Changes in / [150fb81:b91bb7c] in sasmodels
- Location:
- sasmodels
- Files:
-
- 2 added
- 2 deleted
- 65 edited
Legend:
- Unmodified
- Added
- Removed
-
sasmodels/generate.py
r7fcdc9f r1e7b0db0 139 139 square(x) = x*x 140 140 cube(x) = x*x*x 141 s inc(x) = sin(x)/x, with sin(0)/0 -> 1141 sas_sinx_x(x) = sin(x)/x, with sin(0)/0 -> 1 142 142 all double precision constants must include the decimal point 143 143 all double declarations may be converted to half, float, or long double -
sasmodels/kernel_header.c
rb7e8b94 r1e7b0db0 146 146 inline double square(double x) { return x*x; } 147 147 inline double cube(double x) { return x*x*x; } 148 inline double s inc(double x) { return x==0 ? 1.0 : sin(x)/x; }148 inline double sas_sinx_x(double x) { return x==0 ? 1.0 : sin(x)/x; } 149 149 150 150 #if 1 -
sasmodels/kernel_template.c
r0d6e865 r1e7b0db0 133 133 inline double square(double x) { return x*x; } 134 134 inline double cube(double x) { return x*x*x; } 135 inline double s inc(double x) { return x==0 ? 1.0 : sin(x)/x; }135 inline double sas_sinx_x(double x) { return x==0 ? 1.0 : sin(x)/x; } 136 136 137 137 -
sasmodels/models/barbell.c
r3a48772 r592343f 33 33 const double t = Gauss76Z[i]*zm + zb; 34 34 const double radical = 1.0 - t*t; 35 const double bj = sas_ J1c(qrst*sqrt(radical));35 const double bj = sas_2J1x_x(qrst*sqrt(radical)); 36 36 const double Fq = cos(m*t + b) * radical * bj; 37 37 total += Gauss76Wt[i] * Fq; … … 49 49 { 50 50 const double bell_fq = _bell_kernel(q, h, radius_bell, half_length, sin_alpha, cos_alpha); 51 const double bj = sas_ J1c(q*radius*sin_alpha);52 const double si = s inc(q*half_length*cos_alpha);51 const double bj = sas_2J1x_x(q*radius*sin_alpha); 52 const double si = sas_sinx_x(q*half_length*cos_alpha); 53 53 const double cyl_fq = 2.0*M_PI*radius*radius*half_length*bj*si; 54 54 const double Aq = bell_fq + cyl_fq; -
sasmodels/models/bcc_paracrystal.py
rb0c4271 r925ad6e 128 128 # pylint: enable=bad-whitespace, line-too-long 129 129 130 source = ["lib/s ph_j1c.c", "lib/gauss150.c", "lib/sphere_form.c", "bcc_paracrystal.c"]130 source = ["lib/sas_3j1x_x.c", "lib/gauss150.c", "lib/sphere_form.c", "bcc_paracrystal.c"] 131 131 132 132 # parameters for demo -
sasmodels/models/binary_hard_sphere.c
r4f79d94 r925ad6e 58 58 qr2 = r2*q; 59 59 60 sc1 = s ph_j1c(qr1);61 sc2 = s ph_j1c(qr2);60 sc1 = sas_3j1x_x(qr1); 61 sc2 = sas_3j1x_x(qr2); 62 62 b1 = r1*r1*r1*(rho1-rhos)*M_4PI_3*sc1; 63 63 b2 = r2*r2*r2*(rho2-rhos)*M_4PI_3*sc2; -
sasmodels/models/binary_hard_sphere.py
rb0c4271 r925ad6e 108 108 ] 109 109 110 source = ["lib/s ph_j1c.c", "binary_hard_sphere.c"]110 source = ["lib/sas_3j1x_x.c", "binary_hard_sphere.c"] 111 111 112 112 # parameters for demo and documentation -
sasmodels/models/capped_cylinder.c
r3a48772 r592343f 39 39 const double t = Gauss76Z[i]*zm + zb; 40 40 const double radical = 1.0 - t*t; 41 const double bj = sas_ J1c(qrst*sqrt(radical));41 const double bj = sas_2J1x_x(qrst*sqrt(radical)); 42 42 const double Fq = cos(m*t + b) * radical * bj; 43 43 total += Gauss76Wt[i] * Fq; … … 54 54 { 55 55 const double cap_Fq = _cap_kernel(q, h, radius_cap, half_length, sin_alpha, cos_alpha); 56 const double bj = sas_ J1c(q*radius*sin_alpha);57 const double si = s inc(q*half_length*cos_alpha);56 const double bj = sas_2J1x_x(q*radius*sin_alpha); 57 const double si = sas_sinx_x(q*half_length*cos_alpha); 58 58 const double cyl_Fq = 2.0*M_PI*radius*radius*half_length*bj*si; 59 59 const double Aq = cap_Fq + cyl_Fq; -
sasmodels/models/core_multi_shell.c
rc5ac2b2 r925ad6e 3 3 f_constant(double q, double r, double sld) 4 4 { 5 const double bes = s ph_j1c(q * r);5 const double bes = sas_3j1x_x(q * r); 6 6 const double vol = M_4PI_3 * cube(r); 7 7 return sld * vol * bes; … … 33 33 f = 0.; 34 34 for (int i=0; i<n; i++) { 35 f += M_4PI_3 * cube(r) * (sld[i] - last_sld) * s ph_j1c(q*r);35 f += M_4PI_3 * cube(r) * (sld[i] - last_sld) * sas_3j1x_x(q*r); 36 36 last_sld = sld[i]; 37 37 r += thickness[i]; 38 38 } 39 f += M_4PI_3 * cube(r) * (solvent_sld - last_sld) * s ph_j1c(q*r);39 f += M_4PI_3 * cube(r) * (solvent_sld - last_sld) * sas_3j1x_x(q*r); 40 40 return f * f * 1.0e-4; 41 41 } -
sasmodels/models/core_multi_shell.py
r2d73a53 r925ad6e 101 101 ] 102 102 103 source = ["lib/s ph_j1c.c", "core_multi_shell.c"]103 source = ["lib/sas_3j1x_x.c", "core_multi_shell.c"] 104 104 105 105 def profile(sld_core, radius, sld_solvent, n, sld, thickness): -
sasmodels/models/core_shell_bicelle.c
r5bddd89 r592343f 55 55 double sinarg2 = qq*(length+facthick)*cos_alpha; 56 56 57 be1 = sas_ J1c(besarg1);58 be2 = sas_ J1c(besarg2);59 si1 = s inc(sinarg1);60 si2 = s inc(sinarg2);57 be1 = sas_2J1x_x(besarg1); 58 be2 = sas_2J1x_x(besarg2); 59 si1 = sas_sinx_x(sinarg1); 60 si2 = sas_sinx_x(sinarg2); 61 61 62 62 const double t = vol1*dr1*si1*be1 + -
sasmodels/models/core_shell_bicelle.py
rfcb33e4 r8afefae 141 141 # pylint: enable=bad-whitespace, line-too-long 142 142 143 source = ["lib/ Si.c", "lib/polevl.c", "lib/sas_J1.c", "lib/gauss76.c",143 source = ["lib/sas_Si.c", "lib/polevl.c", "lib/sas_J1.c", "lib/gauss76.c", 144 144 "core_shell_bicelle.c"] 145 145 … … 156 156 phi=0) 157 157 158 qx, qy = 0.4 * cos(90), 0.5 * sin(0)158 #qx, qy = 0.4 * cos(pi/2.0), 0.5 * sin(0) -
sasmodels/models/core_shell_bicelle_elliptical.c
rfcb33e4 r592343f 76 76 double sinarg1 = qq*halfheight*cos_alpha; 77 77 double sinarg2 = qq*(halfheight+facthick)*cos_alpha; 78 si1 = s inc(sinarg1);79 si2 = s inc(sinarg2);78 si1 = sas_sinx_x(sinarg1); 79 si2 = sas_sinx_x(sinarg2); 80 80 for(int j=0;j<76;j++) { 81 81 //76 gauss points for the inner integral (WAS 20 points,so this may make unecessarily slow, but playing safe) … … 85 85 double besarg1 = qq*rr*sin_alpha; 86 86 double besarg2 = qq*(rr+radthick)*sin_alpha; 87 be1 = sas_ J1c(besarg1);88 be2 = sas_ J1c(besarg2);87 be1 = sas_2J1x_x(besarg1); 88 be2 = sas_2J1x_x(besarg2); 89 89 inner_sum += Gauss76Wt[j] *square(dr1*si1*be1 + 90 90 dr2*si2*be2 + … … 129 129 // ASSUME the sin_alpha is included in the separate integration over orientation of rod angle 130 130 const double r = rad*sqrt(square(x_core*cos_nu) + cos_mu*cos_mu); 131 const double be1 = sas_ J1c(qq*r);132 const double be2 = sas_ J1c( qq*(r + radthick ) );133 const double si1 = s inc( qq*halfheight*cos_val );134 const double si2 = s inc( qq*(halfheight + facthick)*cos_val );131 const double be1 = sas_2J1x_x( qq*r ); 132 const double be2 = sas_2J1x_x( qq*(r + radthick ) ); 133 const double si1 = sas_sinx_x( qq*halfheight*cos_val ); 134 const double si2 = sas_sinx_x( qq*(halfheight + facthick)*cos_val ); 135 135 const double Aq = square( vol1*dr1*si1*be1 + vol2*dr2*si2*be2 + vol3*dr3*si2*be1); 136 136 //const double vol = form_volume(radius_minor, r_ratio, length); -
sasmodels/models/core_shell_bicelle_elliptical.py
rfcb33e4 r8afefae 83 83 84 84 Definition of the angles for the oriented core_shell_bicelle_elliptical model. 85 Note that *theta* and *phi* are currently defined differently to those for the core_shell_bicelle model. 85 86 86 87 … … 132 133 # pylint: enable=bad-whitespace, line-too-long 133 134 134 source = ["lib/Si.c", "lib/polevl.c", "lib/sas_J1.c", "lib/gauss76.c","core_shell_bicelle_elliptical.c"] 135 source = ["lib/sas_Si.c", "lib/polevl.c", "lib/sas_J1.c", "lib/gauss76.c", 136 "core_shell_bicelle_elliptical.c"] 135 137 136 138 demo = dict(scale=1, background=0, … … 148 150 psi=0) 149 151 150 qx, qy = 0.4 * cos(90), 0.5 * sin(0)152 #qx, qy = 0.4 * cos(pi/2.0), 0.5 * sin(0) 151 153 152 154 tests = [ -
sasmodels/models/core_shell_cylinder.c
r9aa4881 r592343f 11 11 double _cyl(double vd, double besarg, double siarg) 12 12 { 13 return vd * s inc(siarg) * sas_J1c(besarg);13 return vd * sas_sinx_x(siarg) * sas_2J1x_x(besarg); 14 14 } 15 15 -
sasmodels/models/core_shell_ellipsoid.py
rb7e8b94 r8e68ea0 137 137 # pylint: enable=bad-whitespace, line-too-long 138 138 139 source = ["lib/s ph_j1c.c", "lib/gfn.c", "lib/gauss76.c",139 source = ["lib/sas_3j1x_x.c", "lib/gfn.c", "lib/gauss76.c", 140 140 "core_shell_ellipsoid.c"] 141 141 … … 165 165 qx = q*cos(pi/6.0) 166 166 qy = q*sin(pi/6.0) 167 phi = 0.0168 167 # 11Jan2017 RKH sorted tests after redefinition of angles 169 168 tests = [ … … 193 192 'scale': 1.0, 194 193 }, 0.01, 8688.53], 195 # why does it need theta setting here, not globally above? 196 [{'background': 0.001, 'theta':90.0}, (0.4, 0.5), 0.00690673], 194 195 # 2D tests 196 [{'background': 0.001, 197 'theta': 90.0, 198 'phi': 0.0, 199 }, (0.4, 0.5), 0.00690673], 197 200 198 201 [{'radius_equat_core': 20.0, … … 206 209 'scale': 0.01, 207 210 'theta': 90.0, 211 'phi': 0.0, 208 212 }, (qx, qy), 0.01000025], 209 213 ] -
sasmodels/models/core_shell_parallelepiped.c
r14838a3 r1e7b0db0 87 87 double sin_uu, cos_uu; 88 88 SINCOS(M_PI_2*uu, sin_uu, cos_uu); 89 const double si1 = s inc(mu_proj * sin_uu * a_scaled);90 const double si2 = s inc(mu_proj * cos_uu);91 const double si3 = s inc(mu_proj * sin_uu * ta);92 const double si4 = s inc(mu_proj * cos_uu * tb);89 const double si1 = sas_sinx_x(mu_proj * sin_uu * a_scaled); 90 const double si2 = sas_sinx_x(mu_proj * cos_uu); 91 const double si3 = sas_sinx_x(mu_proj * sin_uu * ta); 92 const double si4 = sas_sinx_x(mu_proj * cos_uu * tb); 93 93 94 94 // Expression in libCylinder.c (neither drC nor Vot are used) … … 109 109 110 110 // now sum up the outer integral 111 const double si = s inc(mu * c_scaled * sigma);111 const double si = sas_sinx_x(mu * c_scaled * sigma); 112 112 outer_total += Gauss76Wt[i] * inner_total * si * si; 113 113 } … … 160 160 double tc = length_a + 2.0*thick_rim_c; 161 161 //handle arg=0 separately, as sin(t)/t -> 1 as t->0 162 double siA = s inc(0.5*q*length_a*cos_val_a);163 double siB = s inc(0.5*q*length_b*cos_val_b);164 double siC = s inc(0.5*q*length_c*cos_val_c);165 double siAt = s inc(0.5*q*ta*cos_val_a);166 double siBt = s inc(0.5*q*tb*cos_val_b);167 double siCt = s inc(0.5*q*tc*cos_val_c);162 double siA = sas_sinx_x(0.5*q*length_a*cos_val_a); 163 double siB = sas_sinx_x(0.5*q*length_b*cos_val_b); 164 double siC = sas_sinx_x(0.5*q*length_c*cos_val_c); 165 double siAt = sas_sinx_x(0.5*q*ta*cos_val_a); 166 double siBt = sas_sinx_x(0.5*q*tb*cos_val_b); 167 double siCt = sas_sinx_x(0.5*q*tc*cos_val_c); 168 168 169 169 -
sasmodels/models/core_shell_sphere.py
r4962519 r925ad6e 75 75 # pylint: enable=bad-whitespace, line-too-long 76 76 77 source = ["lib/s ph_j1c.c", "lib/core_shell.c", "core_shell_sphere.c"]77 source = ["lib/sas_3j1x_x.c", "lib/core_shell.c", "core_shell_sphere.c"] 78 78 79 79 demo = dict(scale=1, background=0, radius=60, thickness=10, -
sasmodels/models/cylinder.c
rb829b16 r592343f 18 18 const double qr = q*radius; 19 19 const double qh = q*0.5*length; 20 return sas_ J1c(qr*sn) * sinc(qh*cn);20 return sas_2J1x_x(qr*sn) * sas_sinx_x(qh*cn); 21 21 } 22 22 -
sasmodels/models/ellipsoid.c
r73e08ae r925ad6e 18 18 const double r = radius_equatorial 19 19 * sqrt(1.0 + sin_alpha*sin_alpha*(ratio*ratio - 1.0)); 20 const double f = s ph_j1c(q*r);20 const double f = sas_3j1x_x(q*r); 21 21 22 22 return f*f; -
sasmodels/models/ellipsoid.py
r0d6e865 r925ad6e 135 135 ] 136 136 137 source = ["lib/s ph_j1c.c", "lib/gauss76.c", "ellipsoid.c"]137 source = ["lib/sas_3j1x_x.c", "lib/gauss76.c", "ellipsoid.c"] 138 138 139 139 def ER(radius_polar, radius_equatorial): -
sasmodels/models/elliptical_cylinder.c
r251f54b r592343f 39 39 const double theta = ( Gauss20Z[j]*(vbj-vaj) + vaj + vbj )/2.0; 40 40 const double r = sin_val*sqrt(rA - rB*cos(theta)); 41 const double be = sas_ J1c(q*r);41 const double be = sas_2J1x_x(q*r); 42 42 inner_sum += Gauss20Wt[j] * be * be; 43 43 } … … 46 46 47 47 //now calculate outer integral 48 const double si = s inc(q*0.5*length*cos_val);48 const double si = sas_sinx_x(q*0.5*length*cos_val); 49 49 outer_sum += Gauss76Wt[i] * inner_sum * si * si; 50 50 } … … 73 73 // Given: radius_major = r_ratio * radius_minor 74 74 const double r = radius_minor*sqrt(square(r_ratio*cos_nu) + cos_mu*cos_mu); 75 const double be = sas_ J1c(q*r);76 const double si = s inc(q*0.5*length*cos_val);75 const double be = sas_2J1x_x(q*r); 76 const double si = sas_sinx_x(q*0.5*length*cos_val); 77 77 const double Aq = be * si; 78 78 const double delrho = sld - solvent_sld; -
sasmodels/models/fcc_paracrystal.py
r0bef47b r925ad6e 116 116 # pylint: enable=bad-whitespace, line-too-long 117 117 118 source = ["lib/s ph_j1c.c", "lib/gauss150.c", "lib/sphere_form.c", "fcc_paracrystal.c"]118 source = ["lib/sas_3j1x_x.c", "lib/gauss150.c", "lib/sphere_form.c", "fcc_paracrystal.c"] 119 119 120 120 # parameters for demo -
sasmodels/models/flexible_cylinder.c
re6408d0 r592343f 14 14 { 15 15 const double contrast = sld - solvent_sld; 16 const double cross_section = sas_ J1c(q*radius);16 const double cross_section = sas_2J1x_x(q*radius); 17 17 const double volume = M_PI*radius*radius*length; 18 18 const double flex = Sk_WR(q, length, kuhn_length); -
sasmodels/models/flexible_cylinder_elliptical.c
r92ce163 r592343f 22 22 SINCOS(zi, sn, cn); 23 23 const double arg = q*sqrt(a*a*sn*sn + b*b*cn*cn); 24 const double yyy = sas_ J1c(arg);24 const double yyy = sas_2J1x_x(arg); 25 25 sum += Gauss76Wt[i] * yyy * yyy; 26 26 } -
sasmodels/models/fractal.c
r217590b r925ad6e 14 14 //calculate P(q) for the spherical subunits 15 15 const double V = M_4PI_3*cube(radius); 16 const double pq = V * square((sld_block-sld_solvent)*s ph_j1c(q*radius));16 const double pq = V * square((sld_block-sld_solvent)*sas_3j1x_x(q*radius)); 17 17 18 18 // scale to units cm-1 sr-1 (assuming data on absolute scale) -
sasmodels/models/fractal.py
rd1cfa86 r925ad6e 97 97 # pylint: enable=bad-whitespace, line-too-long 98 98 99 source = ["lib/s ph_j1c.c", "lib/sas_gamma.c", "lib/fractal_sq.c", "fractal.c"]99 source = ["lib/sas_3j1x_x.c", "lib/sas_gamma.c", "lib/fractal_sq.c", "fractal.c"] 100 100 101 101 demo = dict(volfraction=0.05, -
sasmodels/models/fractal_core_shell.py
rd6f60c3 r925ad6e 95 95 # pylint: enable=bad-whitespace, line-too-long 96 96 97 source = ["lib/s ph_j1c.c", "lib/sas_gamma.c", "lib/core_shell.c",97 source = ["lib/sas_3j1x_x.c", "lib/sas_gamma.c", "lib/core_shell.c", 98 98 "lib/fractal_sq.c", "fractal_core_shell.c"] 99 99 -
sasmodels/models/fuzzy_sphere.py
r3a48772 r925ad6e 81 81 # pylint: enable=bad-whitespace,line-too-long 82 82 83 source = ["lib/s ph_j1c.c"]83 source = ["lib/sas_3j1x_x.c"] 84 84 85 85 # No volume normalization despite having a volume parameter … … 91 91 Iq = """ 92 92 const double qr = q*radius; 93 const double bes = s ph_j1c(qr);93 const double bes = sas_3j1x_x(qr); 94 94 const double qf = q*fuzziness; 95 95 const double fq = bes * (sld - sld_solvent) * form_volume(radius) * exp(-0.5*qf*qf); -
sasmodels/models/guinier_porod.py
ra807206 rcdcebf1 4 4 and dimensionality of scattering objects, including asymmetric objects 5 5 such as rods or platelets, and shapes intermediate between spheres 6 and rods or between rods and platelets. 6 and rods or between rods and platelets, and overcomes some of the 7 deficiencies of the (Beaucage) Unified_Power_Rg model (see Hammouda, 2010). 7 8 8 9 Definition … … 59 60 --------- 60 61 61 A Guinier, G Fournet, *Small-Angle Scattering of X-Rays*, 62 John Wiley and Sons, New York, (1955) 62 B Hammouda, *A new Guinier-Porod model, J. Appl. Cryst.*, (2010), 43, 716-719 63 63 64 O Glatter, O Kratky, *Small-Angle X-Ray Scattering*, Academic Press (1982) 65 Check out Chapter 4 on Data Treatment, pages 155-156. 64 B Hammouda, *Analysis of the Beaucage model, J. Appl. Cryst.*, (2010), 43, 1474-1478 65 66 66 """ 67 67 -
sasmodels/models/hollow_cylinder.c
rf8f0991 r592343f 20 20 { 21 21 const double qs = q*sin_val; 22 const double lam1 = sas_ J1c((radius+thickness)*qs);23 const double lam2 = sas_ J1c(radius*qs);22 const double lam1 = sas_2J1x_x((radius+thickness)*qs); 23 const double lam2 = sas_2J1x_x(radius*qs); 24 24 const double gamma_sq = square(radius/(radius+thickness)); 25 //Note: lim_{thickness -> 0} psi = J0(radius*qs)26 //Note: lim_{radius -> 0} psi = sas_ J1c(thickness*qs)25 //Note: lim_{thickness -> 0} psi = sas_J0(radius*qs) 26 //Note: lim_{radius -> 0} psi = sas_2J1x_x(thickness*qs) 27 27 const double psi = (lam1 - gamma_sq*lam2)/(1.0 - gamma_sq); //SRK 10/19/00 28 const double t2 = s inc(0.5*q*length*cos_val);28 const double t2 = sas_sinx_x(0.5*q*length*cos_val); 29 29 return psi*t2; 30 30 } -
sasmodels/models/hollow_rectangular_prism.c
r6f676fb r1e7b0db0 45 45 SINCOS(theta, sin_theta, cos_theta); 46 46 47 const double termC1 = s inc(q * c_half * cos(theta));48 const double termC2 = s inc(q * (c_half-thickness)*cos(theta));47 const double termC1 = sas_sinx_x(q * c_half * cos(theta)); 48 const double termC2 = sas_sinx_x(q * (c_half-thickness)*cos(theta)); 49 49 50 50 double inner_sum = 0.0; … … 57 57 // Amplitude AP from eqn. (13), rewritten to avoid round-off effects when arg=0 58 58 59 const double termA1 = s inc(q * a_half * sin_theta * sin_phi);60 const double termA2 = s inc(q * (a_half-thickness) * sin_theta * sin_phi);59 const double termA1 = sas_sinx_x(q * a_half * sin_theta * sin_phi); 60 const double termA2 = sas_sinx_x(q * (a_half-thickness) * sin_theta * sin_phi); 61 61 62 const double termB1 = s inc(q * b_half * sin_theta * cos_phi);63 const double termB2 = s inc(q * (b_half-thickness) * sin_theta * cos_phi);62 const double termB1 = sas_sinx_x(q * b_half * sin_theta * cos_phi); 63 const double termB2 = sas_sinx_x(q * (b_half-thickness) * sin_theta * cos_phi); 64 64 65 65 const double AP1 = vol_total * termA1 * termB1 * termC1; -
sasmodels/models/lib/core_shell.c
r3a48772 r925ad6e 16 16 const double core_qr = q * radius; 17 17 const double core_contrast = core_sld - shell_sld; 18 const double core_bes = s ph_j1c(core_qr);18 const double core_bes = sas_3j1x_x(core_qr); 19 19 const double core_volume = M_4PI_3 * cube(radius); 20 20 double f = core_volume * core_bes * core_contrast; … … 23 23 const double shell_qr = q * (radius + thickness); 24 24 const double shell_contrast = shell_sld - solvent_sld; 25 const double shell_bes = s ph_j1c(shell_qr);25 const double shell_bes = sas_3j1x_x(shell_qr); 26 26 const double shell_volume = M_4PI_3 * cube(radius + thickness); 27 27 f += shell_volume * shell_bes * shell_contrast; -
sasmodels/models/lib/gfn.c
r3a48772 r925ad6e 18 18 // changing to more accurate sph_j1c since the following inexplicably fails on Radeon Nano. 19 19 //const double siq = (uq == 0.0 ? 1.0 : 3.0*(sin(uq)/uq/uq - cos(uq)/uq)/uq); 20 const double siq = s ph_j1c(uq);20 const double siq = sas_3j1x_x(uq); 21 21 const double vc = M_4PI_3*aa*aa*bb; 22 22 const double gfnc = siq*vc*delpc; … … 26 26 const double vt = M_4PI_3*trmaj*trmaj*trmin; 27 27 //const double sit = (ut == 0.0 ? 1.0 : 3.0*(sin(ut)/ut/ut - cos(ut)/ut)/ut); 28 const double sit = s ph_j1c(ut);28 const double sit = sas_3j1x_x(ut); 29 29 const double gfnt = sit*vt*delps; 30 30 -
sasmodels/models/lib/sas_J1.c
rc8902ac r473a9f1 217 217 218 218 //Finally J1c function that equals 2*J1(x)/x 219 double sas_ J1c(double x);220 double sas_ J1c(double x)219 double sas_2J1x_x(double x); 220 double sas_2J1x_x(double x) 221 221 { 222 222 return (x != 0.0 ) ? 2.0*sas_J1(x)/x : 1.0; -
sasmodels/models/lib/sphere_form.c
rba32cdd r925ad6e 9 9 double sphere_form(double q, double radius, double sld, double solvent_sld) 10 10 { 11 const double fq = sphere_volume(radius) * s ph_j1c(q*radius);11 const double fq = sphere_volume(radius) * sas_3j1x_x(q*radius); 12 12 const double contrast = (sld - solvent_sld); 13 13 return 1.0e-4*square(contrast * fq); -
sasmodels/models/linear_pearls.c
r4962519 r925ad6e 44 44 45 45 //sine functions of a pearl 46 double psi = s ph_j1c(q * radius);46 double psi = sas_3j1x_x(q * radius); 47 47 48 48 // N pearls contribution … … 50 50 n_contrib = num_pearls; 51 51 for(int num=1; num<=n_max; num++) { 52 n_contrib += (2.0*(num_pearls-num)*s inc(q*separation*num));52 n_contrib += (2.0*(num_pearls-num)*sas_sinx_x(q*separation*num)); 53 53 } 54 54 // form factor for num_pearls -
sasmodels/models/linear_pearls.py
r4962519 r925ad6e 63 63 single = False 64 64 65 source = ["lib/s ph_j1c.c", "linear_pearls.c"]65 source = ["lib/sas_3j1x_x.c", "linear_pearls.c"] 66 66 67 67 demo = dict(scale=1.0, background=0.0, -
sasmodels/models/mass_fractal.c
r6d96b66 r925ad6e 5 5 { 6 6 //calculate P(q) 7 const double pq = square(s ph_j1c(q*radius));7 const double pq = square(sas_3j1x_x(q*radius)); 8 8 9 9 //calculate S(q) -
sasmodels/models/mass_fractal.py
r6d96b66 r925ad6e 86 86 # pylint: enable=bad-whitespace, line-too-long 87 87 88 source = ["lib/s ph_j1c.c", "lib/sas_gamma.c", "mass_fractal.c"]88 source = ["lib/sas_3j1x_x.c", "lib/sas_gamma.c", "mass_fractal.c"] 89 89 90 90 demo = dict(scale=1, background=0, -
sasmodels/models/multilayer_vesicle.c
r3a48772 r925ad6e 20 20 // layer 1 21 21 voli = M_4PI_3*ri*ri*ri; 22 fval += voli*sldi*s ph_j1c(ri*q);22 fval += voli*sldi*sas_3j1x_x(ri*q); 23 23 24 24 ri += thick_shell; … … 26 26 // layer 2 27 27 voli = M_4PI_3*ri*ri*ri; 28 fval -= voli*sldi*s ph_j1c(ri*q);28 fval -= voli*sldi*sas_3j1x_x(ri*q); 29 29 30 30 //do 2 layers at a time -
sasmodels/models/multilayer_vesicle.py
r1a6cd57 r925ad6e 107 107 # pylint: enable=bad-whitespace, line-too-long 108 108 109 source = ["lib/s ph_j1c.c", "multilayer_vesicle.c"]109 source = ["lib/sas_3j1x_x.c", "multilayer_vesicle.c"] 110 110 111 111 polydispersity = ["radius", "n_pairs"] -
sasmodels/models/onion.c
r9762341 r925ad6e 6 6 const double vol = M_4PI_3 * cube(r); 7 7 const double qr = q * r; 8 const double bes = s ph_j1c(qr);8 const double bes = sas_3j1x_x(qr); 9 9 const double alpha = A * r/thickness; 10 10 double result; -
sasmodels/models/onion.py
r9762341 r925ad6e 314 314 # pylint: enable=bad-whitespace, line-too-long 315 315 316 source = ["lib/s ph_j1c.c", "onion.c"]316 source = ["lib/sas_3j1x_x.c", "onion.c"] 317 317 single = False 318 318 -
sasmodels/models/parallelepiped.c
r14838a3 r1e7b0db0 39 39 double sin_uu, cos_uu; 40 40 SINCOS(M_PI_2*uu, sin_uu, cos_uu); 41 const double si1 = s inc(mu_proj * sin_uu * a_scaled);42 const double si2 = s inc(mu_proj * cos_uu);41 const double si1 = sas_sinx_x(mu_proj * sin_uu * a_scaled); 42 const double si2 = sas_sinx_x(mu_proj * cos_uu); 43 43 inner_total += Gauss76Wt[j] * square(si1 * si2); 44 44 } 45 45 inner_total *= 0.5; 46 46 47 const double si = s inc(mu * c_scaled * sigma);47 const double si = sas_sinx_x(mu * c_scaled * sigma); 48 48 outer_total += Gauss76Wt[i] * inner_total * si * si; 49 49 } … … 70 70 ORIENT_ASYMMETRIC(qx, qy, theta, phi, psi, q, cos_val_c, cos_val_b, cos_val_a); 71 71 72 const double siA = s inc(0.5*q*length_a*cos_val_a);73 const double siB = s inc(0.5*q*length_b*cos_val_b);74 const double siC = s inc(0.5*q*length_c*cos_val_c);72 const double siA = sas_sinx_x(0.5*q*length_a*cos_val_a); 73 const double siB = sas_sinx_x(0.5*q*length_b*cos_val_b); 74 const double siC = sas_sinx_x(0.5*q*length_c*cos_val_c); 75 75 const double V = form_volume(length_a, length_b, length_c); 76 76 const double drho = (sld - solvent_sld); -
sasmodels/models/pearl_necklace.c
r2126131 r4b541ac 34 34 // But there is a 1/(1-sinc) term below which blows up so don't bother 35 35 const double q_edge = q * edge_sep; 36 const double beta = ( Si(q*(A_s-radius)) -Si(q*radius)) / q_edge;37 const double gamma = Si(q_edge) / q_edge;38 const double psi = s ph_j1c(q*radius);36 const double beta = (sas_Si(q*(A_s-radius)) - sas_Si(q*radius)) / q_edge; 37 const double gamma = sas_Si(q_edge) / q_edge; 38 const double psi = sas_3j1x_x(q*radius); 39 39 40 40 // Precomputed sinc terms 41 const double si = s inc(q*A_s);41 const double si = sas_sinx_x(q*A_s); 42 42 const double omsi = 1.0 - si; 43 43 const double pow_si = pow(si, num_pearls); … … 54 54 - 2.0 * (1.0 - pow_si/si)*beta*beta / (omsi*omsi) 55 55 + 2.0 * num_strings*beta*beta / omsi 56 + num_strings * (2.0*gamma - square(s inc(q_edge/2.0)))56 + num_strings * (2.0*gamma - square(sas_sinx_x(q_edge/2.0))) 57 57 ); 58 58 -
sasmodels/models/pearl_necklace.py
r2126131 r4b541ac 92 92 ] 93 93 94 source = ["lib/ Si.c", "lib/sph_j1c.c", "pearl_necklace.c"]94 source = ["lib/sas_Si.c", "lib/sas_3j1x_x.c", "pearl_necklace.c"] 95 95 single = False # use double precision unless told otherwise 96 96 -
sasmodels/models/polymer_micelle.c
rc3ebc71 r925ad6e 31 31 32 32 // Self-correlation term of the core 33 const double bes_core = s ph_j1c(q*radius_core);33 const double bes_core = sas_3j1x_x(q*radius_core); 34 34 const double term1 = square(n_aggreg*beta_core*bes_core); 35 35 … … 41 41 // Interference cross-term between core and chains 42 42 const double chain_ampl = (qrg2 == 0.0) ? 1.0 : -expm1(-qrg2)/qrg2; 43 const double bes_corona = s inc(q*(radius_core + d_penetration * rg));43 const double bes_corona = sas_sinx_x(q*(radius_core + d_penetration * rg)); 44 44 const double term3 = 2.0 * n_aggreg * n_aggreg * beta_core * beta_corona * 45 45 bes_core * chain_ampl * bes_corona; -
sasmodels/models/polymer_micelle.py
rbba9361 r925ad6e 104 104 single = False 105 105 106 source = ["lib/s ph_j1c.c", "polymer_micelle.c"]106 source = ["lib/sas_3j1x_x.c", "polymer_micelle.c"] 107 107 108 108 demo = dict(scale=1, background=0, -
sasmodels/models/pringle.c
r30fbe2e r1e7b0db0 91 91 SINCOS(psi, sin_psi, cos_psi); 92 92 double bessel_term = _sum_bessel_orders(radius, alpha, beta, q*sin_psi, q*cos_psi); 93 double sinc_term = square(s inc(q * thickness * cos_psi / 2.0));93 double sinc_term = square(sas_sinx_x(q * thickness * cos_psi / 2.0)); 94 94 double pringle_kernel = 4.0 * sin_psi * bessel_term * sinc_term; 95 95 sum += Gauss76Wt[i] * pringle_kernel; -
sasmodels/models/raspberry.c
r2c74c11 r925ad6e 51 51 52 52 //Form factors for each particle 53 psiL = s ph_j1c(q*rL);54 psiS = s ph_j1c(q*rS);53 psiL = sas_3j1x_x(q*rL); 54 psiS = sas_3j1x_x(q*rS); 55 55 56 56 //Cross term between large and small particles 57 sfLS = psiL*psiS*s inc(q*(rL+deltaS*rS));57 sfLS = psiL*psiS*sas_sinx_x(q*(rL+deltaS*rS)); 58 58 //Cross term between small particles at the surface 59 sfSS = psiS*psiS*s inc(q*(rL+deltaS*rS))*sinc(q*(rL+deltaS*rS));59 sfSS = psiS*psiS*sas_sinx_x(q*(rL+deltaS*rS))*sas_sinx_x(q*(rL+deltaS*rS)); 60 60 61 61 //Large sphere form factor term -
sasmodels/models/raspberry.py
r40a87fa r8e68ea0 129 129 Ref: J. coll. inter. sci. (2010) vol. 343 (1) pp. 36-41.""" 130 130 category = "shape:sphere" 131 #single = False 131 132 132 133 133 # [ "name", "units", default, [lower, upper], "type", "description"], … … 152 152 ] 153 153 154 source = ["lib/s ph_j1c.c", "raspberry.c"]154 source = ["lib/sas_3j1x_x.c", "raspberry.c"] 155 155 156 156 # parameters for demo -
sasmodels/models/rectangular_prism.c
rab2aea8 r1e7b0db0 33 33 SINCOS(theta, sin_theta, cos_theta); 34 34 35 const double termC = s inc(q * c_half * cos_theta);35 const double termC = sas_sinx_x(q * c_half * cos_theta); 36 36 37 37 double inner_sum = 0.0; … … 42 42 43 43 // Amplitude AP from eqn. (12), rewritten to avoid round-off effects when arg=0 44 const double termA = s inc(q * a_half * sin_theta * sin_phi);45 const double termB = s inc(q * b_half * sin_theta * cos_phi);44 const double termA = sas_sinx_x(q * a_half * sin_theta * sin_phi); 45 const double termB = sas_sinx_x(q * b_half * sin_theta * cos_phi); 46 46 const double AP = termA * termB * termC; 47 47 inner_sum += Gauss76Wt[j] * AP * AP; -
sasmodels/models/sc_paracrystal.py
r0bef47b r925ad6e 133 133 # pylint: enable=bad-whitespace, line-too-long 134 134 135 source = ["lib/s ph_j1c.c", "lib/sphere_form.c", "lib/gauss150.c", "sc_paracrystal.c"]135 source = ["lib/sas_3j1x_x.c", "lib/sphere_form.c", "lib/gauss150.c", "sc_paracrystal.c"] 136 136 137 137 demo = dict(scale=1, background=0, -
sasmodels/models/sphere.py
r7e6bea81 r925ad6e 66 66 ] 67 67 68 source = ["lib/s ph_j1c.c", "lib/sphere_form.c"]68 source = ["lib/sas_3j1x_x.c", "lib/sphere_form.c"] 69 69 70 70 # No volume normalization despite having a volume parameter -
sasmodels/models/spherical_sld.c
r54bcd4a r925ad6e 34 34 const double qr = q * r; 35 35 const double qrsq = qr * qr; 36 const double bes = s ph_j1c(qr);36 const double bes = sas_3j1x_x(qr); 37 37 double sinqr, cosqr; 38 38 SINCOS(qr, sinqr, cosqr); … … 60 60 61 61 // uniform shell; r=0 => r^3=0 => f=0, so works for core as well. 62 f -= M_4PI_3 * cube(r) * sld_l * s ph_j1c(q*r);62 f -= M_4PI_3 * cube(r) * sld_l * sas_3j1x_x(q*r); 63 63 r += thickness[shell]; 64 f += M_4PI_3 * cube(r) * sld_l * s ph_j1c(q*r);64 f += M_4PI_3 * cube(r) * sld_l * sas_3j1x_x(q*r); 65 65 66 66 // iterate over sub_shells in the interface … … 92 92 } 93 93 // add in solvent effect 94 f -= M_4PI_3 * cube(r) * sld_solvent * s ph_j1c(q*r);94 f -= M_4PI_3 * cube(r) * sld_solvent * sas_3j1x_x(q*r); 95 95 96 96 const double f2 = f * f * 1.0e-4; -
sasmodels/models/spherical_sld.py
r2d65d51 r925ad6e 214 214 ] 215 215 # pylint: enable=bad-whitespace, line-too-long 216 source = ["lib/polevl.c", "lib/sas_erf.c", "lib/s ph_j1c.c", "spherical_sld.c"]216 source = ["lib/polevl.c", "lib/sas_erf.c", "lib/sas_3j1x_x.c", "spherical_sld.c"] 217 217 single = False # TODO: fix low q behaviour 218 218 -
sasmodels/models/stacked_disks.c
r98ce141 r6c3e266 53 53 const double sinarg2 = q*(halfheight+thick_layer)*cos_alpha; 54 54 55 const double be1 = sas_ J1c(besarg1);56 //const double be2 = sas_ J1c(besarg2);55 const double be1 = sas_2J1x_x(besarg1); 56 //const double be2 = sas_2J1x_x(besarg2); 57 57 const double be2 = be1; 58 const double si1 = s inc(sinarg1);59 const double si2 = s inc(sinarg2);58 const double si1 = sas_sinx_x(sinarg1); 59 const double si2 = sas_sinx_x(sinarg2); 60 60 61 61 const double dr1 = core_sld - solvent_sld; -
sasmodels/models/surface_fractal.c
rb716cc6 r925ad6e 15 15 { 16 16 // calculate P(q) 17 const double pq = square(s ph_j1c(q*radius));17 const double pq = square(sas_3j1x_x(q*radius)); 18 18 19 19 // calculate S(q) -
sasmodels/models/surface_fractal.py
r5c94f41 r925ad6e 72 72 # pylint: enable=bad-whitespace, line-too-long 73 73 74 source = ["lib/s ph_j1c.c", "lib/sas_gamma.c", "surface_fractal.c"]74 source = ["lib/sas_3j1x_x.c", "lib/sas_gamma.c", "surface_fractal.c"] 75 75 76 76 demo = dict(scale=1, background=1e-5, -
sasmodels/models/triaxial_ellipsoid.c
r3a48772 r925ad6e 37 37 const double ysq = square(Gauss76Z[j]*zm + zb); 38 38 const double t = q*sqrt(acosx2 + bsinx2*(1.0-ysq) + c2*ysq); 39 const double fq = s ph_j1c(t);39 const double fq = sas_3j1x_x(t); 40 40 inner += Gauss76Wt[j] * fq * fq ; 41 41 } … … 64 64 + radius_equat_major*radius_equat_major*cmu*cmu 65 65 + radius_polar*radius_polar*calpha*calpha); 66 const double fq = s ph_j1c(t);66 const double fq = sas_3j1x_x(t); 67 67 const double s = (sld - sld_solvent) * form_volume(radius_equat_minor, radius_equat_major, radius_polar); 68 68 -
sasmodels/models/triaxial_ellipsoid.py
r416f5c7 r925ad6e 104 104 ] 105 105 106 source = ["lib/s ph_j1c.c", "lib/gauss76.c", "triaxial_ellipsoid.c"]106 source = ["lib/sas_3j1x_x.c", "lib/gauss76.c", "triaxial_ellipsoid.c"] 107 107 108 108 def ER(radius_equat_minor, radius_equat_major, radius_polar): -
sasmodels/models/unified_power_Rg.py
rb3f2a24 rcdcebf1 3 3 ---------- 4 4 5 Th e Beaucage model employs the empirical multiple level unified6 Exponential/Power-law fit method developed by G. Beaucage. Four functions 7 are included so that 1, 2, 3, or 4 levels can be used. In addition a 0 level 8 has been added which simplycalculates5 This model employs the empirical multiple level unified Exponential/Power-law 6 fit method developed by Beaucage. Four functions are included so that 1, 2, 3, 7 or 4 levels can be used. In addition a 0 level has been added which simply 8 calculates 9 9 10 10 .. math:: … … 15 15 many different types of particles, including fractal clusters, random coils 16 16 (Debye equation), ellipsoidal particles, etc. 17 18 The model works best for mass fractal systems characterized by Porod exponents 19 between 5/3 and 3. It should not be used for surface fractal systems. Hammouda 20 (2010) has pointed out a deficiency in the way this model handles the 21 transitioning between the Guinier and Porod regimes and which can create 22 artefacts that appear as kinks in the fitted model function. 23 24 Also see the Guinier_Porod model. 17 25 18 26 The empirical fit function is: … … 56 64 57 65 G Beaucage, *J. Appl. Cryst.*, 29 (1996) 134-146 66 67 B Hammouda, *Analysis of the Beaucage model, J. Appl. Cryst.*, (2010), 43, 1474-1478 58 68 59 69 """ -
sasmodels/models/vesicle.c
r3a48772 r925ad6e 30 30 contrast = sld_solvent-sld; 31 31 vol = M_4PI_3*cube(radius); 32 f = vol * s ph_j1c(q*radius) * contrast;32 f = vol * sas_3j1x_x(q*radius) * contrast; 33 33 34 34 //now the shell. No volume normalization as this is done by the caller 35 35 contrast = sld-sld_solvent; 36 36 vol = M_4PI_3*cube(radius+thickness); 37 f += vol * s ph_j1c(q*(radius+thickness)) * contrast;37 f += vol * sas_3j1x_x(q*(radius+thickness)) * contrast; 38 38 39 39 //rescale to [cm-1]. -
sasmodels/models/vesicle.py
r3a48772 r925ad6e 94 94 ] 95 95 96 source = ["lib/s ph_j1c.c", "vesicle.c"]96 source = ["lib/sas_3j1x_x.c", "vesicle.c"] 97 97 98 98 def ER(radius, thickness):
Note: See TracChangeset
for help on using the changeset viewer.