Changeset ab60822 in sasmodels for doc/guide/plugin.rst


Ignore:
Timestamp:
Sep 11, 2017 5:07:15 AM (7 years ago)
Author:
GitHub <noreply@…>
Branches:
master, core_shell_microgels, costrafo411, magnetic_model, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
Children:
3a45c2c, dd6885e
Parents:
c63a7c8 (diff), 30b60d2 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
git-author:
Wojciech Potrzebowski <Wojciech.Potrzebowski@…> (09/11/17 05:07:15)
git-committer:
GitHub <noreply@…> (09/11/17 05:07:15)
Message:

Merge pull request #50 from SasView?/ticket-510

Ticket 510 pdf build - doesn't close the ticket yet

File:
1 edited

Legend:

Unmodified
Added
Removed
  • doc/guide/plugin.rst

    r870a2f4 r30b60d2  
    117117Models that do not conform to these requirements will *never* be incorporated 
    118118into the built-in library. 
    119  
    120 More complete documentation for the sasmodels package can be found at 
    121 `<http://www.sasview.org/sasmodels>`_. In particular, 
    122 `<http://www.sasview.org/sasmodels/api/generate.html#module-sasmodels.generate>`_ 
    123 describes the structure of a model. 
    124119 
    125120 
     
    613608 
    614609    sas_gamma(x): 
    615         Gamma function $\text{sas_gamma}(x) = \Gamma(x)$. 
     610        Gamma function sas_gamma\ $(x) = \Gamma(x)$. 
    616611 
    617612        The standard math function, tgamma(x) is unstable for $x < 1$ 
     
    623618    sas_erf(x), sas_erfc(x): 
    624619        Error function 
    625         $\text{sas_erf}(x) = \frac{2}{\sqrt\pi}\int_0^x e^{-t^2}\,dt$ 
     620        sas_erf\ $(x) = \frac{2}{\sqrt\pi}\int_0^x e^{-t^2}\,dt$ 
    626621        and complementary error function 
    627         $\text{sas_erfc}(x) = \frac{2}{\sqrt\pi}\int_x^{\infty} e^{-t^2}\,dt$. 
     622        sas_erfc\ $(x) = \frac{2}{\sqrt\pi}\int_x^{\infty} e^{-t^2}\,dt$. 
    628623 
    629624        The standard math functions erf(x) and erfc(x) are slower and broken 
     
    634629 
    635630    sas_J0(x): 
    636         Bessel function of the first kind $\text{sas_J0}(x)=J_0(x)$ where 
     631        Bessel function of the first kind sas_J0\ $(x)=J_0(x)$ where 
    637632        $J_0(x) = \frac{1}{\pi}\int_0^\pi \cos(x\sin(\tau))\,d\tau$. 
    638633 
     
    643638 
    644639    sas_J1(x): 
    645         Bessel function of the first kind  $\text{sas_J1}(x)=J_1(x)$ where 
     640        Bessel function of the first kind  sas_J1\ $(x)=J_1(x)$ where 
    646641        $J_1(x) = \frac{1}{\pi}\int_0^\pi \cos(\tau - x\sin(\tau))\,d\tau$. 
    647642 
     
    652647 
    653648    sas_JN(n, x): 
    654         Bessel function of the first kind and integer order $n$: 
    655         $\text{sas_JN}(n, x)=J_n(x)$ where 
     649        Bessel function of the first kind and integer order $n$, 
     650        sas_JN\ $(n, x) =J_n(x)$ where 
    656651        $J_n(x) = \frac{1}{\pi}\int_0^\pi \cos(n\tau - x\sin(\tau))\,d\tau$. 
    657         If $n$ = 0 or 1, it uses sas_J0(x) or sas_J1(x), respectively. 
     652        If $n$ = 0 or 1, it uses sas_J0($x$) or sas_J1($x$), respectively. 
    658653 
    659654        The standard math function jn(n, x) is not available on all platforms. 
     
    663658 
    664659    sas_Si(x): 
    665         Sine integral $\text{Si}(x) = \int_0^x \tfrac{\sin t}{t}\,dt$. 
     660        Sine integral Si\ $(x) = \int_0^x \tfrac{\sin t}{t}\,dt$. 
    666661 
    667662        This function uses Taylor series for small and large arguments: 
     
    688683    sas_3j1x_x(x): 
    689684        Spherical Bessel form 
    690         $\text{sph_j1c}(x) = 3 j_1(x)/x = 3 (\sin(x) - x \cos(x))/x^3$, 
     685        sph_j1c\ $(x) = 3 j_1(x)/x = 3 (\sin(x) - x \cos(x))/x^3$, 
    691686        with a limiting value of 1 at $x=0$, where $j_1(x)$ is the spherical 
    692687        Bessel function of the first kind and first order. 
     
    699694 
    700695    sas_2J1x_x(x): 
    701         Bessel form $\text{sas_J1c}(x) = 2 J_1(x)/x$, with a limiting value 
     696        Bessel form sas_J1c\ $(x) = 2 J_1(x)/x$, with a limiting value 
    702697        of 1 at $x=0$, where $J_1(x)$ is the Bessel function of first kind 
    703698        and first order. 
Note: See TracChangeset for help on using the changeset viewer.