Changeset c2e4be1 in sasmodels


Ignore:
Timestamp:
Mar 21, 2016 2:05:59 AM (9 years ago)
Author:
wojciech
Branches:
master, core_shell_microgels, costrafo411, magnetic_model, release_v0.94, release_v0.95, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
Children:
2e613f3
Parents:
31d22de (diff), 303d8d6 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
Message:

Merge branch 'polydisp' of https://github.com/SasView/sasmodels into polydisp

Files:
2 added
14 edited

Legend:

Unmodified
Added
Removed
  • doc/developer/calculator.rst

    rd5ac45f r03cac08  
    77- KERNEL declares a function to be available externally 
    88- KERNEL_NAME is the name of the function being declared 
     9- MAX_PD is the maximum depth of the polydispersity loop 
    910- NPARS is the number of parameters in the kernel 
    1011- PARAMETER_TABLE is the declaration of the parameters to the kernel:: 
     
    2930        double sld_solvent 
    3031 
    31 - CALL_IQ(q, nq, i, pars) is the declaration of a call to the kernel:: 
     32- CALL_IQ(q, i, pars) is the declaration of a call to the kernel:: 
    3233 
    3334    Cylinder: 
    3435 
    35         #define CALL_IQ(q, nq, i, var) \ 
    36         Iq(q[i], \ 
     36        #define CALL_IQ(q, i, var) Iq(q[i], \ 
    3737        var.length, \ 
    3838        var.radius, \ 
     
    4242    Multi-shell cylinder: 
    4343 
    44         #define CALL_IQ(q, nq, i, var) \ 
    45         Iq(q[i], \ 
     44        #define CALL_IQ(q, i, var) Iq(q[i], \ 
    4645        var.num_shells, \ 
    4746        var.length, \ 
     
    5049        var.sld_solvent) 
    5150 
     51    Cylinder2D: 
     52 
     53        #define CALL_IQ(q, i, var) Iqxy(q[2*i], q[2*i+1], \ 
     54        var.length, \ 
     55        var.radius, \ 
     56        var.sld, \ 
     57        var.sld_solvent, \ 
     58        var.theta, \ 
     59        var.phi) 
     60 
    5261- CALL_VOLUME(var) is similar, but for calling the form volume:: 
    5362 
     
    6978        inline bool constrained(p1, p2, p3) { return expression; } 
    7079        #define INVALID(var) constrained(var.p1, var.p2, var.p3) 
    71  
    72 - IQ_FUNC could be Iq or Iqxy 
    73 - IQ_PARS could be q[i] or q[2*i],q[2*i+1] 
    7480 
    7581Our design supports a limited number of polydispersity loops, wherein 
     
    200206 
    201207TODO: cutoff 
     208 
     209For accuracy we may want to introduce Kahan summation into the integration:: 
     210 
     211 
     212    double accumulated_error = 0.0; 
     213    ... 
     214    #if USE_KAHAN_SUMMATION 
     215        const double y = next - accumulated_error; 
     216        const double t = ret + y; 
     217        accumulated_error = (t - ret) - y; 
     218        ret = t; 
     219    #else 
     220        ret += next; 
     221    #endif 
  • sasmodels/bumps_model.py

    ra84a0ca r303d8d6  
    8181    from bumps.names import Parameter 
    8282 
    83     pars = {} 
     83    pars = {} # => floating point parameters 
    8484    for p in model_info['parameters']: 
    8585        value = kwargs.pop(p.name, p.default) 
    8686        pars[p.name] = Parameter.default(value, name=p.name, limits=p.limits) 
    87     for name in model_info['partype']['pd-2d']: 
     87    for name in model_info['par_type']['pd']: 
    8888        for xpart, xdefault, xlimits in [ 
    8989                ('_pd', 0., pars[name].limits), 
     
    9595            pars[xname] = Parameter.default(xvalue, name=xname, limits=xlimits) 
    9696 
    97     pd_types = {} 
    98     for name in model_info['partype']['pd-2d']: 
     97    pd_types = {}  # => distribution names 
     98    for name in model_info['par_type']['pd']: 
    9999        xname = name + '_pd_type' 
    100100        xvalue = kwargs.pop(xname, 'gaussian') 
  • sasmodels/compare.py

    r72a081d r303d8d6  
    308308        exclude = lambda n: False 
    309309    else: 
    310         partype = model_info['partype'] 
    311         par1d = set(partype['fixed-1d']+partype['pd-1d']) 
     310        par1d = model_info['par_type']['1d'] 
    312311        exclude = lambda n: n not in par1d 
    313312    lines = [] 
     
    870869        pars, pd_types = bumps_model.create_parameters(model_info, **opts['pars']) 
    871870        if not opts['is2d']: 
    872             active = [base + ext 
    873                       for base in model_info['partype']['pd-1d'] 
    874                       for ext in ['', '_pd', '_pd_n', '_pd_nsigma']] 
    875             active.extend(model_info['partype']['fixed-1d']) 
    876             for k in active: 
    877                 v = pars[k] 
    878                 v.range(*parameter_range(k, v.value)) 
     871            for name in model_info['par_type']['1d']: 
     872                for ext in ['', '_pd', '_pd_n', '_pd_nsigma']: 
     873                    k = name+ext 
     874                    v = pars.get(k, None) 
     875                    if v is not None: 
     876                        v.range(*parameter_range(k, v.value)) 
    879877        else: 
    880878            for k, v in pars.items(): 
  • sasmodels/core.py

    rcf52f9c r303d8d6  
    173173    return model(q_vectors) 
    174174 
    175 def get_weights(model_info, pars, name): 
     175def get_weights(parameter, values): 
    176176    """ 
    177177    Generate the distribution for parameter *name* given the parameter values 
     
    181181    from the *pars* dictionary for parameter value and parameter dispersion. 
    182182    """ 
    183     relative = name in model_info['partype']['pd-rel'] 
    184     limits = model_info['limits'][name] 
    185     disperser = pars.get(name+'_pd_type', 'gaussian') 
    186     value = pars.get(name, model_info['defaults'][name]) 
    187     npts = pars.get(name+'_pd_n', 0) 
    188     width = pars.get(name+'_pd', 0.0) 
    189     nsigma = pars.get(name+'_pd_nsigma', 3.0) 
     183    value = values.get(parameter.name, parameter.default) 
     184    if parameter.type not in ('volume', 'orientation'): 
     185        return [value], [] 
     186    relative = parameter.type == 'volume' 
     187    limits = parameter.limits 
     188    disperser = values.get(parameter.name+'_pd_type', 'gaussian') 
     189    npts = values.get(parameter.name+'_pd_n', 0) 
     190    width = values.get(parameter.name+'_pd', 0.0) 
     191    nsigma = values.get(parameter.name+'_pd_nsigma', 3.0) 
    190192    value, weight = weights.get_weights( 
    191193        disperser, npts, width, nsigma, value, limits, relative) 
     
    206208    return value, weight 
    207209 
    208 def call_kernel(kernel, pars, cutoff=0, mono=False): 
     210def call_kernel(kernel, values, cutoff=0, mono=False): 
    209211    """ 
    210212    Call *kernel* returned from :func:`make_kernel` with parameters *pars*. 
     
    219221    *mono* is True if polydispersity should be set to none on all parameters. 
    220222    """ 
    221     fixed_pars = [pars.get(name, kernel.info['defaults'][name]) 
    222                   for name in kernel.fixed_pars] 
    223     if mono: 
    224         pd_pars = [( np.array([pars[name]]), np.array([1.0]) ) 
    225                    for name in kernel.pd_pars] 
    226     else: 
    227         pd_pars = [get_weights(kernel.info, pars, name) for name in kernel.pd_pars] 
    228     return kernel(fixed_pars, pd_pars, cutoff=cutoff) 
     223    if mono or True: 
     224        pars = np.array([values.get(p.name, p.default) 
     225                         for p in kernel.info['parameters']]) 
     226        weights = np.array([1.0]) 
     227        details = kernel.info['mono_details'] 
     228        return kernel(pars, weights, details, cutoff) 
     229    else: 
     230        pairs = [get_weights(p, values) for p in kernel.info['parameters']] 
     231        weights, pars = [v for v in zip(*pairs)] 
     232        details = generate.poly_details(kernel.info, weights, pars) 
     233        weights, pars = [np.hstack(v) for v in (weights, pars)] 
     234        return kernel(pars, weights, details, cutoff) 
    229235 
    230236def call_ER_VR(model_info, vol_pars): 
     
    249255 
    250256 
    251 def call_ER(info, pars): 
    252     """ 
    253     Call the model ER function using *pars*. 
    254     *info* is either *model.info* if you have a loaded model, or *kernel.info* 
    255     if you have a model kernel prepared for evaluation. 
    256     """ 
    257     ER = info.get('ER', None) 
     257def call_ER(model_info, values): 
     258    """ 
     259    Call the model ER function using *values*. *model_info* is either 
     260    *model.info* if you have a loaded model, or *kernel.info* if you 
     261    have a model kernel prepared for evaluation. 
     262    """ 
     263    ER = model_info.get('ER', None) 
    258264    if ER is None: 
    259265        return 1.0 
    260266    else: 
    261         vol_pars = [get_weights(info, pars, name) 
    262                     for name in info['partype']['volume']] 
     267        vol_pars = [get_weights(parameter, values) 
     268                    for parameter in model_info['parameters'] 
     269                    if parameter.type == 'volume'] 
    263270        value, weight = dispersion_mesh(vol_pars) 
    264271        individual_radii = ER(*value) 
     
    266273        return np.sum(weight*individual_radii) / np.sum(weight) 
    267274 
    268 def call_VR(info, pars): 
     275def call_VR(model_info, values): 
    269276    """ 
    270277    Call the model VR function using *pars*. 
     
    272279    if you have a model kernel prepared for evaluation. 
    273280    """ 
    274     VR = info.get('VR', None) 
     281    VR = model_info.get('VR', None) 
    275282    if VR is None: 
    276283        return 1.0 
    277284    else: 
    278         vol_pars = [get_weights(info, pars, name) 
    279                     for name in info['partype']['volume']] 
     285        vol_pars = [get_weights(parameter, values) 
     286                    for parameter in model_info['parameters'] 
     287                    if parameter.type == 'volume'] 
    280288        value, weight = dispersion_mesh(vol_pars) 
    281289        whole, part = VR(*value) 
  • sasmodels/direct_model.py

    r02e70ff r303d8d6  
    6666            self.data_type = 'Iq' 
    6767 
    68         partype = model.info['partype'] 
    69  
    7068        if self.data_type == 'sesans': 
    7169             
     
    8179            q_mono = sesans.make_all_q(data) 
    8280        elif self.data_type == 'Iqxy': 
     81            partype = model.info['par_type'] 
    8382            if not partype['orientation'] and not partype['magnetic']: 
    8483                raise ValueError("not 2D without orientation or magnetic parameters") 
  • sasmodels/generate.py

    rd5ac45f r303d8d6  
    236236 
    237237TEMPLATE_ROOT = dirname(__file__) 
     238 
     239MAX_PD = 4 
    238240 
    239241F16 = np.dtype('float16') 
     
    352354    return [_search(search_path, f) for f in model_info['source']] 
    353355 
    354  
    355356def convert_type(source, dtype): 
    356357    """ 
     
    417418    if filename not in _template_cache or mtime > _template_cache[filename][0]: 
    418419        with open(path) as fid: 
    419             _template_cache[filename] = (mtime, fid.read()) 
     420            _template_cache[filename] = (mtime, fid.read(), path) 
    420421    return _template_cache[filename][1] 
     422 
     423def model_templates(): 
     424    # TODO: fails DRY; templates are listed in two places. 
     425    # should instead have model_info contain a list of paths 
     426    return [joinpath(TEMPLATE_ROOT, filename) 
     427            for filename in ('kernel_header.c', 'kernel_iq.c')] 
     428 
     429 
     430_FN_TEMPLATE = """\ 
     431double %(name)s(%(pars)s); 
     432double %(name)s(%(pars)s) { 
     433    %(body)s 
     434} 
     435 
     436 
     437""" 
    421438 
    422439def _gen_fn(name, pars, body): 
     
    431448         } 
    432449    """ 
    433     template = """\ 
    434 double %(name)s(%(pars)s); 
    435 double %(name)s(%(pars)s) { 
    436     %(body)s 
    437 } 
    438  
    439  
    440 """ 
    441450    par_decl = ', '.join('double ' + p for p in pars) if pars else 'void' 
    442     return template % {'name': name, 'body': body, 'pars': par_decl} 
    443  
    444 def _gen_call_pars(name, pars): 
    445     name += "." 
    446     return ",".join(name+p for p in pars) 
     451    return _FN_TEMPLATE % {'name': name, 'body': body, 'pars': par_decl} 
     452 
     453def _call_pars(prefix, pars): 
     454    """ 
     455    Return a list of *prefix.parameter* from parameter items. 
     456    """ 
     457    prefix += "." 
     458    return [prefix+p for p in pars] 
     459 
     460_IQXY_PATTERN = re.compile("^((inline|static) )? *(double )? *Iqxy *([(]|$)", 
     461                           flags=re.MULTILINE) 
     462def _have_Iqxy(sources): 
     463    """ 
     464    Return true if any file defines Iqxy. 
     465 
     466    Note this is not a C parser, and so can be easily confused by 
     467    non-standard syntax.  Also, it will incorrectly identify the following 
     468    as having Iqxy:: 
     469 
     470        /* 
     471        double Iqxy(qx, qy, ...) { ... fill this in later ... } 
     472        */ 
     473 
     474    If you want to comment out an Iqxy function, use // on the front of the 
     475    line instead. 
     476    """ 
     477    for code in sources: 
     478        if _IQXY_PATTERN.search(code): 
     479            return True 
     480    else: 
     481        return False 
    447482 
    448483def make_source(model_info): 
     
    464499    # for computing volume even if we allow non-disperse volume parameters. 
    465500 
    466     # Load template 
    467     source = [load_template('kernel_header.c')] 
    468  
    469     # Load additional sources 
    470     source += [open(f).read() for f in model_sources(model_info)] 
    471  
    472     # Prepare defines 
    473     defines = [] 
    474  
    475     iq_parameters = [p.name 
    476                      for p in model_info['parameters'][2:]  # skip scale, background 
    477                      if p.name in model_info['par_set']['1d']] 
    478     iqxy_parameters = [p.name 
    479                        for p in model_info['parameters'][2:]  # skip scale, background 
    480                        if p.name in model_info['par_set']['2d']] 
    481     volume_parameters = model_info['par_type']['volume'] 
     501    # kernel_iq assumes scale and background are the first parameters; 
     502    # they should be first for 1d and 2d parameter lists as well. 
     503    assert model_info['parameters'][0].name == 'scale' 
     504    assert model_info['parameters'][1].name == 'background' 
     505 
     506    # Identify parameter types 
     507    iq_parameters = model_info['par_type']['1d'][2:] 
     508    iqxy_parameters = model_info['par_type']['2d'][2:] 
     509    vol_parameters = model_info['par_type']['volume'] 
     510 
     511    # Load templates and user code 
     512    kernel_header = load_template('kernel_header.c') 
     513    kernel_code = load_template('kernel_iq.c') 
     514    user_code = [open(f).read() for f in model_sources(model_info)] 
     515 
     516    # Build initial sources 
     517    source = [kernel_header] + user_code 
    482518 
    483519    # Generate form_volume function, etc. from body only 
    484520    if model_info['form_volume'] is not None: 
    485         pnames = [p.name for p in volume_parameters] 
     521        pnames = [p for p in vol_parameters] 
    486522        source.append(_gen_fn('form_volume', pnames, model_info['form_volume'])) 
    487523    if model_info['Iq'] is not None: 
    488         pnames = ['q'] + [p.name for p in iq_parameters] 
     524        pnames = ['q'] + [p for p in iq_parameters] 
    489525        source.append(_gen_fn('Iq', pnames, model_info['Iq'])) 
    490526    if model_info['Iqxy'] is not None: 
    491         pnames = ['qx', 'qy'] + [p.name for p in iqxy_parameters] 
     527        pnames = ['qx', 'qy'] + [p for p in iqxy_parameters] 
    492528        source.append(_gen_fn('Iqxy', pnames, model_info['Iqxy'])) 
    493529 
    494     # Fill in definitions for volume parameters 
    495     if volume_parameters: 
    496         deref_vol = ",".join("v."+p.name for p in volume_parameters) 
    497         defines.append(('CALL_VOLUME(v)', 'form_volume(%s)\n'%deref_vol)) 
     530    # Define the parameter table 
     531    source.append("#define PARAMETER_TABLE \\") 
     532    source.append("\\\n    ".join("double %s;"%p.name 
     533                                   for p in model_info['parameters'][2:])) 
     534 
     535    # Define the function calls 
     536    if vol_parameters: 
     537        refs = ",".join(_call_pars("v", vol_parameters)) 
     538        call_volume = "#define CALL_VOLUME(v) form_volume(%s)"%refs 
    498539    else: 
    499540        # Model doesn't have volume.  We could make the kernel run a little 
    500541        # faster by not using/transferring the volume normalizations, but 
    501542        # the ifdef's reduce readability more than is worthwhile. 
    502         defines.append(('CALL_VOLUME(v)', '0.0')) 
    503  
    504     # Fill in definitions for Iq parameters 
    505     defines.append(('KERNEL_NAME', model_info['name'])) 
    506     defines.append(('IQ_PARAMETERS', ', '.join(iq_parameters))) 
    507     if fixed_1d: 
    508         defines.append(('IQ_FIXED_PARAMETER_DECLARATIONS', 
    509                         ', \\\n    '.join('const double %s' % p for p in fixed_1d))) 
    510     # Fill in definitions for Iqxy parameters 
    511     defines.append(('IQXY_KERNEL_NAME', model_info['name'] + '_Iqxy')) 
    512     defines.append(('IQXY_PARAMETERS', ', '.join(iqxy_parameters))) 
    513     if fixed_2d: 
    514         defines.append(('IQXY_FIXED_PARAMETER_DECLARATIONS', 
    515                         ', \\\n    '.join('const double %s' % p for p in fixed_2d))) 
    516     if pd_2d: 
    517         defines.append(('IQXY_WEIGHT_PRODUCT', 
    518                         '*'.join(p + '_w' for p in pd_2d))) 
    519         defines.append(('IQXY_DISPERSION_LENGTH_DECLARATIONS', 
    520                         ', \\\n    '.join('const int N%s' % p for p in pd_2d))) 
    521         defines.append(('IQXY_DISPERSION_LENGTH_SUM', 
    522                         '+'.join('N' + p for p in pd_2d))) 
    523         open_loops, close_loops = build_polydispersity_loops(pd_2d) 
    524         defines.append(('IQXY_OPEN_LOOPS', 
    525                         open_loops.replace('\n', ' \\\n'))) 
    526         defines.append(('IQXY_CLOSE_LOOPS', 
    527                         close_loops.replace('\n', ' \\\n'))) 
    528     # Need to know if we have a theta parameter for Iqxy; it is not there 
    529     # for the magnetic sphere model, for example, which has a magnetic 
    530     # orientation but no shape orientation. 
    531     if 'theta' in pd_2d: 
    532         defines.append(('IQXY_HAS_THETA', '1')) 
    533  
    534     #for d in defines: print(d) 
    535     defines = '\n'.join('#define %s %s' % (k, v) for k, v in defines) 
    536     sources = '\n\n'.join(source) 
    537     return C_KERNEL_TEMPLATE % { 
    538         'DEFINES': defines, 
    539         'SOURCES': sources, 
    540         } 
     543        call_volume = "#define CALL_VOLUME(v) 0.0" 
     544    source.append(call_volume) 
     545 
     546    refs = ["q[i]"] + _call_pars("v", iq_parameters) 
     547    call_iq = "#define CALL_IQ(q,i,v) Iq(%s)" % (",".join(refs)) 
     548    if _have_Iqxy(user_code): 
     549        # Call 2D model 
     550        refs = ["q[2*i]", "q[2*i+1]"] + _call_pars("v", iqxy_parameters) 
     551        call_iqxy = "#define CALL_IQ(q,i,v) Iqxy(%s)" % (",".join(refs)) 
     552    else: 
     553        # Call 1D model with sqrt(qx^2 + qy^2) 
     554        warnings.warn("Creating Iqxy = Iq(sqrt(qx^2 + qy^2))") 
     555        # still defined:: refs = ["q[i]"] + _call_pars("v", iq_parameters) 
     556        pars_sqrt = ["sqrt(q[2*i]*q[2*i]+q[2*i+1]*q[2*i+1])"] + refs[1:] 
     557        call_iqxy = "#define CALL_IQ(q,i,v) Iq(%s)" % (",".join(pars_sqrt)) 
     558 
     559    # Fill in definitions for numbers of parameters 
     560    source.append("#define MAX_PD %s"%model_info['max_pd']) 
     561    source.append("#define NPARS %d"%(len(model_info['parameters'])-2)) 
     562 
     563    # TODO: allow mixed python/opencl kernels? 
     564 
     565    # define the Iq kernel 
     566    source.append("#define KERNEL_NAME %s_Iq"%model_info['name']) 
     567    source.append(call_iq) 
     568    source.append(kernel_code) 
     569    source.append("#undef CALL_IQ") 
     570    source.append("#undef KERNEL_NAME") 
     571 
     572    # define the Iqxy kernel from the same source with different #defines 
     573    source.append("#define KERNEL_NAME %s_Iqxy"%model_info['name']) 
     574    source.append(call_iqxy) 
     575    source.append(kernel_code) 
     576    source.append("#undef CALL_IQ") 
     577    source.append("#undef KERNEL_NAME") 
     578 
     579    return '\n'.join(source) 
    541580 
    542581def categorize_parameters(pars): 
     
    551590    * *magnetic* set of parameters that are used to compute magnetic 
    552591      patterns (which includes all 1D and 2D parameters) 
    553     * *sesans* set of parameters that are used to compute sesans patterns 
    554      (which is just 1D without background) 
    555     * *pd-relative* is the set of parameters with relative distribution 
     592    * *pd_relative* is the set of parameters with relative distribution 
    556593      width (e.g., radius +/- 10%) rather than absolute distribution 
    557594      width (e.g., theta +/- 6 degrees). 
    558595    """ 
    559596    par_set = {} 
    560     par_set['1d'] = [p for p in pars if p.type not in ('orientation', 'magnetic')] 
    561     par_set['2d'] = [p for p in pars if p.type != 'magnetic'] 
    562     par_set['magnetic'] = [p for p in pars] 
    563     par_set['pd'] = [p for p in pars if p.type in ('volume', 'orientation')] 
    564     par_set['pd_relative'] = [p for p in pars if p.type == 'volume'] 
     597    par_set['1d'] = [p.name for p in pars if p.type not in ('orientation', 'magnetic')] 
     598    par_set['2d'] = [p.name for p in pars if p.type != 'magnetic'] 
     599    par_set['magnetic'] = [p.name for p in pars] 
     600    par_set['pd'] = [p.name for p in pars if p.type in ('volume', 'orientation')] 
     601    par_set['pd_relative'] = [p.name for p in pars if p.type == 'volume'] 
    565602    return par_set 
    566603 
     
    605642    pars = [Parameter(*p) for p in model_info['parameters']] 
    606643    # Fill in the derived attributes 
     644    par_type = collect_types(pars) 
     645    par_type.update(categorize_parameters(pars)) 
    607646    model_info['parameters'] = pars 
    608     partype = categorize_parameters(pars) 
    609     model_info['limits'] = dict((p.name, p.limits) for p in pars) 
    610     model_info['par_type'] = collect_types(pars) 
    611     model_info['par_set'] = categorize_parameters(pars) 
    612     model_info['defaults'] = dict((p.name, p.default) for p in pars) 
     647    model_info['par_type'] = par_type 
    613648    if model_info.get('demo', None) is None: 
    614         model_info['demo'] = model_info['defaults'] 
    615     model_info['has_2d'] = partype['orientation'] or partype['magnetic'] 
     649        model_info['demo'] = dict((p.name, p.default) for p in pars) 
     650    model_info['has_2d'] = par_type['orientation'] or par_type['magnetic'] 
     651 
     652def mono_details(max_pd, npars): 
     653    par_offset = 5*max_pd 
     654    const_offset = par_offset + 3*npars 
     655 
     656    mono = np.zeros(const_offset + 3, 'i') 
     657    mono[0] = 0                # pd_par: arbitrary order; use first 
     658    mono[1*max_pd] = 1         # pd_length: only one element 
     659    mono[2*max_pd] = 2         # pd_offset: skip scale and background 
     660    mono[3*max_pd] = 1         # pd_stride: vectors of length 1 
     661    mono[4*max_pd-1] = 1       # pd_stride[-1]: only one element in set 
     662    mono[4*max_pd] = 0         # pd_isvol: doens't matter if no norm 
     663    mono[par_offset:par_offset+npars] = np.arange(2, npars+2, dtype='i') 
     664    # par_offset: copied in order 
     665    mono[par_offset+npars:par_offset+2*npars] = 0 
     666    # par_coord: no coordinated parameters 
     667    mono[par_offset+npars] = 1 # par_coord[0]: except par 0 
     668    mono[par_offset+2*npars:par_offset+3*npars] = 0 
     669    # fast coord with 0 
     670    mono[const_offset] = 1     # fast_coord_count: one fast index 
     671    mono[const_offset+1] = -1  # theta_var: None 
     672    mono[const_offset+2] = 0   # fast_theta: False 
     673    return mono 
     674 
     675def poly_details(model_info, weights, pars, constraints=None): 
     676    if constraints is not None: 
     677        # Need to find the independently varying pars and sort them 
     678        # Need to build a coordination list for the dependent variables 
     679        # Need to generate a constraints function which takes values 
     680        # and weights, returning par blocks 
     681        raise ValueError("Can't handle constraints yet") 
     682 
     683    raise ValueError("polydispersity not supported") 
     684 
     685 
     686def create_default_functions(model_info): 
     687    """ 
     688    Autogenerate missing functions, such as Iqxy from Iq. 
     689 
     690    This only works for Iqxy when Iq is written in python. :func:`make_source` 
     691    performs a similar role for Iq written in C. 
     692    """ 
     693    if model_info['Iq'] is not None and model_info['Iqxy'] is None: 
     694        if model_info['par_type']['1d'] != model_info['par_type']['2d']: 
     695            raise ValueError("Iqxy model is missing") 
     696        Iq = model_info['Iq'] 
     697        def Iqxy(qx, qy, **kw): 
     698            return Iq(np.sqrt(qx**2 + qy**2), **kw) 
     699        model_info['Iqxy'] = Iqxy 
    616700 
    617701def make_model_info(kernel_module): 
     
    640724      model variants (e.g., the list of cases) or is None if there are no 
    641725      model variants 
    642     * *defaults* is the *{parameter: value}* table built from the parameter 
    643       description table. 
    644     * *limits* is the *{parameter: [min, max]}* table built from the 
    645       parameter description table. 
    646     * *partypes* categorizes the model parameters. See 
     726    * *par_type* categorizes the model parameters. See 
    647727      :func:`categorize_parameters` for details. 
    648728    * *demo* contains the *{parameter: value}* map used in compare (and maybe 
     
    661741      *model_info* blocks for the composition objects.  This allows us to 
    662742      build complete product and mixture models from just the info. 
     743    * *max_pd* is the max polydispersity dimension.  This is constant and 
     744      should not be reset.  You may be able to change it when the program 
     745      starts by setting *sasmodels.generate.MAX_PD*. 
    663746 
    664747    """ 
     
    671754        name = " ".join(w.capitalize() for w in kernel_id.split('_')) 
    672755    model_info = dict( 
     756        max_pd=MAX_PD, 
    673757        id=kernel_id,  # string used to load the kernel 
    674758        filename=abspath(kernel_module.__file__), 
     
    688772        oldpars=getattr(kernel_module, 'oldpars', {}), 
    689773        tests=getattr(kernel_module, 'tests', []), 
     774        mono_details = mono_details(MAX_PD, len(kernel_module.parameters)) 
    690775        ) 
    691776    process_parameters(model_info) 
     
    693778    functions = "ER VR form_volume Iq Iqxy shape sesans".split() 
    694779    model_info.update((k, getattr(kernel_module, k, None)) for k in functions) 
     780    create_default_functions(model_info) 
    695781    return model_info 
    696782 
  • sasmodels/kernel_header.c

    r2e44ac7 r03cac08  
    11#ifdef __OPENCL_VERSION__ 
    22# define USE_OPENCL 
     3#elif defined(_OPENMP) 
     4# define USE_OPENMP 
    35#endif 
    4  
    5 #define USE_KAHAN_SUMMATION 0 
    66 
    77// If opencl is not available, then we are compiling a C function 
     
    1616         #include <float.h> 
    1717         #define kernel extern "C" __declspec( dllexport ) 
    18          inline double trunc(double x) { return x>=0?floor(x):-floor(-x); } 
    19          inline double fmin(double x, double y) { return x>y ? y : x; } 
    20          inline double fmax(double x, double y) { return x<y ? y : x; } 
    21          inline double isnan(double x) { return _isnan(x); } 
     18         static double trunc(double x) { return x>=0?floor(x):-floor(-x); } 
     19         static double fmin(double x, double y) { return x>y ? y : x; } 
     20         static double fmax(double x, double y) { return x<y ? y : x; } 
     21         static double isnan(double x) { return _isnan(x); } 
    2222         #define NAN (std::numeric_limits<double>::quiet_NaN()) // non-signalling NaN 
    2323         static double cephes_expm1(double x) { 
     
    4848         #define kernel extern "C" 
    4949     #endif 
    50      inline void SINCOS(double angle, double &svar, double &cvar) { svar=sin(angle); cvar=cos(angle); } 
     50     static void SINCOS(double angle, double &svar, double &cvar) { svar=sin(angle); cvar=cos(angle); } 
    5151#  else 
    5252     #include <stdio.h> 
     
    9999#  define M_4PI_3 4.18879020478639 
    100100#endif 
    101 //inline double square(double x) { return pow(x,2.0); } 
    102 //inline double square(double x) { return pown(x,2); } 
    103 inline double square(double x) { return x*x; } 
    104 inline double cube(double x) { return x*x*x; } 
    105 inline double sinc(double x) { return x==0 ? 1.0 : sin(x)/x; } 
     101static double square(double x) { return x*x; } 
     102static double cube(double x) { return x*x*x; } 
     103static double sinc(double x) { return x==0 ? 1.0 : sin(x)/x; } 
    106104 
  • sasmodels/kernel_iq.c

    rd5ac45f r303d8d6  
    1212*/ 
    1313 
     14#ifndef _PAR_BLOCK_ // protected block so we can include this code twice. 
     15#define _PAR_BLOCK_ 
    1416 
    1517#define MAX_PD 4  // MAX_PD is the max number of polydisperse parameters 
    16 #define PD_2N 16  // PD_2N is the size of the coordination step table 
    1718 
    1819typedef struct { 
     
    3132 
    3233typedef struct { 
    33     PARAMETER_DECL; 
     34    PARAMETER_TABLE; 
    3435} ParameterBlock; 
    35  
    36 #define FULL_KERNEL_NAME KERNEL_NAME ## _ ## IQ_FUNC 
    37 KERNEL 
    38 void FULL_KERNEL_NAME( 
     36#endif 
     37 
     38 
     39kernel 
     40void KERNEL_NAME( 
    3941    int nq,                 // number of q values 
     42    const int pd_start,     // where we are in the polydispersity loop 
     43    const int pd_stop,      // where we are stopping in the polydispersity loop 
    4044    global const ProblemDetails *problem, 
    4145    global const double *weights, 
    4246    global const double *pars, 
    4347    global const double *q, // nq q values, with padding to boundary 
    44     global double *result,  // nq return values, again with padding 
    45     const double cutoff,    // cutoff in the polydispersity weight product 
    46     const int pd_start,     // where we are in the polydispersity loop 
    47     const int pd_stop,      // where we are stopping in the polydispersity loop 
     48    global double *result,  // nq+3 return values, again with padding 
     49    const double cutoff     // cutoff in the polydispersity weight product 
    4850    ) 
    4951{ 
    50  
     52printf("hello\n"); 
    5153  // Storage for the current parameter values.  These will be updated as we 
    5254  // walk the polydispersity cube. 
    5355  local ParameterBlock local_pars;  // current parameter values 
    54   const double *parvec = &local_pars;  // Alias named parameters with a vector 
     56  double *pvec = (double *)(&local_pars);  // Alias named parameters with a vector 
    5557 
    5658  local int offset[NPARS-2]; 
     
    6062    // Shouldn't need to copy!! 
    6163    for (int k=0; k < NPARS; k++) { 
    62       parvec[k] = pars[k+2];  // skip scale and background 
     64      pvec[k] = pars[k+2];  // skip scale and background 
    6365    } 
    6466 
     
    6870    for (int i=0; i < nq; i++) { 
    6971    { 
    70       const double scattering = IQ_FUNC(IQ_PARS, IQ_PARAMETERS); 
     72      const double scattering = CALL_IQ(q, i, local_pars); 
    7173      result[i] += pars[0]*scattering + pars[1]; 
    7274    } 
     
    99101    norm = result[nq]; 
    100102    vol = result[nq+1]; 
    101     norm_vol = results[nq+2]; 
     103    norm_vol = result[nq+2]; 
    102104  } 
    103105 
    104106  // Location in the polydispersity hypercube, one index per dimension. 
    105   local int pd_index[PD_MAX]; 
     107  local int pd_index[MAX_PD]; 
    106108 
    107109  // Trigger the reset behaviour that happens at the end the fast loop 
    108110  // by setting the initial index >= weight vector length. 
    109   pd_index[0] = pd_length[0]; 
     111  pd_index[0] = problem->pd_length[0]; 
     112 
    110113 
    111114  // need product of weights at every Iq calc, so keep product of 
     
    120123  for (int loop_index=pd_start; loop_index < pd_stop; loop_index++) { 
    121124    // check if indices need to be updated 
    122     if (pd_index[0] >= pd_length[0]) { 
     125    if (pd_index[0] >= problem->pd_length[0]) { 
    123126 
    124127      // RESET INDICES 
    125       pd_index[0] = loop_index%pd_length[0]; 
     128      pd_index[0] = loop_index%problem->pd_length[0]; 
    126129      partial_weight = 1.0; 
    127130      partial_volweight = 1.0; 
    128131      for (int k=1; k < MAX_PD; k++) { 
    129         pd_index[k] = (loop_index%pd_length[k])/pd_stride[k]; 
    130         const double wi = weights[pd_offset[0]+pd_index[0]]; 
     132        pd_index[k] = (loop_index%problem->pd_length[k])/problem->pd_stride[k]; 
     133        const double wi = weights[problem->pd_offset[0]+pd_index[0]]; 
    131134        partial_weight *= wi; 
    132         if (pd_isvol[k]) partial_volweight *= wi; 
     135        if (problem->pd_isvol[k]) partial_volweight *= wi; 
    133136      } 
    134137      for (int k=0; k < NPARS; k++) { 
    135         int coord = par_coord[k]; 
    136         int this_offset = par_offset[k]; 
     138        int coord = problem->par_coord[k]; 
     139        int this_offset = problem->par_offset[k]; 
    137140        int block_size = 1; 
    138141        for (int bit=0; bit < MAX_PD && coord != 0; bit++) { 
    139142          if (coord&1) { 
    140143              this_offset += block_size * pd_index[bit]; 
    141               block_size *= pd_length[bit]; 
     144              block_size *= problem->pd_length[bit]; 
    142145          } 
    143146          coord /= 2; 
    144147        } 
    145148        offset[k] = this_offset; 
    146         parvec[k] = pars[this_offset]; 
    147       } 
    148       weight = partial_weight * weights[pd_offset[0]+pd_index[0]] 
    149       if (theta_var >= 0) { 
    150         spherical_correction = fabs(cos(M_PI_180*parvec[theta_var])); 
    151       } 
    152       if (!fast_theta) weight *= spherical_correction; 
     149        pvec[k] = pars[this_offset]; 
     150      } 
     151      weight = partial_weight * weights[problem->pd_offset[0]+pd_index[0]]; 
     152      if (problem->theta_var >= 0) { 
     153        spherical_correction = fabs(cos(M_PI_180*pvec[problem->theta_var])); 
     154      } 
     155      if (!problem->fast_theta) { 
     156        weight *= spherical_correction; 
     157      } 
    153158 
    154159    } else { 
     
    156161      // INCREMENT INDICES 
    157162      pd_index[0] += 1; 
    158       const double wi = weights[pd_offset[0]+pd_index[0]]; 
     163      const double wi = weights[problem->pd_offset[0]+pd_index[0]]; 
    159164      weight = partial_weight*wi; 
    160       if (pd_isvol[0]) vol_weight *= wi; 
     165      if (problem->pd_isvol[0]) vol_weight *= wi; 
    161166      for (int k=0; k < problem->fast_coord_count; k++) { 
    162         parvec[ fast_coord_index[k]] 
    163             = pars[offset[fast_coord_index[k]] + pd_index[0]]; 
    164       } 
    165       if (fast_theta) weight *= fabs(cos(M_PI_180*parvec[theta_var])); 
    166  
     167        pvec[problem->fast_coord_index[k]] 
     168            = pars[offset[problem->fast_coord_index[k]]++]; 
     169      } 
     170      if (problem->fast_theta) { 
     171        weight *= fabs(cos(M_PI_180*pvec[problem->theta_var])); 
     172      } 
    167173    } 
    168174 
     
    171177    #endif 
    172178 
     179    // Accumulate I(q) 
     180    // Note: weight==0 must always be excluded 
    173181    if (weight > cutoff) { 
    174182      norm += weight; 
     
    180188      #endif 
    181189      for (int i=0; i < nq; i++) { 
    182       { 
    183         const double scattering = CALL_IQ(q, nq, i, local_pars); 
     190        const double scattering = CALL_IQ(q, i, local_pars); 
    184191        result[i] += weight*scattering; 
    185192      } 
     193    } 
    186194  } 
    187195  //Makes a normalization avialable for the next round 
     
    191199 
    192200  //End of the PD loop we can normalize 
    193   if (pd_stop == pd_stride[MAX_PD-1]) {} 
     201  if (pd_stop >= problem->pd_stride[MAX_PD-1]) { 
    194202    #ifdef USE_OPENMP 
    195203    #pragma omp parallel for 
  • sasmodels/kerneldll.py

    r17bbadd r303d8d6  
    6161if sys.platform == 'darwin': 
    6262    #COMPILE = "gcc-mp-4.7 -shared -fPIC -std=c99 -fopenmp -O2 -Wall %s -o %s -lm -lgomp" 
    63     COMPILE = "gcc -shared -fPIC -std=c99 -O2 -Wall %(source)s -o %(output)s -lm" 
     63    COMPILE = "gcc -shared -fPIC -std=c99 -O2 -Wall %(source)s -o %(output)s -lm -fno-unknown-pragmas" 
    6464elif os.name == 'nt': 
    6565    # call vcvarsall.bat before compiling to set path, headers, libs, etc. 
     
    8080        COMPILE = "gcc -shared -fPIC -std=c99 -O2 -Wall %(source)s -o %(output)s -lm" 
    8181        if "SAS_OPENMP" in os.environ: 
    82             COMPILE = COMPILE + " -fopenmp" 
     82            COMPILE += " -fopenmp" 
     83        else: 
     84            COMPILE += " -fWno-unknown-pragmas" 
    8385else: 
    8486    COMPILE = "cc -shared -fPIC -fopenmp -std=c99 -O2 -Wall %(source)s -o %(output)s -lm" 
     
    140142 
    141143    source = generate.convert_type(source, dtype) 
    142     source_files = generate.model_sources(model_info) + [model_info['filename']] 
     144    source_files = (generate.model_sources(model_info) 
     145                    + [model_info['filename']] 
     146                    + generate.model_templates()) 
    143147    dll = dll_path(model_info, dtype) 
    144148    newest = max(os.path.getmtime(f) for f in source_files) 
     
    170174    return DllModel(filename, model_info, dtype=dtype) 
    171175 
    172  
    173 IQ_ARGS = [c_void_p, c_void_p, c_int] 
    174 IQXY_ARGS = [c_void_p, c_void_p, c_void_p, c_int] 
    175  
    176176class DllModel(object): 
    177177    """ 
     
    195195 
    196196    def _load_dll(self): 
    197         Nfixed1d = len(self.info['partype']['fixed-1d']) 
    198         Nfixed2d = len(self.info['partype']['fixed-2d']) 
    199         Npd1d = len(self.info['partype']['pd-1d']) 
    200         Npd2d = len(self.info['partype']['pd-2d']) 
    201  
    202197        #print("dll", self.dllpath) 
    203198        try: 
     
    210205              else c_double if self.dtype == generate.F64 
    211206              else c_longdouble) 
    212         pd_args_1d = [c_void_p, fp] + [c_int]*Npd1d if Npd1d else [] 
    213         pd_args_2d = [c_void_p, fp] + [c_int]*Npd2d if Npd2d else [] 
     207 
     208        # int, int, int, int*, double*, double*, double*, double*, double*, double 
     209        argtypes = [c_int]*3 + [c_void_p]*5 + [fp] 
    214210        self.Iq = self.dll[generate.kernel_name(self.info, False)] 
    215         self.Iq.argtypes = IQ_ARGS + pd_args_1d + [fp]*Nfixed1d 
    216  
    217211        self.Iqxy = self.dll[generate.kernel_name(self.info, True)] 
    218         self.Iqxy.argtypes = IQXY_ARGS + pd_args_2d + [fp]*Nfixed2d 
     212        self.Iq.argtypes = argtypes 
     213        self.Iqxy.argtypes = argtypes 
    219214 
    220215    def __getstate__(self): 
     
    261256        self.q_input = q_input 
    262257        self.kernel = kernel 
    263         self.res = np.empty(q_input.nq, q_input.dtype) 
     258        self.res = np.empty(q_input.nq+3, q_input.dtype) 
    264259        dim = '2d' if q_input.is_2d else '1d' 
    265         self.fixed_pars = model_info['partype']['fixed-' + dim] 
    266         self.pd_pars = model_info['partype']['pd-' + dim] 
     260        self.parameters = model_info['par_type'][dim] 
    267261 
    268262        # In dll kernel, but not in opencl kernel 
    269263        self.p_res = self.res.ctypes.data 
    270264 
    271     def __call__(self, fixed_pars, pd_pars, cutoff): 
     265    def __call__(self, details, values, weights, cutoff): 
    272266        real = (np.float32 if self.q_input.dtype == generate.F32 
    273267                else np.float64 if self.q_input.dtype == generate.F64 
    274268                else np.float128) 
    275  
    276         nq = c_int(self.q_input.nq) 
    277         if pd_pars: 
    278             cutoff = real(cutoff) 
    279             loops_N = [np.uint32(len(p[0])) for p in pd_pars] 
    280             loops = np.hstack(pd_pars) 
    281             loops = np.ascontiguousarray(loops.T, self.q_input.dtype).flatten() 
    282             p_loops = loops.ctypes.data 
    283             dispersed = [p_loops, cutoff] + loops_N 
    284         else: 
    285             dispersed = [] 
    286         fixed = [real(p) for p in fixed_pars] 
    287         args = self.q_input.q_pointers + [self.p_res, nq] + dispersed + fixed 
    288         #print(pars) 
     269        args = [ 
     270            self.q_input.nq, # nq 
     271            0, # pd_start 
     272            1, # pd_stop 
     273            details.ctypes.data, # problem 
     274            weights.ctypes.data,  # weights 
     275            values.ctypes.data,  #pars 
     276            self.q_input.q_pointers[0], #q 
     277            self.p_res,   # results 
     278            real(cutoff), # cutoff 
     279            ] 
    289280        self.kernel(*args) 
    290281 
    291         return self.res 
     282        return self.res[:-3] 
    292283 
    293284    def release(self): 
  • sasmodels/models/cylinder.c

    r50e1e40 r03cac08  
    33double Iqxy(double qx, double qy, double sld, double solvent_sld, 
    44    double radius, double length, double theta, double phi); 
     5 
     6#define INVALID(v) (v.radius<0 || v.length<0) 
    57 
    68double form_volume(double radius, double length) 
     
    1517    double length) 
    1618{ 
    17     // TODO: return NaN if radius<0 or length<0? 
    1819    // precompute qr and qh to save time in the loop 
    1920    const double qr = q*radius; 
     
    4748    double phi) 
    4849{ 
    49     // TODO: return NaN if radius<0 or length<0? 
    5050    double sn, cn; // slots to hold sincos function output 
    5151 
  • sasmodels/models/gel_fit.c

    r30b4ddf r03cac08  
    1 double form_volume(void); 
    2  
    3 double Iq(double q, 
    4           double guinier_scale, 
    5           double lorentzian_scale, 
    6           double gyration_radius, 
    7           double fractal_exp, 
    8           double cor_length); 
    9  
    10 double Iqxy(double qx, double qy, 
    11           double guinier_scale, 
    12           double lorentzian_scale, 
    13           double gyration_radius, 
    14           double fractal_exp, 
    15           double cor_length); 
    16  
    17 static double _gel_fit_kernel(double q, 
     1static double Iq(double q, 
    182          double guinier_scale, 
    193          double lorentzian_scale, 
     
    248    // Lorentzian Term 
    259    ////////////////////////double a(x[i]*x[i]*zeta*zeta); 
    26     double lorentzian_term = q*q*cor_length*cor_length; 
     10    double lorentzian_term = square(q*cor_length); 
    2711    lorentzian_term = 1.0 + ((fractal_exp + 1.0)/3.0)*lorentzian_term; 
    2812    lorentzian_term = pow(lorentzian_term, (fractal_exp/2.0) ); 
     
    3014    // Exponential Term 
    3115    ////////////////////////double d(x[i]*x[i]*rg*rg); 
    32     double exp_term = q*q*gyration_radius*gyration_radius; 
     16    double exp_term = square(q*gyration_radius); 
    3317    exp_term = exp(-1.0*(exp_term/3.0)); 
    3418 
     
    3721    return result; 
    3822} 
    39 double form_volume(void){ 
    40     // Unused, so free to return garbage. 
    41     return NAN; 
    42 } 
    43  
    44 double Iq(double q, 
    45           double guinier_scale, 
    46           double lorentzian_scale, 
    47           double gyration_radius, 
    48           double fractal_exp, 
    49           double cor_length) 
    50 { 
    51     return _gel_fit_kernel(q, 
    52                           guinier_scale, 
    53                           lorentzian_scale, 
    54                           gyration_radius, 
    55                           fractal_exp, 
    56                           cor_length); 
    57 } 
    58  
    59 // Iqxy is never called since no orientation or magnetic parameters. 
    60 double Iqxy(double qx, double qy, 
    61           double guinier_scale, 
    62           double lorentzian_scale, 
    63           double gyration_radius, 
    64           double fractal_exp, 
    65           double cor_length) 
    66 { 
    67     double q = sqrt(qx*qx + qy*qy); 
    68     return _gel_fit_kernel(q, 
    69                           guinier_scale, 
    70                           lorentzian_scale, 
    71                           gyration_radius, 
    72                           fractal_exp, 
    73                           cor_length); 
    74 } 
    75  
  • sasmodels/product.py

    r72a081d r303d8d6  
    9999        # a parameter map. 
    100100        par_map = {} 
    101         p_info = p_kernel.info['partype'] 
    102         s_info = s_kernel.info['partype'] 
     101        p_info = p_kernel.info['par_type'] 
     102        s_info = s_kernel.info['par_type'] 
    103103        vol_pars = set(p_info['volume']) 
    104104        if dim == '2d': 
  • sasmodels/resolution.py

    ra146eaa r303d8d6  
    504504    from scipy.integrate import romberg 
    505505 
    506     if any(k not in form.info['defaults'] for k in pars.keys()): 
    507         keys = set(form.info['defaults'].keys()) 
    508         extra = set(pars.keys()) - keys 
     506    par_set = set([p.name for p in form.info['parameters']]) 
     507    if any(k not in par_set for k in pars.keys()): 
     508        extra = set(pars.keys()) - par_set 
    509509        raise ValueError("bad parameters: [%s] not in [%s]"% 
    510510                         (", ".join(sorted(extra)), ", ".join(sorted(keys)))) 
     
    558558    from scipy.integrate import romberg 
    559559 
    560     if any(k not in form.info['defaults'] for k in pars.keys()): 
    561         keys = set(form.info['defaults'].keys()) 
    562         extra = set(pars.keys()) - keys 
     560    par_set = set([p.name for p in form.info['parameters']]) 
     561    if any(k not in par_set for k in pars.keys()): 
     562        extra = set(pars.keys()) - par_set 
    563563        raise ValueError("bad parameters: [%s] not in [%s]"% 
    564564                         (", ".join(sorted(extra)), ", ".join(sorted(keys)))) 
  • sasmodels/kernelpy.py

    rd5ac45f r31d22de  
    128128 
    129129    def __call__(self, fixed, pd, cutoff=1e-5): 
    130         print("fixed",fixed) 
    131         print("pd", pd) 
     130        #print("fixed",fixed) 
     131        #print("pd", pd) 
    132132        args = self.args[:]  # grab a copy of the args 
    133133        form, form_volume = self.kernel, self.info['form_volume'] 
     
    187187    ################################################################ 
    188188 
    189     #TODO: Wojtek's notes 
    190     #TODO: The goal is to restructure polydispersity loop 
    191     #so it allows fitting arbitrary polydispersity parameters 
    192     #and it accepts cases like coupled parameters 
    193189    weight = np.empty(len(pd), 'd') 
    194190    if weight.size > 0: 
     
    264260    result = scale * ret / norm + background 
    265261    return result 
    266  
    267 """ 
    268 Python driver for python kernels 
    269  
    270 Calls the kernel with a vector of $q$ values for a single parameter set. 
    271 Polydispersity is supported by looping over different parameter sets and 
    272 summing the results.  The interface to :class:`PyModel` matches those for 
    273 :class:`kernelcl.GpuModel` and :class:`kerneldll.DllModel`. 
    274 """ 
    275 import numpy as np 
    276 from numpy import pi, cos 
    277  
    278 from .generate import F64 
    279  
    280 class PyModel(object): 
    281     """ 
    282     Wrapper for pure python models. 
    283     """ 
    284     def __init__(self, model_info): 
    285         self.info = model_info 
    286  
    287     def __call__(self, q_vectors): 
    288         q_input = PyInput(q_vectors, dtype=F64) 
    289         kernel = self.info['Iqxy'] if q_input.is_2d else self.info['Iq'] 
    290         return PyKernel(kernel, self.info, q_input) 
    291  
    292     def release(self): 
    293         """ 
    294         Free resources associated with the model. 
    295         """ 
    296         pass 
    297  
    298 class PyInput(object): 
    299     """ 
    300     Make q data available to the gpu. 
    301  
    302     *q_vectors* is a list of q vectors, which will be *[q]* for 1-D data, 
    303     and *[qx, qy]* for 2-D data.  Internally, the vectors will be reallocated 
    304     to get the best performance on OpenCL, which may involve shifting and 
    305     stretching the array to better match the memory architecture.  Additional 
    306     points will be evaluated with *q=1e-3*. 
    307  
    308     *dtype* is the data type for the q vectors. The data type should be 
    309     set to match that of the kernel, which is an attribute of 
    310     :class:`GpuProgram`.  Note that not all kernels support double 
    311     precision, so even if the program was created for double precision, 
    312     the *GpuProgram.dtype* may be single precision. 
    313  
    314     Call :meth:`release` when complete.  Even if not called directly, the 
    315     buffer will be released when the data object is freed. 
    316     """ 
    317     def __init__(self, q_vectors, dtype): 
    318         self.nq = q_vectors[0].size 
    319         self.dtype = dtype 
    320         self.is_2d = (len(q_vectors) == 2) 
    321         self.q_vectors = [np.ascontiguousarray(q, self.dtype) for q in q_vectors] 
    322         self.q_pointers = [q.ctypes.data for q in self.q_vectors] 
    323  
    324     def release(self): 
    325         """ 
    326         Free resources associated with the model inputs. 
    327         """ 
    328         self.q_vectors = [] 
    329  
    330 class PyKernel(object): 
    331     """ 
    332     Callable SAS kernel. 
    333  
    334     *kernel* is the DllKernel object to call. 
    335  
    336     *model_info* is the module information 
    337  
    338     *q_input* is the DllInput q vectors at which the kernel should be 
    339     evaluated. 
    340  
    341     The resulting call method takes the *pars*, a list of values for 
    342     the fixed parameters to the kernel, and *pd_pars*, a list of (value,weight) 
    343     vectors for the polydisperse parameters.  *cutoff* determines the 
    344     integration limits: any points with combined weight less than *cutoff* 
    345     will not be calculated. 
    346  
    347     Call :meth:`release` when done with the kernel instance. 
    348     """ 
    349     def __init__(self, kernel, model_info, q_input): 
    350         self.info = model_info 
    351         self.q_input = q_input 
    352         self.res = np.empty(q_input.nq, q_input.dtype) 
    353         dim = '2d' if q_input.is_2d else '1d' 
    354         # Loop over q unless user promises that the kernel is vectorized by 
    355         # taggining it with vectorized=True 
    356         if not getattr(kernel, 'vectorized', False): 
    357             if dim == '2d': 
    358                 def vector_kernel(qx, qy, *args): 
    359                     """ 
    360                     Vectorized 2D kernel. 
    361                     """ 
    362                     return np.array([kernel(qxi, qyi, *args) 
    363                                      for qxi, qyi in zip(qx, qy)]) 
    364             else: 
    365                 def vector_kernel(q, *args): 
    366                     """ 
    367                     Vectorized 1D kernel. 
    368                     """ 
    369                     return np.array([kernel(qi, *args) 
    370                                      for qi in q]) 
    371             self.kernel = vector_kernel 
    372         else: 
    373             self.kernel = kernel 
    374         fixed_pars = model_info['partype']['fixed-' + dim] 
    375         pd_pars = model_info['partype']['pd-' + dim] 
    376         vol_pars = model_info['partype']['volume'] 
    377  
    378         # First two fixed pars are scale and background 
    379         pars = [p.name for p in model_info['parameters'][2:]] 
    380         offset = len(self.q_input.q_vectors) 
    381         self.args = self.q_input.q_vectors + [None] * len(pars) 
    382         self.fixed_index = np.array([pars.index(p) + offset 
    383                                      for p in fixed_pars[2:]]) 
    384         self.pd_index = np.array([pars.index(p) + offset 
    385                                   for p in pd_pars]) 
    386         self.vol_index = np.array([pars.index(p) + offset 
    387                                    for p in vol_pars]) 
    388         try: self.theta_index = pars.index('theta') + offset 
    389         except ValueError: self.theta_index = -1 
    390  
    391         # Caller needs fixed_pars and pd_pars 
    392         self.fixed_pars = fixed_pars 
    393         self.pd_pars = pd_pars 
    394  
    395     def __call__(self, fixed, pd, cutoff=1e-5): 
    396         #print("fixed",fixed) 
    397         #print("pd", pd) 
    398         args = self.args[:]  # grab a copy of the args 
    399         form, form_volume = self.kernel, self.info['form_volume'] 
    400         # First two fixed 
    401         scale, background = fixed[:2] 
    402         for index, value in zip(self.fixed_index, fixed[2:]): 
    403             args[index] = float(value) 
    404         res = _loops(form, form_volume, cutoff, scale, background, args, 
    405                      pd, self.pd_index, self.vol_index, self.theta_index) 
    406  
    407         return res 
    408  
    409     def release(self): 
    410         """ 
    411         Free resources associated with the kernel. 
    412         """ 
    413         self.q_input = None 
    414  
    415 def _loops(form, form_volume, cutoff, scale, background, 
    416            args, pd, pd_index, vol_index, theta_index): 
    417     """ 
    418     *form* is the name of the form function, which should be vectorized over 
    419     q, but otherwise have an interface like the opencl kernels, with the 
    420     q parameters first followed by the individual parameters in the order 
    421     given in model.parameters (see :mod:`sasmodels.generate`). 
    422  
    423     *form_volume* calculates the volume of the shape.  *vol_index* gives 
    424     the list of volume parameters 
    425  
    426     *cutoff* ignores the corners of the dispersion hypercube 
    427  
    428     *scale*, *background* multiplies the resulting form and adds an offset 
    429  
    430     *args* is the prepopulated set of arguments to the form function, starting 
    431     with the q vectors, and including slots for all the parameters.  The 
    432     values for the parameters will be substituted with values from the 
    433     dispersion functions. 
    434  
    435     *pd* is the list of dispersion parameters 
    436  
    437     *pd_index* are the indices of the dispersion parameters in *args* 
    438  
    439     *vol_index* are the indices of the volume parameters in *args* 
    440  
    441     *theta_index* is the index of the theta parameter for the sasview 
    442     spherical correction, or -1 if there is no angular dispersion 
    443     """ 
    444  
    445     ################################################################ 
    446     #                                                              # 
    447     #   !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!   # 
    448     #   !!                                                    !!   # 
    449     #   !!  KEEP THIS CODE CONSISTENT WITH KERNEL_TEMPLATE.C  !!   # 
    450     #   !!                                                    !!   # 
    451     #   !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!   # 
    452     #                                                              # 
    453     ################################################################ 
    454  
    455     weight = np.empty(len(pd), 'd') 
    456     if weight.size > 0: 
    457         # weight vector, to be populated by polydispersity loops 
    458  
    459         # identify which pd parameters are volume parameters 
    460         vol_weight_index = np.array([(index in vol_index) for index in pd_index]) 
    461  
    462         # Sort parameters in decreasing order of pd length 
    463         Npd = np.array([len(pdi[0]) for pdi in pd], 'i') 
    464         order = np.argsort(Npd)[::-1] 
    465         stride = np.cumprod(Npd[order]) 
    466         pd = [pd[index] for index in order] 
    467         pd_index = pd_index[order] 
    468         vol_weight_index = vol_weight_index[order] 
    469  
    470         fast_value = pd[0][0] 
    471         fast_weight = pd[0][1] 
    472     else: 
    473         stride = np.array([1]) 
    474         vol_weight_index = slice(None, None) 
    475         # keep lint happy 
    476         fast_value = [None] 
    477         fast_weight = [None] 
    478  
    479     ret = np.zeros_like(args[0]) 
    480     norm = np.zeros_like(ret) 
    481     vol = np.zeros_like(ret) 
    482     vol_norm = np.zeros_like(ret) 
    483     for k in range(stride[-1]): 
    484         # update polydispersity parameter values 
    485         fast_index = k % stride[0] 
    486         if fast_index == 0:  # bottom loop complete ... check all other loops 
    487             if weight.size > 0: 
    488                 for i, index, in enumerate(k % stride): 
    489                     args[pd_index[i]] = pd[i][0][index] 
    490                     weight[i] = pd[i][1][index] 
    491         else: 
    492             args[pd_index[0]] = fast_value[fast_index] 
    493             weight[0] = fast_weight[fast_index] 
    494  
    495         # Computes the weight, and if it is not sufficient then ignore this 
    496         # parameter set. 
    497         # Note: could precompute w1*...*wn so we only need to multiply by w0 
    498         w = np.prod(weight) 
    499         if w > cutoff: 
    500             # Note: can precompute spherical correction if theta_index is not 
    501             # the fast index. Correction factor for spherical integration 
    502             #spherical_correction = abs(cos(pi*args[phi_index])) if phi_index>=0 else 1.0 
    503             spherical_correction = (abs(cos(pi * args[theta_index])) * pi / 2 
    504                                     if theta_index >= 0 else 1.0) 
    505             #spherical_correction = 1.0 
    506  
    507             # Call the scattering function and adds it to the total. 
    508             I = form(*args) 
    509             if np.isnan(I).any(): continue 
    510             ret += w * I * spherical_correction 
    511             norm += w 
    512  
    513             # Volume normalization. 
    514             # If there are "volume" polydispersity parameters, then these 
    515             # will be used to call the form_volume function from the user 
    516             # supplied kernel, and accumulate a normalized weight. 
    517             # Note: can precompute volume norm if fast index is not a volume 
    518             if form_volume: 
    519                 vol_args = [args[index] for index in vol_index] 
    520                 vol_weight = np.prod(weight[vol_weight_index]) 
    521                 vol += vol_weight * form_volume(*vol_args) 
    522                 vol_norm += vol_weight 
    523  
    524     positive = (vol * vol_norm != 0.0) 
    525     ret[positive] *= vol_norm[positive] / vol[positive] 
    526     result = scale * ret / norm + background 
    527     return result 
Note: See TracChangeset for help on using the changeset viewer.