma\ $(x) = \Gamma(x)$. 616 611 617 612 The standard math function, tgamma(x) is unstable for $x < 1$ … … 623 618 sas_erf(x), sas_erfc(x): 624 619 Error function 625 $\text{sas_erf}(x) = \frac{2}{\sqrt\pi}\int_0^x e^{-t^2}\,dt$620 sas_erf\ $(x) = \frac{2}{\sqrt\pi}\int_0^x e^{-t^2}\,dt$ 626 621 and complementary error function 627 $\text{sas_erfc}(x) = \frac{2}{\sqrt\pi}\int_x^{\infty} e^{-t^2}\,dt$.622 sas_erfc\ $(x) = \frac{2}{\sqrt\pi}\int_x^{\infty} e^{-t^2}\,dt$. 628 623 629 624 The standard math functions erf(x) and erfc(x) are slower and broken … … 634 629 635 630 sas_J0(x): 636 Bessel function of the first kind $\text{sas_J0}(x)=J_0(x)$ where631 Bessel function of the first kind sas_J0\ $(x)=J_0(x)$ where 637 632 $J_0(x) = \frac{1}{\pi}\int_0^\pi \cos(x\sin(\tau))\,d\tau$. 638 633 … … 643 638 644 639 sas_J1(x): 645 Bessel function of the first kind $\text{sas_J1}(x)=J_1(x)$ where640 Bessel function of the first kind sas_J1\ $(x)=J_1(x)$ where 646 641 $J_1(x) = \frac{1}{\pi}\int_0^\pi \cos(\tau - x\sin(\tau))\,d\tau$. 647 642 … … 652 647 653 648 sas_JN(n, x): 654 Bessel function of the first kind and integer order $n$ :655 $\text{sas_JN}(n, x)=J_n(x)$ where649 Bessel function of the first kind and integer order $n$, 650 sas_JN\ $(n, x) =J_n(x)$ where 656 651 $J_n(x) = \frac{1}{\pi}\int_0^\pi \cos(n\tau - x\sin(\tau))\,d\tau$. 657 If $n$ = 0 or 1, it uses sas_J0( x) or sas_J1(x), respectively.652 If $n$ = 0 or 1, it uses sas_J0($x$) or sas_J1($x$), respectively. 658 653 659 654 The standard math function jn(n, x) is not available on all platforms. … … 663 658 664 659 sas_Si(x): 665 Sine integral $\text{Si}(x) = \int_0^x \tfrac{\sin t}{t}\,dt$.660 Sine integral Si\ $(x) = \int_0^x \tfrac{\sin t}{t}\,dt$. 666 661 667 662 This function uses Taylor series for small and large arguments: … … 688 683 sas_3j1x_x(x): 689 684 Spherical Bessel form 690 $\text{sph_j1c}(x) = 3 j_1(x)/x = 3 (\sin(x) - x \cos(x))/x^3$,685 sph_j1c\ $(x) = 3 j_1(x)/x = 3 (\sin(x) - x \cos(x))/x^3$, 691 686 with a limiting value of 1 at $x=0$, where $j_1(x)$ is the spherical 692 687 Bessel function of the first kind and first order. … … 699 694 700 695 sas_2J1x_x(x): 701 Bessel form $\text{sas_J1c}(x) = 2 J_1(x)/x$, with a limiting value696 Bessel form sas_J1c\ $(x) = 2 J_1(x)/x$, with a limiting value 702 697 of 1 at $x=0$, where $J_1(x)$ is the Bessel function of first kind 703 698 and first order.
Note: See TracChangeset
for help on using the changeset viewer.