Changeset 2d81cfe in sasmodels for sasmodels/models/spinodal.py


Ignore:
Timestamp:
Nov 29, 2017 11:13:23 AM (7 years ago)
Author:
Paul Kienzle <pkienzle@…>
Branches:
master, core_shell_microgels, magnetic_model, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
Children:
237b800f
Parents:
a839b22
Message:

lint

File:
1 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/models/spinodal.py

    r48462b0 r2d81cfe  
    33---------- 
    44 
    5 This model calculates the SAS signal of a phase separating solution under spinodal decomposition. 
    6 The scattering intensity $I(q)$ is calculated as 
     5This model calculates the SAS signal of a phase separating solution 
     6under spinodal decomposition. The scattering intensity $I(q)$ is calculated as 
    77 
    88.. math:: 
    99    I(q) = I_{max}\frac{(1+\gamma/2)x^2}{\gamma/2+x^{2+\gamma}}+B 
    1010 
    11 where $x=q/q_0$ and $B$ is a flat background. The characteristic structure length 
    12 scales with the correlation peak at $q_0$. The exponent $\gamma$ is equal to 
    13 $d+1$ with d the dimensionality of the off-critical concentration mixtures. 
    14 A transition to $\gamma=2d$ is seen near the percolation threshold into the 
    15 critical concentration regime. 
     11where $x=q/q_0$ and $B$ is a flat background. The characteristic structure 
     12length scales with the correlation peak at $q_0$. The exponent $\gamma$ is 
     13equal to $d+1$ with d the dimensionality of the off-critical concentration 
     14mixtures. A transition to $\gamma=2d$ is seen near the percolation threshold 
     15into the critical concentration regime. 
    1616 
    1717References 
     
    1919 
    2020H. Furukawa. Dynamics-scaling theory for phase-separating unmixing mixtures: 
    21 Growth rates of droplets and scaling properties of autocorrelation functions. Physica A 123,497 (1984). 
     21Growth rates of droplets and scaling properties of autocorrelation functions. 
     22Physica A 123,497 (1984). 
    2223 
    2324Authorship and Verification 
     
    2930""" 
    3031 
     32import numpy as np 
    3133from numpy import inf, errstate 
    3234 
     
    6870 
    6971def random(): 
    70     import numpy as np 
    7172    pars = dict( 
    7273        scale=10**np.random.uniform(1, 3), 
Note: See TracChangeset for help on using the changeset viewer.