source: sasmodels/sasmodels/resolution.py @ a146eaa

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since a146eaa was a146eaa, checked in by smk78, 8 years ago

Addressing Sphinx build errors: Changed unexpected section title
Algorithm to Definition. Also corrected erroneous indent.

  • Property mode set to 100644
File size: 38.7 KB
Line 
1"""
2Define the resolution functions for the data.
3
4This defines classes for 1D and 2D resolution calculations.
5"""
6from __future__ import division
7
8from scipy.special import erf
9from numpy import sqrt, log, log10
10import numpy as np
11
12__all__ = ["Resolution", "Perfect1D", "Pinhole1D", "Slit1D",
13           "apply_resolution_matrix", "pinhole_resolution", "slit_resolution",
14           "pinhole_extend_q", "slit_extend_q", "bin_edges",
15           "interpolate", "linear_extrapolation", "geometric_extrapolation",
16          ]
17
18MINIMUM_RESOLUTION = 1e-8
19
20
21# When extrapolating to -q, what is the minimum positive q relative to q_min
22# that we wish to calculate?
23MIN_Q_SCALE_FOR_NEGATIVE_Q_EXTRAPOLATION = 0.01
24
25class Resolution(object):
26    """
27    Abstract base class defining a 1D resolution function.
28
29    *q* is the set of q values at which the data is measured.
30
31    *q_calc* is the set of q values at which the theory needs to be evaluated.
32    This may extend and interpolate the q values.
33
34    *apply* is the method to call with I(q_calc) to compute the resolution
35    smeared theory I(q).
36    """
37    q = None
38    q_calc = None
39    def apply(self, theory):
40        """
41        Smear *theory* by the resolution function, returning *Iq*.
42        """
43        raise NotImplementedError("Subclass does not define the apply function")
44
45
46class Perfect1D(Resolution):
47    """
48    Resolution function to use when there is no actual resolution smearing
49    to be applied.  It has the same interface as the other resolution
50    functions, but returns the identity function.
51    """
52    def __init__(self, q):
53        self.q_calc = self.q = q
54
55    def apply(self, theory):
56        return theory
57
58
59class Pinhole1D(Resolution):
60    r"""
61    Pinhole aperture with q-dependent gaussian resolution.
62
63    *q* points at which the data is measured.
64
65    *q_width* gaussian 1-sigma resolution at each data point.
66
67    *q_calc* is the list of points to calculate, or None if this should
68    be estimated from the *q* and *q_width*.
69    """
70    def __init__(self, q, q_width, q_calc=None, nsigma=3):
71        #*min_step* is the minimum point spacing to use when computing the
72        #underlying model.  It should be on the order of
73        #$\tfrac{1}{10}\tfrac{2\pi}{d_\text{max}}$ to make sure that fringes
74        #are computed with sufficient density to avoid aliasing effects.
75
76        # Protect against calls with q_width=0.  The extend_q function will
77        # not extend the q if q_width is 0, but q_width must be non-zero when
78        # constructing the weight matrix to avoid division by zero errors.
79        # In practice this should never be needed, since resolution should
80        # default to Perfect1D if the pinhole geometry is not defined.
81        self.q, self.q_width = q, q_width
82        self.q_calc = (pinhole_extend_q(q, q_width, nsigma=nsigma)
83                       if q_calc is None else np.sort(q_calc))
84        self.weight_matrix = pinhole_resolution(
85            self.q_calc, self.q, np.maximum(q_width, MINIMUM_RESOLUTION))
86
87    def apply(self, theory):
88        return apply_resolution_matrix(self.weight_matrix, theory)
89
90
91class Slit1D(Resolution):
92    """
93    Slit aperture with a complicated resolution function.
94
95    *q* points at which the data is measured.
96
97    *qx_width* slit width
98
99    *qy_height* slit height
100
101    *q_calc* is the list of points to calculate, or None if this should
102    be estimated from the *q* and *q_width*.
103
104    The *weight_matrix* is computed by :func:`slit1d_resolution`
105    """
106    def __init__(self, q, width, height=0., q_calc=None):
107        # Remember what width/height was used even though we won't need them
108        # after the weight matrix is constructed
109        self.width, self.height = width, height
110
111        # Allow independent resolution on each point even though it is not
112        # needed in practice.
113        if np.isscalar(width):
114            width = np.ones(len(q))*width
115        else:
116            width = np.asarray(width)
117        if np.isscalar(height):
118            height = np.ones(len(q))*height
119        else:
120            height = np.asarray(height)
121
122        self.q = q.flatten()
123        self.q_calc = slit_extend_q(q, width, height) \
124            if q_calc is None else np.sort(q_calc)
125        self.weight_matrix = \
126            slit_resolution(self.q_calc, self.q, width, height)
127
128    def apply(self, theory):
129        return apply_resolution_matrix(self.weight_matrix, theory)
130
131
132def apply_resolution_matrix(weight_matrix, theory):
133    """
134    Apply the resolution weight matrix to the computed theory function.
135    """
136    #print("apply shapes", theory.shape, weight_matrix.shape)
137    Iq = np.dot(theory[None, :], weight_matrix)
138    #print("result shape",Iq.shape)
139    return Iq.flatten()
140
141
142def pinhole_resolution(q_calc, q, q_width):
143    """
144    Compute the convolution matrix *W* for pinhole resolution 1-D data.
145
146    Each row *W[i]* determines the normalized weight that the corresponding
147    points *q_calc* contribute to the resolution smeared point *q[i]*.  Given
148    *W*, the resolution smearing can be computed using *dot(W,q)*.
149
150    *q_calc* must be increasing.  *q_width* must be greater than zero.
151    """
152    # The current algorithm is a midpoint rectangle rule.  In the test case,
153    # neither trapezoid nor Simpson's rule improved the accuracy.
154    edges = bin_edges(q_calc)
155    edges[edges < 0.0] = 0.0 # clip edges below zero
156    G = erf((edges[:, None] - q[None, :]) / (sqrt(2.0)*q_width)[None, :])
157    weights = G[1:] - G[:-1]
158    weights /= np.sum(weights, axis=0)[None, :]
159    return weights
160
161
162def slit_resolution(q_calc, q, width, height, n_height=30):
163    r"""
164    Build a weight matrix to compute *I_s(q)* from *I(q_calc)*, given
165    $q_\perp$ = *width* and $q_\parallel$ = *height*.  *n_height* is
166    is the number of steps to use in the integration over $q_\parallel$
167    when both $q_\perp$ and $q_\parallel$ are non-zero.
168
169    Each $q$ can have an independent width and height value even though
170    current instruments use the same slit setting for all measured points.
171
172    If slit height is large relative to width, use:
173
174    .. math::
175
176        I_s(q_i) = \frac{1}{\Delta q_\perp}
177            \int_0^{\Delta q_\perp}
178                I\left(\sqrt{q_i^2 + q_\perp^2}\right) \,dq_\perp
179
180    If slit width is large relative to height, use:
181
182    .. math::
183
184        I_s(q_i) = \frac{1}{2 \Delta q_\parallel}
185            \int_{-\Delta q_\parallel}^{\Delta q_\parallel}
186                I\left(|q_i + q_\parallel|\right) \,dq_\parallel
187
188    For a mixture of slit width and height use:
189
190    .. math::
191
192        I_s(q_i) = \frac{1}{2 \Delta q_\parallel \Delta q_\perp}
193            \int_{-\Delta q_\parallel}^{\Delta q_\parallel}
194            \int_0^{\Delta q_\perp}
195                I\left(\sqrt{(q_i + q_\parallel)^2 + q_\perp^2}\right)
196                \,dq_\perp dq_\parallel
197
198
199    Definition
200    ----------
201
202    We are using the mid-point integration rule to assign weights to each
203    element of a weight matrix $W$ so that
204
205    .. math::
206
207        I_s(q) = W\,I(q_\text{calc})
208
209    If *q_calc* is at the mid-point, we can infer the bin edges from the
210    pairwise averages of *q_calc*, adding the missing edges before
211    *q_calc[0]* and after *q_calc[-1]*.
212
213    For $q_\parallel = 0$, the smeared value can be computed numerically
214    using the $u$ substitution
215
216    .. math::
217
218        u_j = \sqrt{q_j^2 - q^2}
219
220    This gives
221
222    .. math::
223
224        I_s(q) \approx \sum_j I(u_j) \Delta u_j
225
226    where $I(u_j)$ is the value at the mid-point, and $\Delta u_j$ is the
227    difference between consecutive edges which have been first converted
228    to $u$.  Only $u_j \in [0, \Delta q_\perp]$ are used, which corresponds
229    to $q_j \in \left[q, \sqrt{q^2 + \Delta q_\perp}\right]$, so
230
231    .. math::
232
233        W_{ij} = \frac{1}{\Delta q_\perp} \Delta u_j
234               = \frac{1}{\Delta q_\perp} \left(
235                    \sqrt{q_{j+1}^2 - q_i^2} - \sqrt{q_j^2 - q_i^2} \right)
236            \ \text{if}\  q_j \in \left[q_i, \sqrt{q_i^2 + q_\perp^2}\right]
237
238    where $I_s(q_i)$ is the theory function being computed and $q_j$ are the
239    mid-points between the calculated values in *q_calc*.  We tweak the
240    edges of the initial and final intervals so that they lie on integration
241    limits.
242
243    (To be precise, the transformed midpoint $u(q_j)$ is not necessarily the
244    midpoint of the edges $u((q_{j-1}+q_j)/2)$ and $u((q_j + q_{j+1})/2)$,
245    but it is at least in the interval, so the approximation is going to be
246    a little better than the left or right Riemann sum, and should be
247    good enough for our purposes.)
248
249    For $q_\perp = 0$, the $u$ substitution is simpler:
250
251    .. math::
252
253        u_j = \left|q_j - q\right|
254
255    so
256
257    .. math::
258
259        W_{ij} = \frac{1}{2 \Delta q_\parallel} \Delta u_j
260            = \frac{1}{2 \Delta q_\parallel} (q_{j+1} - q_j)
261            \ \text{if}\ q_j \in
262                \left[q-\Delta q_\parallel, q+\Delta q_\parallel\right]
263
264    However, we need to support cases were $u_j < 0$, which means using
265    $2 (q_{j+1} - q_j)$ when $q_j \in \left[0, q_\parallel-q_i\right]$.
266    This is not an issue for $q_i > q_\parallel$.
267
268    For both $q_\perp > 0$ and $q_\parallel > 0$ we perform a 2 dimensional
269    integration with
270
271    .. math::
272
273        u_{jk} = \sqrt{q_j^2 - (q + (k\Delta q_\parallel/L))^2}
274            \ \text{for}\ k = -L \ldots L
275
276    for $L$ = *n_height*.  This gives
277
278    .. math::
279
280        W_{ij} = \frac{1}{2 \Delta q_\perp q_\parallel}
281            \sum_{k=-L}^L \Delta u_{jk}
282                \left(\frac{\Delta q_\parallel}{2 L + 1}\right)
283
284
285    """
286    #np.set_printoptions(precision=6, linewidth=10000)
287
288    # The current algorithm is a midpoint rectangle rule.
289    q_edges = bin_edges(q_calc) # Note: requires q > 0
290    q_edges[q_edges < 0.0] = 0.0 # clip edges below zero
291    weights = np.zeros((len(q), len(q_calc)), 'd')
292
293    #print(q_calc)
294    for i, (qi, w, h) in enumerate(zip(q, width, height)):
295        if w == 0. and h == 0.:
296            # Perfect resolution, so return the theory value directly.
297            # Note: assumes that q is a subset of q_calc.  If qi need not be
298            # in q_calc, then we can do a weighted interpolation by looking
299            # up qi in q_calc, then weighting the result by the relative
300            # distance to the neighbouring points.
301            weights[i, :] = (q_calc == qi)
302        elif h == 0:
303            weights[i, :] = _q_perp_weights(q_edges, qi, w)
304        elif w == 0:
305            in_x = 1.0 * ((q_calc >= qi-h) & (q_calc <= qi+h))
306            abs_x = 1.0*(q_calc < abs(qi - h)) if qi < h else 0.
307            #print(qi - h, qi + h)
308            #print(in_x + abs_x)
309            weights[i, :] = (in_x + abs_x) * np.diff(q_edges) / (2*h)
310        else:
311            L = n_height
312            for k in range(-L, L+1):
313                weights[i, :] += _q_perp_weights(q_edges, qi+k*h/L, w)
314            weights[i, :] /= 2*L + 1
315
316    return weights.T
317
318
319def _q_perp_weights(q_edges, qi, w):
320    # Convert bin edges from q to u
321    u_limit = np.sqrt(qi**2 + w**2)
322    u_edges = q_edges**2 - qi**2
323    u_edges[q_edges < abs(qi)] = 0.
324    u_edges[q_edges > u_limit] = u_limit**2 - qi**2
325    weights = np.diff(np.sqrt(u_edges))/w
326    #print("i, qi",i,qi,qi+width)
327    #print(q_calc)
328    #print(weights)
329    return weights
330
331
332def pinhole_extend_q(q, q_width, nsigma=3):
333    """
334    Given *q* and *q_width*, find a set of sampling points *q_calc* so
335    that each point $I(q)$ has sufficient support from the underlying
336    function.
337    """
338    q_min, q_max = np.min(q - nsigma*q_width), np.max(q + nsigma*q_width)
339    return linear_extrapolation(q, q_min, q_max)
340
341
342def slit_extend_q(q, width, height):
343    """
344    Given *q*, *width* and *height*, find a set of sampling points *q_calc* so
345    that each point I(q) has sufficient support from the underlying
346    function.
347    """
348    q_min, q_max = np.min(q-height), np.max(np.sqrt((q+height)**2 + width**2))
349
350    return geometric_extrapolation(q, q_min, q_max)
351
352
353def bin_edges(x):
354    """
355    Determine bin edges from bin centers, assuming that edges are centered
356    between the bins.
357
358    Note: this uses the arithmetic mean, which may not be appropriate for
359    log-scaled data.
360    """
361    if len(x) < 2 or (np.diff(x) < 0).any():
362        raise ValueError("Expected bins to be an increasing set")
363    edges = np.hstack([
364        x[0]  - 0.5*(x[1]  - x[0]),  # first point minus half first interval
365        0.5*(x[1:] + x[:-1]),        # mid points of all central intervals
366        x[-1] + 0.5*(x[-1] - x[-2]), # last point plus half last interval
367        ])
368    return edges
369
370
371def interpolate(q, max_step):
372    """
373    Returns *q_calc* with points spaced at most max_step apart.
374    """
375    step = np.diff(q)
376    index = step > max_step
377    if np.any(index):
378        inserts = []
379        for q_i, step_i in zip(q[:-1][index], step[index]):
380            n = np.ceil(step_i/max_step)
381            inserts.extend(q_i + np.arange(1, n)*(step_i/n))
382        # Extend a couple of fringes beyond the end of the data
383        inserts.extend(q[-1] + np.arange(1, 8)*max_step)
384        q_calc = np.sort(np.hstack((q, inserts)))
385    else:
386        q_calc = q
387    return q_calc
388
389
390def linear_extrapolation(q, q_min, q_max):
391    """
392    Extrapolate *q* out to [*q_min*, *q_max*] using the step size in *q* as
393    a guide.  Extrapolation below uses about the same size as the first
394    interval.  Extrapolation above uses about the same size as the final
395    interval.
396
397    if *q_min* is zero or less then *q[0]/10* is used instead.
398    """
399    q = np.sort(q)
400    if q_min < q[0]:
401        if q_min <= 0: q_min = q_min*MIN_Q_SCALE_FOR_NEGATIVE_Q_EXTRAPOLATION
402        n_low = np.ceil((q[0]-q_min) / (q[1]-q[0])) if q[1] > q[0] else 15
403        q_low = np.linspace(q_min, q[0], n_low+1)[:-1]
404    else:
405        q_low = []
406    if q_max > q[-1]:
407        n_high = np.ceil((q_max-q[-1]) / (q[-1]-q[-2])) if q[-1] > q[-2] else 15
408        q_high = np.linspace(q[-1], q_max, n_high+1)[1:]
409    else:
410        q_high = []
411    return np.concatenate([q_low, q, q_high])
412
413
414def geometric_extrapolation(q, q_min, q_max, points_per_decade=None):
415    r"""
416    Extrapolate *q* to [*q_min*, *q_max*] using geometric steps, with the
417    average geometric step size in *q* as the step size.
418
419    if *q_min* is zero or less then *q[0]/10* is used instead.
420
421    *points_per_decade* sets the ratio between consecutive steps such
422    that there will be $n$ points used for every factor of 10 increase
423    in *q*.
424
425    If *points_per_decade* is not given, it will be estimated as follows.
426    Starting at $q_1$ and stepping geometrically by $\Delta q$ to $q_n$
427    in $n$ points gives a geometric average of:
428
429    .. math::
430
431         \log \Delta q = (\log q_n - log q_1) / (n - 1)
432
433    From this we can compute the number of steps required to extend $q$
434    from $q_n$ to $q_\text{max}$ by $\Delta q$ as:
435
436    .. math::
437
438         n_\text{extend} = (\log q_\text{max} - \log q_n) / \log \Delta q
439
440    Substituting:
441
442    .. math::
443
444         n_\text{extend} = (n-1) (\log q_\text{max} - \log q_n)
445            / (\log q_n - log q_1)
446    """
447    q = np.sort(q)
448    if points_per_decade is None:
449        log_delta_q = (len(q) - 1) / (log(q[-1]) - log(q[0]))
450    else:
451        log_delta_q = log(10.) / points_per_decade
452    if q_min < q[0]:
453        if q_min < 0: q_min = q[0]*MIN_Q_SCALE_FOR_NEGATIVE_Q_EXTRAPOLATION
454        n_low = log_delta_q * (log(q[0])-log(q_min))
455        q_low = np.logspace(log10(q_min), log10(q[0]), np.ceil(n_low)+1)[:-1]
456    else:
457        q_low = []
458    if q_max > q[-1]:
459        n_high = log_delta_q * (log(q_max)-log(q[-1]))
460        q_high = np.logspace(log10(q[-1]), log10(q_max), np.ceil(n_high)+1)[1:]
461    else:
462        q_high = []
463    return np.concatenate([q_low, q, q_high])
464
465
466############################################################################
467# unit tests
468############################################################################
469import unittest
470
471
472def eval_form(q, form, pars):
473    """
474    Return the SAS model evaluated at *q*.
475
476    *form* is the SAS model returned from :fun:`core.load_model`.
477
478    *pars* are the parameter values to use when evaluating.
479    """
480    from sasmodels import core
481    kernel = core.make_kernel(form, [q])
482    theory = core.call_kernel(kernel, pars)
483    kernel.release()
484    return theory
485
486
487def gaussian(q, q0, dq):
488    """
489    Return the Gaussian resolution function.
490
491    *q0* is the center, *dq* is the width and *q* are the points to evaluate.
492    """
493    from numpy import exp, pi
494    return exp(-0.5*((q-q0)/dq)**2)/(sqrt(2*pi)*dq)
495
496
497def romberg_slit_1d(q, width, height, form, pars):
498    """
499    Romberg integration for slit resolution.
500
501    This is an adaptive integration technique.  It is called with settings
502    that make it slow to evaluate but give it good accuracy.
503    """
504    from scipy.integrate import romberg
505
506    if any(k not in form.info['defaults'] for k in pars.keys()):
507        keys = set(form.info['defaults'].keys())
508        extra = set(pars.keys()) - keys
509        raise ValueError("bad parameters: [%s] not in [%s]"%
510                         (", ".join(sorted(extra)), ", ".join(sorted(keys))))
511
512    if np.isscalar(width):
513        width = [width]*len(q)
514    if np.isscalar(height):
515        height = [height]*len(q)
516    _int_w = lambda w, qi: eval_form(sqrt(qi**2 + w**2), form, pars)
517    _int_h = lambda h, qi: eval_form(abs(qi+h), form, pars)
518    # If both width and height are defined, then it is too slow to use dblquad.
519    # Instead use trapz on a fixed grid, interpolated into the I(Q) for
520    # the extended Q range.
521    #_int_wh = lambda w, h, qi: eval_form(sqrt((qi+h)**2 + w**2), form, pars)
522    q_calc = slit_extend_q(q, np.asarray(width), np.asarray(height))
523    Iq = eval_form(q_calc, form, pars)
524    result = np.empty(len(q))
525    for i, (qi, w, h) in enumerate(zip(q, width, height)):
526        if h == 0.:
527            r = romberg(_int_w, 0, w, args=(qi,),
528                        divmax=100, vec_func=True, tol=0, rtol=1e-8)
529            result[i] = r/w
530        elif w == 0.:
531            r = romberg(_int_h, -h, h, args=(qi,),
532                        divmax=100, vec_func=True, tol=0, rtol=1e-8)
533            result[i] = r/(2*h)
534        else:
535            w_grid = np.linspace(0, w, 21)[None, :]
536            h_grid = np.linspace(-h, h, 23)[:, None]
537            u = sqrt((qi+h_grid)**2 + w_grid**2)
538            Iu = np.interp(u, q_calc, Iq)
539            #print(np.trapz(Iu, w_grid, axis=1))
540            Is = np.trapz(np.trapz(Iu, w_grid, axis=1), h_grid[:, 0])
541            result[i] = Is / (2*h*w)
542            # from scipy.integrate import dblquad
543            # r, err = dblquad(_int_wh, -h, h, lambda h: 0., lambda h: w,
544            #                  args=(qi,))
545            # result[i] = r/(w*2*h)
546
547    # r should be [float, ...], but it is [array([float]), array([float]),...]
548    return result
549
550
551def romberg_pinhole_1d(q, q_width, form, pars, nsigma=5):
552    """
553    Romberg integration for pinhole resolution.
554
555    This is an adaptive integration technique.  It is called with settings
556    that make it slow to evaluate but give it good accuracy.
557    """
558    from scipy.integrate import romberg
559
560    if any(k not in form.info['defaults'] for k in pars.keys()):
561        keys = set(form.info['defaults'].keys())
562        extra = set(pars.keys()) - keys
563        raise ValueError("bad parameters: [%s] not in [%s]"%
564                         (", ".join(sorted(extra)), ", ".join(sorted(keys))))
565
566    _fn = lambda q, q0, dq: eval_form(q, form, pars)*gaussian(q, q0, dq)
567    r = [romberg(_fn, max(qi-nsigma*dqi, 1e-10*q[0]), qi+nsigma*dqi,
568                 args=(qi, dqi), divmax=100, vec_func=True, tol=0, rtol=1e-8)
569         for qi, dqi in zip(q, q_width)]
570    return np.asarray(r).flatten()
571
572
573class ResolutionTest(unittest.TestCase):
574    """
575    Test the resolution calculations.
576    """
577
578    def setUp(self):
579        self.x = 0.001*np.arange(1, 11)
580        self.y = self.Iq(self.x)
581
582    def Iq(self, q):
583        "Linear function for resolution unit test"
584        return 12.0 - 1000.0*q
585
586    def test_perfect(self):
587        """
588        Perfect resolution and no smearing.
589        """
590        resolution = Perfect1D(self.x)
591        theory = self.Iq(resolution.q_calc)
592        output = resolution.apply(theory)
593        np.testing.assert_equal(output, self.y)
594
595    def test_slit_zero(self):
596        """
597        Slit smearing with perfect resolution.
598        """
599        resolution = Slit1D(self.x, width=0, height=0, q_calc=self.x)
600        theory = self.Iq(resolution.q_calc)
601        output = resolution.apply(theory)
602        np.testing.assert_equal(output, self.y)
603
604    @unittest.skip("not yet supported")
605    def test_slit_high(self):
606        """
607        Slit smearing with height 0.005
608        """
609        resolution = Slit1D(self.x, width=0, height=0.005, q_calc=self.x)
610        theory = self.Iq(resolution.q_calc)
611        output = resolution.apply(theory)
612        answer = [
613            9.0618, 8.6402, 8.1187, 7.1392, 6.1528,
614            5.5555, 4.5584, 3.5606, 2.5623, 2.0000,
615            ]
616        np.testing.assert_allclose(output, answer, atol=1e-4)
617
618    @unittest.skip("not yet supported")
619    def test_slit_both_high(self):
620        """
621        Slit smearing with width < 100*height.
622        """
623        q = np.logspace(-4, -1, 10)
624        resolution = Slit1D(q, width=0.2, height=np.inf)
625        theory = 1000*self.Iq(resolution.q_calc**4)
626        output = resolution.apply(theory)
627        answer = [
628            8.85785, 8.43012, 7.92687, 6.94566, 6.03660,
629            5.40363, 4.40655, 3.40880, 2.41058, 2.00000,
630            ]
631        np.testing.assert_allclose(output, answer, atol=1e-4)
632
633    @unittest.skip("not yet supported")
634    def test_slit_wide(self):
635        """
636        Slit smearing with width 0.0002
637        """
638        resolution = Slit1D(self.x, width=0.0002, height=0, q_calc=self.x)
639        theory = self.Iq(resolution.q_calc)
640        output = resolution.apply(theory)
641        answer = [
642            11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0,
643            ]
644        np.testing.assert_allclose(output, answer, atol=1e-4)
645
646    @unittest.skip("not yet supported")
647    def test_slit_both_wide(self):
648        """
649        Slit smearing with width > 100*height.
650        """
651        resolution = Slit1D(self.x, width=0.0002, height=0.000001,
652                            q_calc=self.x)
653        theory = self.Iq(resolution.q_calc)
654        output = resolution.apply(theory)
655        answer = [
656            11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0,
657            ]
658        np.testing.assert_allclose(output, answer, atol=1e-4)
659
660    def test_pinhole_zero(self):
661        """
662        Pinhole smearing with perfect resolution
663        """
664        resolution = Pinhole1D(self.x, 0.0*self.x)
665        theory = self.Iq(resolution.q_calc)
666        output = resolution.apply(theory)
667        np.testing.assert_equal(output, self.y)
668
669    def test_pinhole(self):
670        """
671        Pinhole smearing with dQ = 0.001 [Note: not dQ/Q = 0.001]
672        """
673        resolution = Pinhole1D(self.x, 0.001*np.ones_like(self.x),
674                               q_calc=self.x)
675        theory = 12.0-1000.0*resolution.q_calc
676        output = resolution.apply(theory)
677        answer = [
678            10.44785079, 9.84991299, 8.98101708,
679            7.99906585, 6.99998311, 6.00001689,
680            5.00093415, 4.01898292, 3.15008701, 2.55214921,
681            ]
682        np.testing.assert_allclose(output, answer, atol=1e-8)
683
684
685class IgorComparisonTest(unittest.TestCase):
686    """
687    Test resolution calculations against those returned by Igor.
688    """
689
690    def setUp(self):
691        self.pars = TEST_PARS_PINHOLE_SPHERE
692        from sasmodels import core
693        from sasmodels.models import sphere
694        self.model = core.load_model(sphere, dtype='double')
695
696    def _eval_sphere(self, pars, resolution):
697        from sasmodels import core
698        kernel = core.make_kernel(self.model, [resolution.q_calc])
699        theory = core.call_kernel(kernel, pars)
700        result = resolution.apply(theory)
701        kernel.release()
702        return result
703
704    def _compare(self, q, output, answer, tolerance):
705        #err = (output - answer)/answer
706        #idx = abs(err) >= tolerance
707        #problem = zip(q[idx], output[idx], answer[idx], err[idx])
708        #print("\n".join(str(v) for v in problem))
709        np.testing.assert_allclose(output, answer, rtol=tolerance)
710
711    def test_perfect(self):
712        """
713        Compare sphere model with NIST Igor SANS, no resolution smearing.
714        """
715        pars = TEST_PARS_SLIT_SPHERE
716        data_string = TEST_DATA_SLIT_SPHERE
717
718        data = np.loadtxt(data_string.split('\n')).T
719        q, width, answer, _ = data
720        resolution = Perfect1D(q)
721        output = self._eval_sphere(pars, resolution)
722        self._compare(q, output, answer, 1e-6)
723
724    def test_pinhole(self):
725        """
726        Compare pinhole resolution smearing with NIST Igor SANS
727        """
728        pars = TEST_PARS_PINHOLE_SPHERE
729        data_string = TEST_DATA_PINHOLE_SPHERE
730
731        data = np.loadtxt(data_string.split('\n')).T
732        q, q_width, answer = data
733        resolution = Pinhole1D(q, q_width)
734        output = self._eval_sphere(pars, resolution)
735        # TODO: relative error should be lower
736        self._compare(q, output, answer, 3e-4)
737
738    def test_pinhole_romberg(self):
739        """
740        Compare pinhole resolution smearing with romberg integration result.
741        """
742        pars = TEST_PARS_PINHOLE_SPHERE
743        data_string = TEST_DATA_PINHOLE_SPHERE
744        pars['radius'] *= 5
745        radius = pars['radius']
746
747        data = np.loadtxt(data_string.split('\n')).T
748        q, q_width, answer = data
749        answer = romberg_pinhole_1d(q, q_width, self.model, pars)
750        ## Getting 0.1% requires 5 sigma and 200 points per fringe
751        #q_calc = interpolate(pinhole_extend_q(q, q_width, nsigma=5),
752        #                     2*np.pi/radius/200)
753        #tol = 0.001
754        ## The default 3 sigma and no extra points gets 1%
755        q_calc, tol = None, 0.01
756        resolution = Pinhole1D(q, q_width, q_calc=q_calc)
757        output = self._eval_sphere(pars, resolution)
758        if 0: # debug plot
759            import matplotlib.pyplot as plt
760            resolution = Perfect1D(q)
761            source = self._eval_sphere(pars, resolution)
762            plt.loglog(q, source, '.')
763            plt.loglog(q, answer, '-', hold=True)
764            plt.loglog(q, output, '-', hold=True)
765            plt.show()
766        self._compare(q, output, answer, tol)
767
768    def test_slit(self):
769        """
770        Compare slit resolution smearing with NIST Igor SANS
771        """
772        pars = TEST_PARS_SLIT_SPHERE
773        data_string = TEST_DATA_SLIT_SPHERE
774
775        data = np.loadtxt(data_string.split('\n')).T
776        q, delta_qv, _, answer = data
777        resolution = Slit1D(q, width=delta_qv, height=0)
778        output = self._eval_sphere(pars, resolution)
779        # TODO: eliminate Igor test since it is too inaccurate to be useful.
780        # This means we can eliminate the test data as well, and instead
781        # use a generated q vector.
782        self._compare(q, output, answer, 0.5)
783
784    def test_slit_romberg(self):
785        """
786        Compare slit resolution smearing with romberg integration result.
787        """
788        pars = TEST_PARS_SLIT_SPHERE
789        data_string = TEST_DATA_SLIT_SPHERE
790        radius = pars['radius']
791
792        data = np.loadtxt(data_string.split('\n')).T
793        q, delta_qv, _, answer = data
794        answer = romberg_slit_1d(q, delta_qv, 0., self.model, pars)
795        q_calc = slit_extend_q(interpolate(q, 2*np.pi/radius/20),
796                               delta_qv[0], 0.)
797        resolution = Slit1D(q, width=delta_qv, height=0, q_calc=q_calc)
798        output = self._eval_sphere(pars, resolution)
799        # TODO: relative error should be lower
800        self._compare(q, output, answer, 0.025)
801
802    def test_ellipsoid(self):
803        """
804        Compare romberg integration for ellipsoid model.
805        """
806        from .core import load_model
807        pars = {
808            'scale':0.05,
809            'rpolar':500, 'requatorial':15000,
810            'sld':6, 'solvent_sld': 1,
811            }
812        form = load_model('ellipsoid', dtype='double')
813        q = np.logspace(log10(4e-5), log10(2.5e-2), 68)
814        width, height = 0.117, 0.
815        resolution = Slit1D(q, width=width, height=height)
816        answer = romberg_slit_1d(q, width, height, form, pars)
817        output = resolution.apply(eval_form(resolution.q_calc, form, pars))
818        # TODO: 10% is too much error; use better algorithm
819        #print(np.max(abs(answer-output)/answer))
820        self._compare(q, output, answer, 0.1)
821
822    #TODO: can sas q spacing be too sparse for the resolution calculation?
823    @unittest.skip("suppress sparse data test; not supported by current code")
824    def test_pinhole_sparse(self):
825        """
826        Compare pinhole resolution smearing with NIST Igor SANS on sparse data
827        """
828        pars = TEST_PARS_PINHOLE_SPHERE
829        data_string = TEST_DATA_PINHOLE_SPHERE
830
831        data = np.loadtxt(data_string.split('\n')).T
832        q, q_width, answer = data[:, ::20] # Take every nth point
833        resolution = Pinhole1D(q, q_width)
834        output = self._eval_sphere(pars, resolution)
835        self._compare(q, output, answer, 1e-6)
836
837
838# pinhole sphere parameters
839TEST_PARS_PINHOLE_SPHERE = {
840    'scale': 1.0, 'background': 0.01,
841    'radius': 60.0, 'sld': 1, 'solvent_sld': 6.3,
842    }
843# Q, dQ, I(Q) calculated by NIST Igor SANS package
844TEST_DATA_PINHOLE_SPHERE = """\
8450.001278 0.0002847 2538.41176383
8460.001562 0.0002905 2536.91820405
8470.001846 0.0002956 2535.13182479
8480.002130 0.0003017 2533.06217813
8490.002414 0.0003087 2530.70378586
8500.002698 0.0003165 2528.05024192
8510.002982 0.0003249 2525.10408349
8520.003266 0.0003340 2521.86667499
8530.003550 0.0003437 2518.33907750
8540.003834 0.0003539 2514.52246995
8550.004118 0.0003646 2510.41798319
8560.004402 0.0003757 2506.02690988
8570.004686 0.0003872 2501.35067884
8580.004970 0.0003990 2496.38678318
8590.005253 0.0004112 2491.16237596
8600.005537 0.0004237 2485.63911673
8610.005821 0.0004365 2479.83657083
8620.006105 0.0004495 2473.75676948
8630.006389 0.0004628 2467.40145990
8640.006673 0.0004762 2460.77293372
8650.006957 0.0004899 2453.86724627
8660.007241 0.0005037 2446.69623838
8670.007525 0.0005177 2439.25775219
8680.007809 0.0005318 2431.55421398
8690.008093 0.0005461 2423.58785521
8700.008377 0.0005605 2415.36158137
8710.008661 0.0005750 2406.87009473
8720.008945 0.0005896 2398.12841186
8730.009229 0.0006044 2389.13360806
8740.009513 0.0006192 2379.88958042
8750.009797 0.0006341 2370.39776774
8760.010080 0.0006491 2360.69528793
8770.010360 0.0006641 2350.85169027
8780.010650 0.0006793 2340.42023633
8790.010930 0.0006945 2330.11206013
8800.011220 0.0007097 2319.20109972
8810.011500 0.0007251 2308.43503981
8820.011780 0.0007404 2297.44820179
8830.012070 0.0007558 2285.83853677
8840.012350 0.0007713 2274.41290746
8850.012640 0.0007868 2262.36219581
8860.012920 0.0008024 2250.51169731
8870.013200 0.0008180 2238.45596231
8880.013490 0.0008336 2225.76495666
8890.013770 0.0008493 2213.29618391
8900.014060 0.0008650 2200.19110751
8910.014340 0.0008807 2187.34050325
8920.014620 0.0008965 2174.30529864
8930.014910 0.0009123 2160.61632548
8940.015190 0.0009281 2147.21038112
8950.015470 0.0009440 2133.62023580
8960.015760 0.0009598 2119.37907426
8970.016040 0.0009757 2105.45234903
8980.016330 0.0009916 2090.86319102
8990.016610 0.0010080 2076.60576032
9000.016890 0.0010240 2062.19214565
9010.017180 0.0010390 2047.10550219
9020.017460 0.0010550 2032.38715621
9030.017740 0.0010710 2017.52560123
9040.018030 0.0010880 2001.99124318
9050.018310 0.0011040 1986.84662060
9060.018600 0.0011200 1971.03389745
9070.018880 0.0011360 1955.61395119
9080.019160 0.0011520 1940.08291563
9090.019450 0.0011680 1923.87672225
9100.019730 0.0011840 1908.10656374
9110.020020 0.0012000 1891.66297192
9120.020300 0.0012160 1875.66789021
9130.020580 0.0012320 1859.56357196
9140.020870 0.0012490 1842.79468290
9150.021150 0.0012650 1826.50064489
9160.021430 0.0012810 1810.11533702
9170.021720 0.0012970 1793.06840882
9180.022000 0.0013130 1776.51153580
9190.022280 0.0013290 1759.87201249
9200.022570 0.0013460 1742.57354412
9210.022850 0.0013620 1725.79397319
9220.023140 0.0013780 1708.35831550
9230.023420 0.0013940 1691.45256069
9240.023700 0.0014110 1674.48561783
9250.023990 0.0014270 1656.86525366
9260.024270 0.0014430 1639.79847285
9270.024550 0.0014590 1622.68887088
9280.024840 0.0014760 1604.96421100
9290.025120 0.0014920 1587.85768129
9300.025410 0.0015080 1569.99297335
9310.025690 0.0015240 1552.84580279
9320.025970 0.0015410 1535.54074115
9330.026260 0.0015570 1517.75249337
9340.026540 0.0015730 1500.40115023
9350.026820 0.0015900 1483.03632237
9360.027110 0.0016060 1465.05942429
9370.027390 0.0016220 1447.67682181
9380.027670 0.0016390 1430.46495191
9390.027960 0.0016550 1412.49232282
9400.028240 0.0016710 1395.13182318
9410.028520 0.0016880 1377.93439837
9420.028810 0.0017040 1359.99528971
9430.029090 0.0017200 1342.67274512
9440.029370 0.0017370 1325.55375609
945"""
946
947# Slit sphere parameters
948TEST_PARS_SLIT_SPHERE = {
949    'scale': 0.01, 'background': 0.01,
950    'radius': 60000, 'sld': 1, 'solvent_sld': 4,
951    }
952# Q dQ I(Q) I_smeared(Q)
953TEST_DATA_SLIT_SPHERE = """\
9542.26097e-05 0.117 5.5781372896e+09 1.4626077708e+06
9552.53847e-05 0.117 5.0363141458e+09 1.3117318023e+06
9562.81597e-05 0.117 4.4850108103e+09 1.1594863713e+06
9573.09347e-05 0.117 3.9364658459e+09 1.0094881630e+06
9583.37097e-05 0.117 3.4019975074e+09 8.6518941303e+05
9593.92597e-05 0.117 2.4139519814e+09 6.0232158311e+05
9604.48097e-05 0.117 1.5816877820e+09 3.8739994090e+05
9615.03597e-05 0.117 9.3715407224e+08 2.2745304775e+05
9625.59097e-05 0.117 4.8387917428e+08 1.2101295768e+05
9636.14597e-05 0.117 2.0193586928e+08 6.0055107771e+04
9646.70097e-05 0.117 5.5886110911e+07 3.2749521065e+04
9657.25597e-05 0.117 3.7782348010e+06 2.6350963616e+04
9667.81097e-05 0.117 5.3407817904e+06 2.9624963314e+04
9678.36597e-05 0.117 2.7975485523e+07 3.4403962254e+04
9688.92097e-05 0.117 4.9845448282e+07 3.6130017903e+04
9699.47597e-05 0.117 6.0092588905e+07 3.3495107849e+04
9701.00310e-04 0.117 5.6823430831e+07 2.7475726279e+04
9711.05860e-04 0.117 4.3857024036e+07 2.0144282226e+04
9721.11410e-04 0.117 2.7277144760e+07 1.3647403260e+04
9731.22510e-04 0.117 3.3119334113e+06 6.6519711526e+03
9741.33610e-04 0.117 1.4412859402e+06 6.9726212813e+03
9751.44710e-04 0.117 8.5620162463e+06 8.1441335775e+03
9761.55810e-04 0.117 9.6957429033e+06 6.4559996521e+03
9771.66910e-04 0.117 4.3818341914e+06 3.6252154156e+03
9781.78010e-04 0.117 2.7448997387e+05 2.4006505342e+03
9791.89110e-04 0.117 8.0472009936e+05 2.8187789089e+03
9802.00210e-04 0.117 2.8149552834e+06 3.0915662855e+03
9812.11310e-04 0.117 2.7510907861e+06 2.3722530293e+03
9822.22410e-04 0.117 1.0053133293e+06 1.4473468311e+03
9832.33510e-04 0.117 5.8428305052e+03 1.2048540556e+03
9842.44610e-04 0.117 5.1699305004e+05 1.4625670042e+03
9852.55710e-04 0.117 1.2120227268e+06 1.5010705973e+03
9862.66810e-04 0.117 9.7896842846e+05 1.1336343426e+03
9872.77910e-04 0.117 2.5507264791e+05 8.1848818080e+02
9883.05660e-04 0.117 5.2403101181e+05 7.4913374357e+02
9893.33410e-04 0.117 5.8699343809e+04 4.4669964560e+02
9903.61160e-04 0.117 3.0844327150e+05 4.6774007542e+02
9913.88910e-04 0.117 8.3360142970e+03 2.7169550220e+02
9924.16660e-04 0.117 1.8630080583e+05 3.0710983679e+02
9934.44410e-04 0.117 3.1616804732e-01 1.7959006831e+02
9944.72160e-04 0.117 1.1299016314e+05 2.0763952339e+02
9954.99910e-04 0.117 2.9952522747e+03 1.2536542765e+02
9965.27660e-04 0.117 6.7625695649e+04 1.4013969777e+02
9975.55410e-04 0.117 7.6927460089e+03 8.2145593180e+01
9986.10910e-04 0.117 1.1229057779e+04 8.4519745643e+01
9996.66410e-04 0.117 1.3035567943e+04 8.1554625609e+01
10007.21910e-04 0.117 1.3309931343e+04 7.4437319172e+01
10017.77410e-04 0.117 1.2462626212e+04 6.4697088261e+01
10028.32910e-04 0.117 1.0912927143e+04 5.3773301044e+01
10038.88410e-04 0.117 9.0172597469e+03 4.2843375753e+01
10049.43910e-04 0.117 7.0496495917e+03 3.2771032724e+01
10059.99410e-04 0.117 5.2030483682e+03 2.4113557144e+01
10061.05491e-03 0.117 3.5988976711e+03 1.7160773658e+01
10071.11041e-03 0.117 2.2996060652e+03 1.2016626459e+01
10081.22141e-03 0.117 6.4766590598e+02 6.0373017740e+00
10091.33241e-03 0.117 4.1963483264e+01 4.5215452974e+00
10101.44341e-03 0.117 6.3370708246e+01 5.1054681903e+00
10111.55441e-03 0.117 3.0736750577e+02 5.9176165298e+00
10121.66541e-03 0.117 5.0327682399e+02 5.9815000189e+00
10131.77641e-03 0.117 5.4084331454e+02 5.1634639625e+00
10141.88741e-03 0.117 4.3488671756e+02 3.8535158148e+00
10151.99841e-03 0.117 2.6322287860e+02 2.5824997753e+00
10162.10941e-03 0.117 1.0793633150e+02 1.7315517194e+00
10172.22041e-03 0.117 1.8474448850e+01 1.4077213604e+00
10182.33141e-03 0.117 1.5864062279e+00 1.4771560682e+00
10192.44241e-03 0.117 3.2267213848e+01 1.6916253448e+00
10202.55341e-03 0.117 7.4289116207e+01 1.8274751193e+00
10212.66441e-03 0.117 9.9000521929e+01 1.7706812289e+00
1022"""
1023
1024def main():
1025    """
1026    Run tests given is sys.argv.
1027
1028    Returns 0 if success or 1 if any tests fail.
1029    """
1030    import sys
1031    import xmlrunner
1032
1033    suite = unittest.TestSuite()
1034    suite.addTest(unittest.defaultTestLoader.loadTestsFromModule(sys.modules[__name__]))
1035
1036    runner = xmlrunner.XMLTestRunner(output='logs')
1037    result = runner.run(suite)
1038    return 1 if result.failures or result.errors else 0
1039
1040
1041############################################################################
1042# usage demo
1043############################################################################
1044
1045def _eval_demo_1d(resolution, title):
1046    import sys
1047    from sasmodels import core
1048    name = sys.argv[1] if len(sys.argv) > 1 else 'cylinder'
1049
1050    if name == 'cylinder':
1051        pars = {'length':210, 'radius':500}
1052    elif name == 'teubner_strey':
1053        pars = {'a2':0.003, 'c1':-1e4, 'c2':1e10, 'background':0.312643}
1054    elif name == 'sphere' or name == 'spherepy':
1055        pars = TEST_PARS_SLIT_SPHERE
1056    elif name == 'ellipsoid':
1057        pars = {
1058            'scale':0.05,
1059            'rpolar':500, 'requatorial':15000,
1060            'sld':6, 'solvent_sld': 1,
1061            }
1062    else:
1063        pars = {}
1064    model_info = core.load_model_info(name)
1065    model = core.build_model(model_info)
1066
1067    kernel = core.make_kernel(model, [resolution.q_calc])
1068    theory = core.call_kernel(kernel, pars)
1069    Iq = resolution.apply(theory)
1070
1071    if isinstance(resolution, Slit1D):
1072        width, height = resolution.width, resolution.height
1073        Iq_romb = romberg_slit_1d(resolution.q, width, height, model, pars)
1074    else:
1075        dq = resolution.q_width
1076        Iq_romb = romberg_pinhole_1d(resolution.q, dq, model, pars)
1077
1078    import matplotlib.pyplot as plt
1079    plt.loglog(resolution.q_calc, theory, label='unsmeared')
1080    plt.loglog(resolution.q, Iq, label='smeared', hold=True)
1081    plt.loglog(resolution.q, Iq_romb, label='romberg smeared', hold=True)
1082    plt.legend()
1083    plt.title(title)
1084    plt.xlabel("Q (1/Ang)")
1085    plt.ylabel("I(Q) (1/cm)")
1086
1087def demo_pinhole_1d():
1088    """
1089    Show example of pinhole smearing.
1090    """
1091    q = np.logspace(-4, np.log10(0.2), 400)
1092    q_width = 0.1*q
1093    resolution = Pinhole1D(q, q_width)
1094    _eval_demo_1d(resolution, title="10% dQ/Q Pinhole Resolution")
1095
1096def demo_slit_1d():
1097    """
1098    Show example of slit smearing.
1099    """
1100    q = np.logspace(-4, np.log10(0.2), 100)
1101    w = h = 0.
1102    #w = 0.000000277790
1103    w = 0.0277790
1104    #h = 0.00277790
1105    #h = 0.0277790
1106    resolution = Slit1D(q, w, h)
1107    _eval_demo_1d(resolution, title="(%g,%g) Slit Resolution"%(w, h))
1108
1109def demo():
1110    """
1111    Run the resolution demos.
1112    """
1113    import matplotlib.pyplot as plt
1114    plt.subplot(121)
1115    demo_pinhole_1d()
1116    #plt.yscale('linear')
1117    plt.subplot(122)
1118    demo_slit_1d()
1119    #plt.yscale('linear')
1120    plt.show()
1121
1122
1123if __name__ == "__main__":
1124    #demo()
1125    main()
Note: See TracBrowser for help on using the repository browser.