Changeset aaf75b6 in sasmodels


Ignore:
Timestamp:
Mar 30, 2016 2:39:42 PM (9 years ago)
Author:
Paul Kienzle <pkienzle@…>
Branches:
master, core_shell_microgels, costrafo411, magnetic_model, release_v0.94, release_v0.95, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
Children:
885ee37
Parents:
d0876c9d (diff), 364d8f7 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
Message:

Merge branch 'master' into polydisp

Conflicts:

sasmodels/direct_model.py

Files:
7 added
39 edited

Legend:

Unmodified
Added
Removed
  • example/fit.py

    r7cf2cfd r1182da5  
    3131    model = Model(kernel, 
    3232        scale=0.08, 
    33         rpolar=15, requatorial=800, 
    34         sld=.291, solvent_sld=7.105, 
     33        r_polar=15, r_equatorial=800, 
     34        sld=.291, sld_solvent=7.105, 
    3535        background=0, 
    3636        theta=90, phi=phi, 
    3737        theta_pd=15, theta_pd_n=40, theta_pd_nsigma=3, 
    38         rpolar_pd=0.222296, rpolar_pd_n=1, rpolar_pd_nsigma=0, 
    39         requatorial_pd=.000128, requatorial_pd_n=1, requatorial_pd_nsigma=0, 
     38        r_polar_pd=0.222296, r_polar_pd_n=1, r_polar_pd_nsigma=0, 
     39        r_equatorial_pd=.000128, r_equatorial_pd_n=1, r_equatorial_pd_nsigma=0, 
    4040        phi_pd=0, phi_pd_n=20, phi_pd_nsigma=3, 
    4141        ) 
     
    4343 
    4444    # SET THE FITTING PARAMETERS 
    45     model.rpolar.range(15, 1000) 
    46     model.requatorial.range(15, 1000) 
     45    model.r_polar.range(15, 1000) 
     46    model.r_equatorial.range(15, 1000) 
    4747    model.theta_pd.range(0, 360) 
    4848    model.background.range(0,1000) 
     
    8181    pars = dict( 
    8282        scale=.01, background=35, 
    83         sld=.291, solvent_sld=5.77,  
     83        sld=.291, sld_solvent=5.77, 
    8484        radius=250, length=178,  
    8585        theta=90, phi=phi, 
     
    105105    model = Model(kernel, 
    106106        scale= .031, radius=19.5, thickness=30, length=22, 
    107         core_sld=7.105, shell_sld=.291, solvent_sld=7.105, 
     107        sld_core=7.105, sld_shell=.291, sdl_solvent=7.105, 
    108108        background=0, theta=0, phi=phi, 
    109109 
     
    132132    model = Model(kernel, 
    133133        scale=.08, radius=20, cap_radius=40, length=400, 
    134         sld_capcyl=1, sld_solv=6.3, 
     134        sld=1, sld_solvent=6.3, 
    135135        background=0, theta=0, phi=phi, 
    136136        radius_pd=.1, radius_pd_n=5, radius_pd_nsigma=3, 
     
    147147    model = Model(kernel, 
    148148        scale=0.08, req_minor=15, req_major=20, rpolar=500, 
    149         sldEll=7.105, solvent_sld=.291, 
     149        sld=7.105, solvent_sld=.291, 
    150150        background=5, theta=0, phi=phi, psi=0, 
    151151        theta_pd=20, theta_pd_n=40, theta_pd_nsigma=3, 
  • example/model.py

    r15d2285 r1182da5  
    1717model = Model(kernel, 
    1818    scale=0.08, 
    19     rpolar=15, requatorial=800, 
    20     sld=.291, solvent_sld=7.105, 
     19    r_polar=15, r_equatorial=800, 
     20    sld=.291, sld_solvent=7.105, 
    2121    background=0, 
    2222    theta=90, phi=0, 
    2323    theta_pd=15, theta_pd_n=40, theta_pd_nsigma=3, 
    24     rpolar_pd=0.222296, rpolar_pd_n=1, rpolar_pd_nsigma=0, 
    25     requatorial_pd=.000128, requatorial_pd_n=1, requatorial_pd_nsigma=0, 
     24    r_polar_pd=0.222296, r_polar_pd_n=1, r_polar_pd_nsigma=0, 
     25    r_equatorial_pd=.000128, r_equatorial_pd_n=1, r_equatorial_pd_nsigma=0, 
    2626    phi_pd=0, phi_pd_n=20, phi_pd_nsigma=3, 
    2727    ) 
    2828 
    2929# SET THE FITTING PARAMETERS 
    30 model.rpolar.range(15, 1000) 
    31 model.requatorial.range(15, 1000) 
     30model.r_polar.range(15, 1000) 
     31model.r_equatorial.range(15, 1000) 
    3232model.theta_pd.range(0, 360) 
    3333model.background.range(0,1000) 
  • sasmodels/bumps_model.py

    rd19962c raaf75b6  
    219219        """ 
    220220        data, theory, resid = self._data, self.theory(), self.residuals() 
    221         plot_theory(data, theory, resid, view) 
     221        plot_theory(data, theory, resid, view, Iq_calc = self.Iq_calc) 
    222222 
    223223    def simulate_data(self, noise=None): 
  • sasmodels/compare.py

    rd1c4760 raaf75b6  
    468468        data = empty_data2D(np.linspace(-qmax, qmax, nq), resolution=res) 
    469469        data.accuracy = opts['accuracy'] 
    470         set_beam_stop(data, 0.004) 
     470        set_beam_stop(data, 0.0004) 
    471471        index = ~data.mask 
    472472    else: 
  • sasmodels/data.py

    r092cb3c rd6f5da6  
    4141    Load data using a sasview loader. 
    4242    """ 
    43     from sas.dataloader.loader import Loader 
     43    from sas.sascalc.dataloader.loader import Loader 
    4444    loader = Loader() 
    4545    data = loader.load(filename) 
     
    322322 
    323323def plot_theory(data, theory, resid=None, view='log', 
    324                 use_data=True, limits=None): 
     324                use_data=True, limits=None, Iq_calc=None): 
    325325    """ 
    326326    Plot theory calculation. 
     
    343343        _plot_result2D(data, theory, resid, view, use_data, limits=limits) 
    344344    else: 
    345         _plot_result1D(data, theory, resid, view, use_data, limits=limits) 
     345        _plot_result1D(data, theory, resid, view, use_data, 
     346                       limits=limits, Iq_calc=Iq_calc) 
    346347 
    347348 
     
    366367 
    367368@protect 
    368 def _plot_result1D(data, theory, resid, view, use_data, limits=None): 
     369def _plot_result1D(data, theory, resid, view, use_data, 
     370                   limits=None, Iq_calc=None): 
    369371    """ 
    370372    Plot the data and residuals for 1D data. 
     
    376378    use_theory = theory is not None 
    377379    use_resid = resid is not None 
    378     num_plots = (use_data or use_theory) + use_resid 
     380    use_calc = use_theory and Iq_calc is not None 
     381    num_plots = (use_data or use_theory) + use_calc + use_resid 
     382 
    379383 
    380384    scale = data.x**4 if view == 'q4' else 1.0 
    381385 
    382386    if use_data or use_theory: 
     387        if num_plots > 1: 
     388            plt.subplot(1, num_plots, 1) 
     389 
    383390        #print(vmin, vmax) 
    384391        all_positive = True 
     
    399406            if view is 'log': 
    400407                mtheory[mtheory <= 0] = masked 
    401             plt.plot(data.x/10, scale*mtheory, '-', hold=True) 
     408            plt.plot(data.x, scale*mtheory, '-', hold=True) 
    402409            all_positive = all_positive and (mtheory > 0).all() 
    403410            some_present = some_present or (mtheory.count() > 0) 
     
    406413            plt.ylim(*limits) 
    407414 
    408         if num_plots > 1: 
    409             plt.subplot(1, num_plots, 1) 
    410415        plt.xscale('linear' if not some_present else view) 
    411416        plt.yscale('linear' 
     
    415420        plt.ylabel('$I(q)$') 
    416421 
     422    if use_calc: 
     423        # Only have use_calc if have use_theory 
     424        plt.subplot(1, num_plots, 2) 
     425        qx, qy, Iqxy = Iq_calc 
     426        plt.pcolormesh(qx, qy[qy>0], np.log10(Iqxy[qy>0,:])) 
     427        plt.xlabel("$q_x$/A$^{-1}$") 
     428        plt.xlabel("$q_y$/A$^{-1}$") 
     429        plt.xscale('log') 
     430        plt.yscale('log') 
     431        #plt.axis('equal') 
     432 
    417433    if use_resid: 
    418434        mresid = masked_array(resid, data.mask.copy()) 
     
    421437 
    422438        if num_plots > 1: 
    423             plt.subplot(1, num_plots, (use_data or use_theory) + 1) 
     439            plt.subplot(1, num_plots, use_calc + 2) 
    424440        plt.plot(data.x, mresid, '-') 
    425441        plt.xlabel("$q$/A$^{-1}$") 
     
    561577    plottable = masked_array(image, ~valid | data.mask) 
    562578    # Divide range by 10 to convert from angstroms to nanometers 
    563     xmin, xmax = min(data.qx_data)/10, max(data.qx_data)/10 
    564     ymin, ymax = min(data.qy_data)/10, max(data.qy_data)/10 
     579    xmin, xmax = min(data.qx_data), max(data.qx_data) 
     580    ymin, ymax = min(data.qy_data), max(data.qy_data) 
    565581    if view == 'log': 
    566582        vmin, vmax = np.log10(vmin), np.log10(vmax) 
    567583    plt.imshow(plottable.reshape(len(data.x_bins), len(data.y_bins)), 
    568                interpolation='nearest', aspect=1, origin='upper', 
     584               interpolation='nearest', aspect=1, origin='lower', 
    569585               extent=[xmin, xmax, ymin, ymax], vmin=vmin, vmax=vmax) 
    570     plt.xlabel("$q_x$/nm$^{-1}$") 
    571     plt.ylabel("$q_y$/nm$^{-1}$") 
     586    plt.xlabel("$q_x$/A$^{-1}$") 
     587    plt.ylabel("$q_y$/A$^{-1}$") 
    572588    return vmin, vmax 
    573589 
  • sasmodels/direct_model.py

    r60eab2a raaf75b6  
    2525import numpy as np 
    2626 
     27from .core import make_kernel 
    2728from .core import call_kernel, call_ER_VR 
    2829from . import sesans 
     
    6263        elif hasattr(data, 'qx_data'): 
    6364            self.data_type = 'Iqxy' 
     65        elif getattr(data, 'oriented', False): 
     66            self.data_type = 'Iq-oriented' 
    6467        else: 
    6568            self.data_type = 'Iq' 
     
    113116                  and getattr(data, 'dxw', None) is not None): 
    114117                res = resolution.Slit1D(data.x[index], 
    115                                         width=data.dxh[index], 
    116                                         height=data.dxw[index]) 
     118                                        qx_width=data.dxw[index], 
     119                                        qy_width=data.dxl[index]) 
    117120            else: 
    118121                res = resolution.Perfect1D(data.x[index]) 
     
    120123            #self._theory = np.zeros_like(self.Iq) 
    121124            q_vectors = [res.q_calc] 
     125            q_mono = [] 
     126        elif self.data_type == 'Iq-oriented': 
     127            index = (data.x >= data.qmin) & (data.x <= data.qmax) 
     128            if data.y is not None: 
     129                index &= ~np.isnan(data.y) 
     130                Iq = data.y[index] 
     131                dIq = data.dy[index] 
     132            else: 
     133                Iq, dIq = None, None 
     134            if (getattr(data, 'dxl', None) is None 
     135                or getattr(data, 'dxw', None) is None): 
     136                raise ValueError("oriented sample with 1D data needs slit resolution") 
     137 
     138            res = resolution2d.Slit2D(data.x[index], 
     139                                      qx_width=data.dxw[index], 
     140                                      qy_width=data.dxl[index]) 
     141            q_vectors = res.q_calc 
    122142            q_mono = [] 
    123143        else: 
     
    139159        y = Iq + np.random.randn(*dy.shape) * dy 
    140160        self.Iq = y 
    141         if self.data_type == 'Iq': 
     161        if self.data_type in ('Iq', 'Iq-oriented'): 
    142162            self._data.dy[self.index] = dy 
    143163            self._data.y[self.index] = y 
     
    151171    def _calc_theory(self, pars, cutoff=0.0): 
    152172        if self._kernel is None: 
    153             self._kernel = self._model.make_kernel(self._kernel_inputs) 
    154             self._kernel_mono = ( 
    155                 self._model.make_kernel(self._kernel_mono_inputs) 
    156                 if self._kernel_mono_inputs else None 
    157             ) 
     173            self._kernel = make_kernel(self._model, self._kernel_inputs)  # pylint: disable=attribute-dedata_type 
     174            self._kernel_mono = (make_kernel(self._model, self._kernel_mono_inputs) 
     175                                 if self._kernel_mono_inputs else None) 
    158176 
    159177        Iq_calc = call_kernel(self._kernel, pars, cutoff=cutoff) 
    160         Iq_mono = (call_kernel(self._kernel_mono, pars, mono=True) 
    161                    if self._kernel_mono_inputs else None) 
     178        # TODO: may want to plot the raw Iq for other than oriented usans 
     179        self.Iq_calc = None 
    162180        if self.data_type == 'sesans': 
     181            Iq_mono = (call_kernel(self._kernel_mono, pars, mono=True) 
     182                       if self._kernel_mono_inputs else None) 
    163183            result = sesans.transform(self._data, 
    164184                                   self._kernel_inputs[0], Iq_calc,  
     
    166186        else: 
    167187            result = self.resolution.apply(Iq_calc) 
     188            if hasattr(self.resolution, 'nx'): 
     189                self.Iq_calc = ( 
     190                    self.resolution.qx_calc, self.resolution.qy_calc, 
     191                    np.reshape(Iq_calc, (self.resolution.ny, self.resolution.nx)) 
     192                ) 
    168193        return result         
    169194 
  • sasmodels/models/adsorbed_layer.py

    rc079f50 r1d4d409  
    9898     'density_shell': 0.7, 'radius': 500.0, 'volfraction': 0.14,  
    9999     'sld_shell': 1.5, 'sld_solvent': 6.3, 'background': 0.0}, 
    100      [0.0106939, 0.469418], [73.741, 9.65391e-53]], 
     100     [0.0106939, 0.1], [73.741, 4.51684e-3]], 
    101101    ] 
    102102# ADDED by: SMK  ON: 16Mar2016  convert from sasview, check vs SANDRA, 18Mar2016 RKH some edits & renaming 
  • sasmodels/models/core_shell_ellipsoid.py

    r65bf704 r27fade8  
    117117source = ["lib/sph_j1c.c", "lib/gfn.c", "lib/gauss76.c", "core_shell_ellipsoid.c"] 
    118118 
    119 def ER(equat_shell, polar_shell): 
     119def ER(equat_core, polar_core, equat_shell, polar_shell): 
    120120    """ 
    121121        Returns the effective radius used in the S*P calculation 
     
    123123    import numpy as np 
    124124    from .ellipsoid import ER as ellipsoid_ER 
    125     return ellipsoid_ER(rpolar, equat_shell) 
     125    return ellipsoid_ER(polar_shell, equat_shell) 
    126126 
    127127 
  • sasmodels/models/core_shell_ellipsoid_xt.py

    r65bf704 r27fade8  
    107107        Returns the effective radius used in the S*P calculation 
    108108    """ 
    109     import numpy as np 
    110109    from .ellipsoid import ER as ellipsoid_ER 
    111     return ellipsoid_ER(equat_core*x_core + t_shell*x_polar_shell, equat_shell + t_shell) 
     110    polar_outer = equat_core*x_core + t_shell*x_polar_shell 
     111    equat_outer = equat_core + t_shell 
     112    return ellipsoid_ER(polar_outer, equat_outer) 
    112113 
    113114 
  • sasmodels/models/core_shell_sphere.py

    r55b2b232 r3c6d5bc  
    9999 
    100100tests = [[{'radius': 20.0, 'thickness': 10.0}, 'ER', 30.0], 
    101          [{'radius': 20.0, 'thickness': 10.0}, 'VR', 0.703703704], 
     101         # TODO: VR test suppressed until we sort out new product model 
     102         # and determine what to do with volume ratio. 
     103         #[{'radius': 20.0, 'thickness': 10.0}, 'VR', 0.703703704], 
    102104 
    103105         # The SasView test result was 0.00169, with a background of 0.001 
  • sasmodels/models/onion.py

    rce896fd raaf75b6  
    290290category = "shape:sphere" 
    291291 
     292# TODO: n is a volume parameter that is not polydisperse 
    292293 
    293294#             ["name", "units", default, [lower, upper], "type","description"], 
     
    364365 
    365366def ER(core_radius, n, thickness): 
    366     return np.sum(thickness[:n], axis=0) + core_radius 
     367    return np.sum(thickness[:n[0]], axis=0) + core_radius 
    367368 
    368369def VR(core_radius, n, thickness): 
    369     return 1.0 
     370    return 1.0, 1.0 
    370371 
    371372demo = { 
  • sasmodels/models/sphere.py

    rd7028dc r364d8f7  
    8686def ER(radius): 
    8787    """ 
    88         Return equivalent radius (ER) 
     88    Return equivalent radius (ER) 
    8989    """ 
    9090    return radius 
  • sasmodels/models/squarewell.py

    r2f63032 rb812972  
    5555category = "structure-factor" 
    5656structure_factor = True 
     57single = False 
    5758 
    5859#single = False 
  • sasmodels/product.py

    rce896fd raaf75b6  
    2020VOLFRACTION=3 
    2121 
     22# TODO: core_shell_sphere model has suppressed the volume ratio calculation 
     23# revert it after making VR and ER available at run time as constraints. 
    2224def make_product_info(p_info, s_info): 
    2325    """ 
  • sasmodels/resolution.py

    re9b1663d raaf75b6  
    8282        self.q_calc = (pinhole_extend_q(q, q_width, nsigma=nsigma) 
    8383                       if q_calc is None else np.sort(q_calc)) 
    84         self.weight_matrix = pinhole_resolution( 
    85             self.q_calc, self.q, np.maximum(q_width, MINIMUM_RESOLUTION)) 
     84        self.weight_matrix = pinhole_resolution(self.q_calc, self.q, 
     85                                np.maximum(q_width, MINIMUM_RESOLUTION)) 
    8686 
    8787    def apply(self, theory): 
     
    9191class Slit1D(Resolution): 
    9292    """ 
    93     Slit aperture with a complicated resolution function. 
     93    Slit aperture with resolution function. 
    9494 
    9595    *q* points at which the data is measured. 
    9696 
    97     *qx_width* slit width 
    98  
    99     *qy_height* slit height 
     97    *dqx* slit width in qx 
     98 
     99    *dqy* slit height in qy 
    100100 
    101101    *q_calc* is the list of points to calculate, or None if this should 
     
    104104    The *weight_matrix* is computed by :func:`slit1d_resolution` 
    105105    """ 
    106     def __init__(self, q, width, height=0., q_calc=None): 
    107         # Remember what width/height was used even though we won't need them 
     106    def __init__(self, q, qx_width, qy_width=0., q_calc=None): 
     107        # Remember what width/dqy was used even though we won't need them 
    108108        # after the weight matrix is constructed 
    109         self.width, self.height = width, height 
     109        self.qx_width, self.qy_width = qx_width, qy_width 
    110110 
    111111        # Allow independent resolution on each point even though it is not 
    112112        # needed in practice. 
    113         if np.isscalar(width): 
    114             width = np.ones(len(q))*width 
     113        if np.isscalar(qx_width): 
     114            qx_width = np.ones(len(q))*qx_width 
    115115        else: 
    116             width = np.asarray(width) 
    117         if np.isscalar(height): 
    118             height = np.ones(len(q))*height 
     116            qx_width = np.asarray(qx_width) 
     117        if np.isscalar(qy_width): 
     118            qy_width = np.ones(len(q))*qy_width 
    119119        else: 
    120             height = np.asarray(height) 
     120            qy_width = np.asarray(qy_width) 
    121121 
    122122        self.q = q.flatten() 
    123         self.q_calc = slit_extend_q(q, width, height) \ 
     123        self.q_calc = slit_extend_q(q, qx_width, qy_width) \ 
    124124            if q_calc is None else np.sort(q_calc) 
    125125        self.weight_matrix = \ 
    126             slit_resolution(self.q_calc, self.q, width, height) 
     126            slit_resolution(self.q_calc, self.q, qx_width, qy_width) 
    127127 
    128128    def apply(self, theory): 
     
    396396    """ 
    397397    q = np.sort(q) 
    398     if q_min < q[0]: 
     398    if q_min + 2*MINIMUM_RESOLUTION < q[0]: 
    399399        if q_min <= 0: q_min = q_min*MIN_Q_SCALE_FOR_NEGATIVE_Q_EXTRAPOLATION 
    400400        n_low = np.ceil((q[0]-q_min) / (q[1]-q[0])) if q[1] > q[0] else 15 
     
    402402    else: 
    403403        q_low = [] 
    404     if q_max > q[-1]: 
     404    if q_max - 2*MINIMUM_RESOLUTION > q[-1]: 
    405405        n_high = np.ceil((q_max-q[-1]) / (q[-1]-q[-2])) if q[-1] > q[-2] else 15 
    406406        q_high = np.linspace(q[-1], q_max, n_high+1)[1:] 
     
    596596        Slit smearing with perfect resolution. 
    597597        """ 
    598         resolution = Slit1D(self.x, width=0, height=0, q_calc=self.x) 
     598        resolution = Slit1D(self.x, qx_width=0, qy_width=0, q_calc=self.x) 
    599599        theory = self.Iq(resolution.q_calc) 
    600600        output = resolution.apply(theory) 
     
    606606        Slit smearing with height 0.005 
    607607        """ 
    608         resolution = Slit1D(self.x, width=0, height=0.005, q_calc=self.x) 
     608        resolution = Slit1D(self.x, qx_width=0, qy_width=0.005, q_calc=self.x) 
    609609        theory = self.Iq(resolution.q_calc) 
    610610        output = resolution.apply(theory) 
     
    621621        """ 
    622622        q = np.logspace(-4, -1, 10) 
    623         resolution = Slit1D(q, width=0.2, height=np.inf) 
     623        resolution = Slit1D(q, qx_width=0.2, qy_width=np.inf) 
    624624        theory = 1000*self.Iq(resolution.q_calc**4) 
    625625        output = resolution.apply(theory) 
     
    635635        Slit smearing with width 0.0002 
    636636        """ 
    637         resolution = Slit1D(self.x, width=0.0002, height=0, q_calc=self.x) 
     637        resolution = Slit1D(self.x, qx_width=0.0002, qy_width=0, q_calc=self.x) 
    638638        theory = self.Iq(resolution.q_calc) 
    639639        output = resolution.apply(theory) 
     
    648648        Slit smearing with width > 100*height. 
    649649        """ 
    650         resolution = Slit1D(self.x, width=0.0002, height=0.000001, 
     650        resolution = Slit1D(self.x, qx_width=0.0002, qy_width=0.000001, 
    651651                            q_calc=self.x) 
    652652        theory = self.Iq(resolution.q_calc) 
     
    773773        data = np.loadtxt(data_string.split('\n')).T 
    774774        q, delta_qv, _, answer = data 
    775         resolution = Slit1D(q, width=delta_qv, height=0) 
     775        resolution = Slit1D(q, qx_width=delta_qv, qy_width=0) 
    776776        output = self._eval_sphere(pars, resolution) 
    777777        # TODO: eliminate Igor test since it is too inaccurate to be useful. 
     
    793793        q_calc = slit_extend_q(interpolate(q, 2*np.pi/radius/20), 
    794794                               delta_qv[0], 0.) 
    795         resolution = Slit1D(q, width=delta_qv, height=0, q_calc=q_calc) 
     795        resolution = Slit1D(q, qx_width=delta_qv, qy_width=0, q_calc=q_calc) 
    796796        output = self._eval_sphere(pars, resolution) 
    797797        # TODO: relative error should be lower 
     
    805805        pars = { 
    806806            'scale':0.05, 
    807             'rpolar':500, 'requatorial':15000, 
    808             'sld':6, 'solvent_sld': 1, 
     807            'r_polar':500, 'r_equatorial':15000, 
     808            'sld':6, 'sld_solvent': 1, 
    809809            } 
    810810        form = load_model('ellipsoid', dtype='double') 
    811811        q = np.logspace(log10(4e-5), log10(2.5e-2), 68) 
    812812        width, height = 0.117, 0. 
    813         resolution = Slit1D(q, width=width, height=height) 
     813        resolution = Slit1D(q, qx_width=width, qy_width=height) 
    814814        answer = romberg_slit_1d(q, width, height, form, pars) 
    815815        output = resolution.apply(eval_form(resolution.q_calc, form, pars)) 
     
    837837TEST_PARS_PINHOLE_SPHERE = { 
    838838    'scale': 1.0, 'background': 0.01, 
    839     'radius': 60.0, 'sld': 1, 'solvent_sld': 6.3, 
     839    'radius': 60.0, 'sld': 1, 'sld_solvent': 6.3, 
    840840    } 
    841841# Q, dQ, I(Q) calculated by NIST Igor SANS package 
     
    946946TEST_PARS_SLIT_SPHERE = { 
    947947    'scale': 0.01, 'background': 0.01, 
    948     'radius': 60000, 'sld': 1, 'solvent_sld': 4, 
     948    'radius': 60000, 'sld': 1, 'sld_solvent': 4, 
    949949    } 
    950950# Q dQ I(Q) I_smeared(Q) 
     
    10471047 
    10481048    if name == 'cylinder': 
    1049         pars = {'length':210, 'radius':500} 
     1049        pars = {'length':210, 'radius':500, 'background': 0} 
    10501050    elif name == 'teubner_strey': 
    10511051        pars = {'a2':0.003, 'c1':-1e4, 'c2':1e10, 'background':0.312643} 
     
    10541054    elif name == 'ellipsoid': 
    10551055        pars = { 
    1056             'scale':0.05, 
    1057             'rpolar':500, 'requatorial':15000, 
    1058             'sld':6, 'solvent_sld': 1, 
     1056            'scale':0.05, 'background': 0, 
     1057            'r_polar':500, 'r_equatorial':15000, 
     1058            'sld':6, 'sld_solvent': 1, 
    10591059            } 
    10601060    else: 
     
    10681068 
    10691069    if isinstance(resolution, Slit1D): 
    1070         width, height = resolution.width, resolution.height 
     1070        width, height = resolution.dqx, resolution.dqy 
    10711071        Iq_romb = romberg_slit_1d(resolution.q, width, height, model, pars) 
    10721072    else: 
  • sasmodels/resolution2d.py

    r823e620 rd6f5da6  
    1010from numpy import pi, cos, sin, sqrt 
    1111 
     12from . import resolution 
    1213from .resolution import Resolution 
    1314 
     
    2021NR = {'xhigh':10, 'high':5, 'med':5, 'low':3} 
    2122NPHI = {'xhigh':20, 'high':12, 'med':6, 'low':4} 
     23 
     24## Defaults 
     25N_SLIT_PERP = {'xhigh':1000, 'high':500, 'med':200, 'low':50} 
     26N_SLIT_PERP_DOC = ", ".join("%s=%d"%(name,value) for value,name in 
     27                            sorted((2*v+1,k) for k,v in N_SLIT_PERP.items())) 
    2228 
    2329class Pinhole2D(Resolution): 
     
    167173        else: 
    168174            return theory 
     175 
     176 
     177class Slit2D(Resolution): 
     178    """ 
     179    Slit aperture with resolution function on an oriented sample. 
     180 
     181    *q* points at which the data is measured. 
     182 
     183    *qx_width* slit width in qx 
     184 
     185    *qy_width* slit height in qy; current implementation requires a fixed 
     186    qy_width for all q points. 
     187 
     188    *q_calc* is the list of q points to calculate, or None if this 
     189    should be estimated from the *q* and *qx_width*. 
     190 
     191    *accuracy* determines the number of *qy* points to compute for each *q*. 
     192    The values are stored in sasmodels.resolution2d.N_SLIT_PERP.  The default 
     193    values are: %s 
     194    """ 
     195    __doc__ = __doc__%N_SLIT_PERP_DOC 
     196    def __init__(self, q, qx_width, qy_width=0., q_calc=None, accuracy='low'): 
     197        # Remember what q and width was used even though we won't need them 
     198        # after the weight matrix is constructed 
     199        self.q, self.qx_width, self.qy_width = q, qx_width, qy_width 
     200 
     201        # Allow independent resolution on each qx point even though it is not 
     202        # needed in practice.  Set qy_width to the maximum qy width. 
     203        if np.isscalar(qx_width): 
     204            qx_width = np.ones(len(q))*qx_width 
     205        else: 
     206            qx_width = np.asarray(qx_width) 
     207        if not np.isscalar(qy_width): 
     208            qy_width = np.max(qy_width) 
     209 
     210        # Build grid of qx, qy points 
     211        if q_calc is not None: 
     212            qx_calc = np.sort(q_calc) 
     213        else: 
     214            qx_calc = resolution.pinhole_extend_q(q, qx_width, nsigma=3) 
     215        qy_min, qy_max = np.log10(np.min(q)), np.log10(qy_width) 
     216        qy_calc = np.logspace(qy_min, qy_max, N_SLIT_PERP[accuracy]) 
     217        qy_calc = np.hstack((-qy_calc[::-1], 0, qy_calc)) 
     218        self.q_calc = [v.flatten() for v in np.meshgrid(qx_calc, qy_calc)] 
     219        self.qx_calc, self.qy_calc = qx_calc, qy_calc 
     220        self.nx, self.ny = len(qx_calc), len(qy_calc) 
     221        self.dy = 2*qy_width/self.ny 
     222 
     223        # Build weight matrix for resolution integration 
     224        if np.any(qx_width > 0): 
     225            self.weights = resolution.pinhole_resolution(qx_calc, q, 
     226                    np.maximum(qx_width, resolution.MINIMUM_RESOLUTION)) 
     227        elif len(qx_calc)==len(q) and np.all(qx_calc == q): 
     228            self.weights = None 
     229        else: 
     230            raise ValueError("Slit2D fails with q_calc != q") 
     231 
     232    def apply(self, theory): 
     233        Iq = np.trapz(theory.reshape(self.ny, self.nx), axis=0, x=self.qy_calc) 
     234        if self.weights is not None: 
     235            Iq = resolution.apply_resolution_matrix(self.weights, Iq) 
     236        return Iq 
     237 
  • doc/developer/index.rst

    r56fc97a rb85be2d  
    33*************************** 
    44 
     5.. toctree:: 
     6   :numbered: 4 
     7   :maxdepth: 4 
    58 
     9   calculator.rst 
  • sasmodels/convert.py

    r2a3e1f5 rd1c4760  
    7373    new model definition end with sld. 
    7474    """ 
     75    print "pars",pars 
    7576    return dict((p, (v*1e-6 if p.startswith('sld') or p.endswith('sld') 
    7677                     else v*1e15 if 'ndensity' in p 
  • sasmodels/core.py

    re79f0a5 rfb5914f  
    2424    HAVE_OPENCL = False 
    2525 
     26try: 
     27    # Python 3.5 and up 
     28    from importlib.util import spec_from_file_location, module_from_spec 
     29    def load_module(fullname, path): 
     30        spec = spec_from_file_location(fullname, path) 
     31        module = module_from_spec(spec) 
     32        spec.loader.exec_module(module) 
     33        return module 
     34except ImportError: 
     35    # CRUFT: python 2 
     36    import imp 
     37    def load_module(fullname, path): 
     38        module = imp.load_source(fullname, path) 
     39        return module 
     40 
     41 
     42 
    2643__all__ = [ 
    2744    "list_models", "load_model_info", "precompile_dll", 
    28     "build_model", "make_kernel", "call_kernel", "call_ER_VR", 
     45    "build_model", "call_kernel", "call_ER_VR", 
    2946] 
    3047 
     
    5168    """ 
    5269    return build_model(load_model_info(model_name), **kw) 
    53  
    54 def load_model_info_from_path(path): 
    55     # Pull off the last .ext if it exists; there may be others 
    56     name = basename(splitext(path)[0]) 
    57  
    58     # Not cleaning name since don't need to be able to reload this 
    59     # model later 
    60     # Should probably turf the model from sys.modules after we are done... 
    61  
    62     # Placing the model in the 'sasmodels.custom' name space, even 
    63     # though it doesn't actually exist.  imp.load_source doesn't seem 
    64     # to care. 
    65     kernel_module = imp.load_source('sasmodels.custom.'+name, path) 
    66  
    67     # Now that we have the module, we can load it as usual 
    68     model_info = generate.make_model_info(kernel_module) 
    69     return model_info 
    7070 
    7171def load_model_info(model_name): 
     
    9090        return product.make_product_info(P_info, Q_info) 
    9191 
     92    return make_model_by_name(model_name) 
     93 
     94 
     95def make_model_by_name(model_name): 
     96    if model_name.endswith('.py'): 
     97        path = model_name 
     98        # Pull off the last .ext if it exists; there may be others 
     99        name = basename(splitext(path)[0]) 
     100        # Placing the model in the 'sasmodels.custom' name space. 
     101        from sasmodels import custom 
     102        kernel_module = load_module('sasmodels.custom.'+name, path) 
     103    else: 
     104        from sasmodels import models 
     105        __import__('sasmodels.models.'+model_name) 
     106        kernel_module = getattr(models, model_name, None) 
    92107    #import sys; print "\n".join(sys.path) 
    93     __import__('sasmodels.models.'+model_name) 
    94     kernel_module = getattr(models, model_name, None) 
    95108    return generate.make_model_info(kernel_module) 
    96109 
     
    167180 
    168181 
    169 def make_kernel(model, q_vectors): 
    170     """ 
    171     Return a computation kernel from the model definition and the q input. 
    172     """ 
    173     return model(q_vectors) 
    174  
    175 def get_weights(model_info, pars, name): 
     182def get_weights(parameter, values): 
    176183    """ 
    177184    Generate the distribution for parameter *name* given the parameter values 
     
    181188    from the *pars* dictionary for parameter value and parameter dispersion. 
    182189    """ 
    183     relative = name in model_info['partype']['pd-rel'] 
    184     limits = model_info['limits'][name] 
    185     disperser = pars.get(name+'_pd_type', 'gaussian') 
    186     value = pars.get(name, model_info['defaults'][name]) 
    187     npts = pars.get(name+'_pd_n', 0) 
    188     width = pars.get(name+'_pd', 0.0) 
    189     nsigma = pars.get(name+'_pd_nsigma', 3.0) 
     190    value = values.get(parameter.name, parameter.default) 
     191    relative = parameter.relative_pd 
     192    limits = parameter.limits 
     193    disperser = values.get(parameter.name+'_pd_type', 'gaussian') 
     194    npts = values.get(parameter.name+'_pd_n', 0) 
     195    width = values.get(parameter.name+'_pd', 0.0) 
     196    nsigma = values.get(parameter.name+'_pd_nsigma', 3.0) 
     197    if npts == 0 or width == 0: 
     198        return [value], [] 
    190199    value, weight = weights.get_weights( 
    191200        disperser, npts, width, nsigma, value, limits, relative) 
     
    208217def call_kernel(kernel, pars, cutoff=0, mono=False): 
    209218    """ 
    210     Call *kernel* returned from :func:`make_kernel` with parameters *pars*. 
     219    Call *kernel* returned from *model.make_kernel* with parameters *pars*. 
    211220 
    212221    *cutoff* is the limiting value for the product of dispersion weights used 
     
    216225    with an error of about 1%, which is usually less than the measurement 
    217226    uncertainty. 
    218     """ 
    219     fixed_pars = [pars.get(name, kernel.info['defaults'][name]) 
    220                   for name in kernel.fixed_pars] 
     227 
     228    *mono* is True if polydispersity should be set to none on all parameters. 
     229    """ 
     230    parameters = kernel.info['parameters'] 
    221231    if mono: 
    222         pd_pars = [( np.array([pars[name]]), np.array([1.0]) ) 
    223                    for name in kernel.pd_pars] 
    224     else: 
    225         pd_pars = [get_weights(kernel.info, pars, name) for name in kernel.pd_pars] 
    226     return kernel(fixed_pars, pd_pars, cutoff=cutoff) 
     232        active = lambda name: False 
     233    elif kernel.dim == '1d': 
     234        active = lambda name: name in parameters.pd_1d 
     235    elif kernel.dim == '2d': 
     236        active = lambda name: name in parameters.pd_2d 
     237    else: 
     238        active = lambda name: True 
     239 
     240    vw_pairs = [(get_weights(p, pars) if active(p.name) 
     241                 else ([pars.get(p.name, p.default)], [])) 
     242                for p in parameters.call_parameters] 
     243 
     244    details, weights, values = build_details(kernel, vw_pairs) 
     245    return kernel(details, weights, values, cutoff) 
     246 
     247def build_details(kernel, pairs): 
     248    values, weights = zip(*pairs) 
     249    if max([len(w) for w in weights]) > 1: 
     250        details = generate.poly_details(kernel.info, weights) 
     251    else: 
     252        details = kernel.info['mono_details'] 
     253    weights, values = [np.hstack(v) for v in (weights, values)] 
     254    weights = weights.astype(dtype=kernel.dtype) 
     255    values = values.astype(dtype=kernel.dtype) 
     256    return details, weights, values 
     257 
    227258 
    228259def call_ER_VR(model_info, vol_pars): 
     
    247278 
    248279 
    249 def call_ER(info, pars): 
    250     """ 
    251     Call the model ER function using *pars*. 
    252     *info* is either *model.info* if you have a loaded model, or *kernel.info* 
    253     if you have a model kernel prepared for evaluation. 
    254     """ 
    255     ER = info.get('ER', None) 
     280def call_ER(model_info, values): 
     281    """ 
     282    Call the model ER function using *values*. *model_info* is either 
     283    *model.info* if you have a loaded model, or *kernel.info* if you 
     284    have a model kernel prepared for evaluation. 
     285    """ 
     286    ER = model_info.get('ER', None) 
    256287    if ER is None: 
    257288        return 1.0 
    258289    else: 
    259         vol_pars = [get_weights(info, pars, name) 
    260                     for name in info['partype']['volume']] 
     290        vol_pars = [get_weights(parameter, values) 
     291                    for parameter in model_info['parameters'] 
     292                    if parameter.type == 'volume'] 
    261293        value, weight = dispersion_mesh(vol_pars) 
    262294        individual_radii = ER(*value) 
     
    264296        return np.sum(weight*individual_radii) / np.sum(weight) 
    265297 
    266 def call_VR(info, pars): 
     298def call_VR(model_info, values): 
    267299    """ 
    268300    Call the model VR function using *pars*. 
     
    270302    if you have a model kernel prepared for evaluation. 
    271303    """ 
    272     VR = info.get('VR', None) 
     304    VR = model_info.get('VR', None) 
    273305    if VR is None: 
    274306        return 1.0 
    275307    else: 
    276         vol_pars = [get_weights(info, pars, name) 
    277                     for name in info['partype']['volume']] 
     308        vol_pars = [get_weights(parameter, values) 
     309                    for parameter in model_info['parameters'] 
     310                    if parameter.type == 'volume'] 
    278311        value, weight = dispersion_mesh(vol_pars) 
    279312        whole, part = VR(*value) 
  • sasmodels/generate.py

    r9ef9dd9 rce896fd  
    2121 
    2222    *VR(p1, p2, ...)* returns the volume ratio for core-shell style forms. 
     23 
     24    #define INVALID(v) (expr)  returns False if v.parameter is invalid 
     25    for some parameter or other (e.g., v.bell_radius < v.radius).  If 
     26    necessary, the expression can call a function. 
    2327 
    2428These functions are defined in a kernel module .py script and an associated 
     
    6569The constructor code will generate the necessary vectors for computing 
    6670them with the desired polydispersity. 
    67  
    68 The available kernel parameters are defined as a list, with each parameter 
    69 defined as a sublist with the following elements: 
    70  
    71     *name* is the name that will be used in the call to the kernel 
    72     function and the name that will be displayed to the user.  Names 
    73     should be lower case, with words separated by underscore.  If 
    74     acronyms are used, the whole acronym should be upper case. 
    75  
    76     *units* should be one of *degrees* for angles, *Ang* for lengths, 
    77     *1e-6/Ang^2* for SLDs. 
    78  
    79     *default value* will be the initial value for  the model when it 
    80     is selected, or when an initial value is not otherwise specified. 
    81  
    82     *limits = [lb, ub]* are the hard limits on the parameter value, used to 
    83     limit the polydispersity density function.  In the fit, the parameter limits 
    84     given to the fit are the limits  on the central value of the parameter. 
    85     If there is polydispersity, it will evaluate parameter values outside 
    86     the fit limits, but not outside the hard limits specified in the model. 
    87     If there are no limits, use +/-inf imported from numpy. 
    88  
    89     *type* indicates how the parameter will be used.  "volume" parameters 
    90     will be used in all functions.  "orientation" parameters will be used 
    91     in *Iqxy* and *Imagnetic*.  "magnetic* parameters will be used in 
    92     *Imagnetic* only.  If *type* is the empty string, the parameter will 
    93     be used in all of *Iq*, *Iqxy* and *Imagnetic*.  "sld" parameters 
    94     can automatically be promoted to magnetic parameters, each of which 
    95     will have a magnitude and a direction, which may be different from 
    96     other sld parameters. 
    97  
    98     *description* is a short description of the parameter.  This will 
    99     be displayed in the parameter table and used as a tool tip for the 
    100     parameter value in the user interface. 
    101  
    10271The kernel module must set variables defining the kernel meta data: 
    10372 
     
    212181from __future__ import print_function 
    213182 
    214 # TODO: identify model files which have changed since loading and reload them. 
    215  
    216 import sys 
     183#TODO: determine which functions are useful outside of generate 
     184#__all__ = ["model_info", "make_doc", "make_source", "convert_type"] 
     185 
    217186from os.path import abspath, dirname, join as joinpath, exists, basename, \ 
    218     splitext 
     187    splitext, getmtime 
    219188import re 
    220189import string 
    221190import warnings 
    222 from collections import namedtuple 
    223191 
    224192import numpy as np 
    225193 
    226 PARAMETER_FIELDS = ['name', 'units', 'default', 'limits', 'type', 'description'] 
    227 Parameter = namedtuple('Parameter', PARAMETER_FIELDS) 
    228  
    229 #TODO: determine which functions are useful outside of generate 
    230 #__all__ = ["model_info", "make_doc", "make_source", "convert_type"] 
    231  
    232 C_KERNEL_TEMPLATE_PATH = joinpath(dirname(__file__), 'kernel_template.c') 
     194from .modelinfo import ModelInfo, Parameter, make_parameter_table, set_demo 
     195 
     196# TODO: identify model files which have changed since loading and reload them. 
     197 
     198TEMPLATE_ROOT = dirname(__file__) 
    233199 
    234200F16 = np.dtype('float16') 
     
    239205except TypeError: 
    240206    F128 = None 
    241  
    242 # Scale and background, which are parameters common to every form factor 
    243 COMMON_PARAMETERS = [ 
    244     ["scale", "", 1, [0, np.inf], "", "Source intensity"], 
    245     ["background", "1/cm", 1e-3, [0, np.inf], "", "Source background"], 
    246     ] 
    247207 
    248208# Conversion from units defined in the parameter table for each model 
     
    338298    raise ValueError("%r not found in %s" % (filename, search_path)) 
    339299 
     300 
    340301def model_sources(model_info): 
    341302    """ 
     
    346307    return [_search(search_path, f) for f in model_info['source']] 
    347308 
    348 # Pragmas for enable OpenCL features.  Be sure to protect them so that they 
    349 # still compile even if OpenCL is not present. 
    350 _F16_PRAGMA = """\ 
    351 #if defined(__OPENCL_VERSION__) // && !defined(cl_khr_fp16) 
    352 #  pragma OPENCL EXTENSION cl_khr_fp16: enable 
    353 #endif 
    354 """ 
    355  
    356 _F64_PRAGMA = """\ 
    357 #if defined(__OPENCL_VERSION__) // && !defined(cl_khr_fp64) 
    358 #  pragma OPENCL EXTENSION cl_khr_fp64: enable 
    359 #endif 
    360 """ 
     309def timestamp(model_info): 
     310    """ 
     311    Return a timestamp for the model corresponding to the most recently 
     312    changed file or dependency. 
     313    """ 
     314    source_files = (model_sources(model_info) 
     315                    + model_templates() 
     316                    + [model_info['filename']]) 
     317    newest = max(getmtime(f) for f in source_files) 
     318    return newest 
    361319 
    362320def convert_type(source, dtype): 
     
    369327    if dtype == F16: 
    370328        fbytes = 2 
    371         source = _F16_PRAGMA + _convert_type(source, "half", "f") 
     329        source = _convert_type(source, "float", "f") 
    372330    elif dtype == F32: 
    373331        fbytes = 4 
     
    375333    elif dtype == F64: 
    376334        fbytes = 8 
    377         source = _F64_PRAGMA + source  # Source is already double 
     335        # no need to convert if it is already double 
    378336    elif dtype == F128: 
    379337        fbytes = 16 
     
    418376 
    419377 
    420 LOOP_OPEN = """\ 
    421 for (int %(name)s_i=0; %(name)s_i < N%(name)s; %(name)s_i++) { 
    422   const double %(name)s = loops[2*(%(name)s_i%(offset)s)]; 
    423   const double %(name)s_w = loops[2*(%(name)s_i%(offset)s)+1];\ 
     378_template_cache = {} 
     379def load_template(filename): 
     380    path = joinpath(TEMPLATE_ROOT, filename) 
     381    mtime = getmtime(path) 
     382    if filename not in _template_cache or mtime > _template_cache[filename][0]: 
     383        with open(path) as fid: 
     384            _template_cache[filename] = (mtime, fid.read(), path) 
     385    return _template_cache[filename][1] 
     386 
     387def model_templates(): 
     388    # TODO: fails DRY; templates are listed in two places. 
     389    # should instead have model_info contain a list of paths 
     390    return [joinpath(TEMPLATE_ROOT, filename) 
     391            for filename in ('kernel_header.c', 'kernel_iq.c')] 
     392 
     393 
     394_FN_TEMPLATE = """\ 
     395double %(name)s(%(pars)s); 
     396double %(name)s(%(pars)s) { 
     397    %(body)s 
     398} 
     399 
     400 
    424401""" 
    425 def build_polydispersity_loops(pd_pars): 
    426     """ 
    427     Build polydispersity loops 
    428  
    429     Returns loop opening and loop closing 
    430     """ 
    431     depth = 4 
    432     offset = "" 
    433     loop_head = [] 
    434     loop_end = [] 
    435     for name in pd_pars: 
    436         subst = {'name': name, 'offset': offset} 
    437         loop_head.append(indent(LOOP_OPEN % subst, depth)) 
    438         loop_end.insert(0, (" "*depth) + "}") 
    439         offset += '+N' + name 
    440         depth += 2 
    441     return "\n".join(loop_head), "\n".join(loop_end) 
    442  
    443 C_KERNEL_TEMPLATE = None 
     402 
     403def _gen_fn(name, pars, body): 
     404    """ 
     405    Generate a function given pars and body. 
     406 
     407    Returns the following string:: 
     408 
     409         double fn(double a, double b, ...); 
     410         double fn(double a, double b, ...) { 
     411             .... 
     412         } 
     413    """ 
     414    par_decl = ', '.join(p.as_function_argument() for p in pars) if pars else 'void' 
     415    return _FN_TEMPLATE % {'name': name, 'body': body, 'pars': par_decl} 
     416 
     417def _call_pars(prefix, pars): 
     418    """ 
     419    Return a list of *prefix.parameter* from parameter items. 
     420    """ 
     421    return [p.as_call_reference(prefix) for p in pars] 
     422 
     423_IQXY_PATTERN = re.compile("^((inline|static) )? *(double )? *Iqxy *([(]|$)", 
     424                           flags=re.MULTILINE) 
     425def _have_Iqxy(sources): 
     426    """ 
     427    Return true if any file defines Iqxy. 
     428 
     429    Note this is not a C parser, and so can be easily confused by 
     430    non-standard syntax.  Also, it will incorrectly identify the following 
     431    as having Iqxy:: 
     432 
     433        /* 
     434        double Iqxy(qx, qy, ...) { ... fill this in later ... } 
     435        */ 
     436 
     437    If you want to comment out an Iqxy function, use // on the front of the 
     438    line instead. 
     439    """ 
     440    for code in sources: 
     441        if _IQXY_PATTERN.search(code): 
     442            return True 
     443    else: 
     444        return False 
     445 
    444446def make_source(model_info): 
    445447    """ 
     
    460462    # for computing volume even if we allow non-disperse volume parameters. 
    461463 
    462     # Load template 
    463     global C_KERNEL_TEMPLATE 
    464     if C_KERNEL_TEMPLATE is None: 
    465         with open(C_KERNEL_TEMPLATE_PATH) as fid: 
    466             C_KERNEL_TEMPLATE = fid.read() 
    467  
    468     # Load additional sources 
    469     source = [open(f).read() for f in model_sources(model_info)] 
    470  
    471     # Prepare defines 
    472     defines = [] 
    473     partype = model_info['partype'] 
    474     pd_1d = partype['pd-1d'] 
    475     pd_2d = partype['pd-2d'] 
    476     fixed_1d = partype['fixed-1d'] 
    477     fixed_2d = partype['fixed-1d'] 
    478  
    479     iq_parameters = [p.name 
    480                      for p in model_info['parameters'][2:]  # skip scale, background 
    481                      if p.name in set(fixed_1d + pd_1d)] 
    482     iqxy_parameters = [p.name 
    483                        for p in model_info['parameters'][2:]  # skip scale, background 
    484                        if p.name in set(fixed_2d + pd_2d)] 
    485     volume_parameters = [p.name 
    486                          for p in model_info['parameters'] 
    487                          if p.type == 'volume'] 
    488  
    489     # Fill in defintions for volume parameters 
    490     if volume_parameters: 
    491         defines.append(('VOLUME_PARAMETERS', 
    492                         ','.join(volume_parameters))) 
    493         defines.append(('VOLUME_WEIGHT_PRODUCT', 
    494                         '*'.join(p + '_w' for p in volume_parameters))) 
    495  
    496     # Generate form_volume function from body only 
     464    partable = model_info['parameters'] 
     465 
     466    # Identify parameters for Iq, Iqxy, Iq_magnetic and form_volume. 
     467    # Note that scale and volume are not possible types. 
     468 
     469    # Load templates and user code 
     470    kernel_header = load_template('kernel_header.c') 
     471    kernel_code = load_template('kernel_iq.c') 
     472    user_code = [open(f).read() for f in model_sources(model_info)] 
     473 
     474    # Build initial sources 
     475    source = [kernel_header] + user_code 
     476 
     477    # Make parameters for q, qx, qy so that we can use them in declarations 
     478    q, qx, qy = [Parameter(name=v) for v in ('q', 'qx', 'qy')] 
     479    # Generate form_volume function, etc. from body only 
    497480    if model_info['form_volume'] is not None: 
    498         if volume_parameters: 
    499             vol_par_decl = ', '.join('double ' + p for p in volume_parameters) 
    500         else: 
    501             vol_par_decl = 'void' 
    502         defines.append(('VOLUME_PARAMETER_DECLARATIONS', 
    503                         vol_par_decl)) 
    504         fn = """\ 
    505 double form_volume(VOLUME_PARAMETER_DECLARATIONS); 
    506 double form_volume(VOLUME_PARAMETER_DECLARATIONS) { 
    507     %(body)s 
    508 } 
    509 """ % {'body':model_info['form_volume']} 
    510         source.append(fn) 
    511  
    512     # Fill in definitions for Iq parameters 
    513     defines.append(('IQ_KERNEL_NAME', model_info['name'] + '_Iq')) 
    514     defines.append(('IQ_PARAMETERS', ', '.join(iq_parameters))) 
    515     if fixed_1d: 
    516         defines.append(('IQ_FIXED_PARAMETER_DECLARATIONS', 
    517                         ', \\\n    '.join('const double %s' % p for p in fixed_1d))) 
    518     if pd_1d: 
    519         defines.append(('IQ_WEIGHT_PRODUCT', 
    520                         '*'.join(p + '_w' for p in pd_1d))) 
    521         defines.append(('IQ_DISPERSION_LENGTH_DECLARATIONS', 
    522                         ', \\\n    '.join('const int N%s' % p for p in pd_1d))) 
    523         defines.append(('IQ_DISPERSION_LENGTH_SUM', 
    524                         '+'.join('N' + p for p in pd_1d))) 
    525         open_loops, close_loops = build_polydispersity_loops(pd_1d) 
    526         defines.append(('IQ_OPEN_LOOPS', 
    527                         open_loops.replace('\n', ' \\\n'))) 
    528         defines.append(('IQ_CLOSE_LOOPS', 
    529                         close_loops.replace('\n', ' \\\n'))) 
     481        pars = partable.form_volume_parameters 
     482        source.append(_gen_fn('form_volume', pars, model_info['form_volume'])) 
    530483    if model_info['Iq'] is not None: 
    531         defines.append(('IQ_PARAMETER_DECLARATIONS', 
    532                         ', '.join('double ' + p for p in iq_parameters))) 
    533         fn = """\ 
    534 double Iq(double q, IQ_PARAMETER_DECLARATIONS); 
    535 double Iq(double q, IQ_PARAMETER_DECLARATIONS) { 
    536     %(body)s 
    537 } 
    538 """ % {'body':model_info['Iq']} 
    539         source.append(fn) 
    540  
    541     # Fill in definitions for Iqxy parameters 
    542     defines.append(('IQXY_KERNEL_NAME', model_info['name'] + '_Iqxy')) 
    543     defines.append(('IQXY_PARAMETERS', ', '.join(iqxy_parameters))) 
    544     if fixed_2d: 
    545         defines.append(('IQXY_FIXED_PARAMETER_DECLARATIONS', 
    546                         ', \\\n    '.join('const double %s' % p for p in fixed_2d))) 
    547     if pd_2d: 
    548         defines.append(('IQXY_WEIGHT_PRODUCT', 
    549                         '*'.join(p + '_w' for p in pd_2d))) 
    550         defines.append(('IQXY_DISPERSION_LENGTH_DECLARATIONS', 
    551                         ', \\\n    '.join('const int N%s' % p for p in pd_2d))) 
    552         defines.append(('IQXY_DISPERSION_LENGTH_SUM', 
    553                         '+'.join('N' + p for p in pd_2d))) 
    554         open_loops, close_loops = build_polydispersity_loops(pd_2d) 
    555         defines.append(('IQXY_OPEN_LOOPS', 
    556                         open_loops.replace('\n', ' \\\n'))) 
    557         defines.append(('IQXY_CLOSE_LOOPS', 
    558                         close_loops.replace('\n', ' \\\n'))) 
     484        pars = [q] + partable.iq_parameters 
     485        source.append(_gen_fn('Iq', pars, model_info['Iq'])) 
    559486    if model_info['Iqxy'] is not None: 
    560         defines.append(('IQXY_PARAMETER_DECLARATIONS', 
    561                         ', '.join('double ' + p for p in iqxy_parameters))) 
    562         fn = """\ 
    563 double Iqxy(double qx, double qy, IQXY_PARAMETER_DECLARATIONS); 
    564 double Iqxy(double qx, double qy, IQXY_PARAMETER_DECLARATIONS) { 
    565     %(body)s 
    566 } 
    567 """ % {'body':model_info['Iqxy']} 
    568         source.append(fn) 
    569  
    570     # Need to know if we have a theta parameter for Iqxy; it is not there 
    571     # for the magnetic sphere model, for example, which has a magnetic 
    572     # orientation but no shape orientation. 
    573     if 'theta' in pd_2d: 
    574         defines.append(('IQXY_HAS_THETA', '1')) 
    575  
    576     #for d in defines: print(d) 
    577     defines = '\n'.join('#define %s %s' % (k, v) for k, v in defines) 
    578     sources = '\n\n'.join(source) 
    579     return C_KERNEL_TEMPLATE % { 
    580         'DEFINES': defines, 
    581         'SOURCES': sources, 
    582         } 
    583  
    584 def categorize_parameters(pars): 
    585     """ 
    586     Build parameter categories out of the the parameter definitions. 
    587  
    588     Returns a dictionary of categories. 
    589  
    590     Note: these categories are subject to change, depending on the needs of 
    591     the UI and the needs of the kernel calling function. 
    592  
    593     The categories are as follows: 
    594  
    595     * *volume* list of volume parameter names 
    596     * *orientation* list of orientation parameters 
    597     * *magnetic* list of magnetic parameters 
    598     * *<empty string>* list of parameters that have no type info 
    599  
    600     Each parameter is in one and only one category. 
    601  
    602     The following derived categories are created: 
    603  
    604     * *fixed-1d* list of non-polydisperse parameters for 1D models 
    605     * *pd-1d* list of polydisperse parameters for 1D models 
    606     * *fixed-2d* list of non-polydisperse parameters for 2D models 
    607     * *pd-d2* list of polydisperse parameters for 2D models 
    608     """ 
    609     partype = { 
    610         'volume': [], 'orientation': [], 'magnetic': [], 'sld': [], '': [], 
    611         'fixed-1d': [], 'fixed-2d': [], 'pd-1d': [], 'pd-2d': [], 
    612         'pd-rel': set(), 
    613     } 
    614  
    615     for p in pars: 
    616         if p.type == 'volume': 
    617             partype['pd-1d'].append(p.name) 
    618             partype['pd-2d'].append(p.name) 
    619             partype['pd-rel'].add(p.name) 
    620         elif p.type == 'magnetic': 
    621             partype['fixed-2d'].append(p.name) 
    622         elif p.type == 'orientation': 
    623             partype['pd-2d'].append(p.name) 
    624         elif p.type in ('', 'sld'): 
    625             partype['fixed-1d'].append(p.name) 
    626             partype['fixed-2d'].append(p.name) 
    627         else: 
    628             raise ValueError("unknown parameter type %r" % p.type) 
    629         partype[p.type].append(p.name) 
    630  
    631     return partype 
    632  
    633 def process_parameters(model_info): 
    634     """ 
    635     Process parameter block, precalculating parameter details. 
    636     """ 
    637     # convert parameters into named tuples 
    638     for p in model_info['parameters']: 
    639         if p[4] == '' and (p[0].startswith('sld') or p[0].endswith('sld')): 
    640             p[4] = 'sld' 
    641             # TODO: make sure all models explicitly label their sld parameters 
    642             #raise ValueError("%s.%s needs to be explicitly set to type 'sld'" %(model_info['id'], p[0])) 
    643  
    644     pars = [Parameter(*p) for p in model_info['parameters']] 
    645     # Fill in the derived attributes 
    646     model_info['parameters'] = pars 
    647     partype = categorize_parameters(pars) 
    648     model_info['limits'] = dict((p.name, p.limits) for p in pars) 
    649     model_info['partype'] = partype 
    650     model_info['defaults'] = dict((p.name, p.default) for p in pars) 
    651     if model_info.get('demo', None) is None: 
    652         model_info['demo'] = model_info['defaults'] 
    653     model_info['has_2d'] = partype['orientation'] or partype['magnetic'] 
     487        pars = [qx, qy] + partable.iqxy_parameters 
     488        source.append(_gen_fn('Iqxy', pars, model_info['Iqxy'])) 
     489 
     490    # Define the parameter table 
     491    source.append("#define PARAMETER_TABLE \\") 
     492    source.append("\\\n".join(p.as_definition() 
     493                              for p in partable.kernel_parameters)) 
     494 
     495    # Define the function calls 
     496    if partable.form_volume_parameters: 
     497        refs = _call_pars("v.", partable.form_volume_parameters) 
     498        call_volume = "#define CALL_VOLUME(v) form_volume(%s)" % (",".join(refs)) 
     499    else: 
     500        # Model doesn't have volume.  We could make the kernel run a little 
     501        # faster by not using/transferring the volume normalizations, but 
     502        # the ifdef's reduce readability more than is worthwhile. 
     503        call_volume = "#define CALL_VOLUME(v) 1.0" 
     504    source.append(call_volume) 
     505 
     506    refs = ["q[i]"] + _call_pars("v.", partable.iq_parameters) 
     507    call_iq = "#define CALL_IQ(q,i,v) Iq(%s)" % (",".join(refs)) 
     508    if _have_Iqxy(user_code): 
     509        # Call 2D model 
     510        refs = ["q[2*i]", "q[2*i+1]"] + _call_pars("v.", partable.iqxy_parameters) 
     511        call_iqxy = "#define CALL_IQ(q,i,v) Iqxy(%s)" % (",".join(refs)) 
     512    else: 
     513        # Call 1D model with sqrt(qx^2 + qy^2) 
     514        warnings.warn("Creating Iqxy = Iq(sqrt(qx^2 + qy^2))") 
     515        # still defined:: refs = ["q[i]"] + _call_pars("v", iq_parameters) 
     516        pars_sqrt = ["sqrt(q[2*i]*q[2*i]+q[2*i+1]*q[2*i+1])"] + refs[1:] 
     517        call_iqxy = "#define CALL_IQ(q,i,v) Iq(%s)" % (",".join(pars_sqrt)) 
     518 
     519    # Fill in definitions for numbers of parameters 
     520    source.append("#define MAX_PD %s"%partable.max_pd) 
     521    source.append("#define NPARS %d"%partable.npars) 
     522 
     523    # TODO: allow mixed python/opencl kernels? 
     524 
     525    # define the Iq kernel 
     526    source.append("#define KERNEL_NAME %s_Iq"%model_info['name']) 
     527    source.append(call_iq) 
     528    source.append(kernel_code) 
     529    source.append("#undef CALL_IQ") 
     530    source.append("#undef KERNEL_NAME") 
     531 
     532    # define the Iqxy kernel from the same source with different #defines 
     533    source.append("#define KERNEL_NAME %s_Iqxy"%model_info['name']) 
     534    source.append(call_iqxy) 
     535    source.append(kernel_code) 
     536    source.append("#undef CALL_IQ") 
     537    source.append("#undef KERNEL_NAME") 
     538 
     539    return '\n'.join(source) 
     540 
     541class CoordinationDetails(object): 
     542    def __init__(self, model_info): 
     543        parameters = model_info['parameters'] 
     544        max_pd = parameters.max_pd 
     545        npars = parameters.npars 
     546        par_offset = 4*max_pd 
     547        self.details = np.zeros(par_offset + 3*npars + 4, 'i4') 
     548 
     549        # generate views on different parts of the array 
     550        self._pd_par     = self.details[0*max_pd:1*max_pd] 
     551        self._pd_length  = self.details[1*max_pd:2*max_pd] 
     552        self._pd_offset  = self.details[2*max_pd:3*max_pd] 
     553        self._pd_stride  = self.details[3*max_pd:4*max_pd] 
     554        self._par_offset = self.details[par_offset+0*npars:par_offset+1*npars] 
     555        self._par_coord  = self.details[par_offset+1*npars:par_offset+2*npars] 
     556        self._pd_coord   = self.details[par_offset+2*npars:par_offset+3*npars] 
     557 
     558        # theta_par is fixed 
     559        self.details[-1] = parameters.theta_offset 
     560 
     561    @property 
     562    def ctypes(self): return self.details.ctypes 
     563    @property 
     564    def pd_par(self): return self._pd_par 
     565    @property 
     566    def pd_length(self): return self._pd_length 
     567    @property 
     568    def pd_offset(self): return self._pd_offset 
     569    @property 
     570    def pd_stride(self): return self._pd_stride 
     571    @property 
     572    def pd_coord(self): return self._pd_coord 
     573    @property 
     574    def par_coord(self): return self._par_coord 
     575    @property 
     576    def par_offset(self): return self._par_offset 
     577    @property 
     578    def num_coord(self): return self.details[-2] 
     579    @num_coord.setter 
     580    def num_coord(self, v): self.details[-2] = v 
     581    @property 
     582    def total_pd(self): return self.details[-3] 
     583    @total_pd.setter 
     584    def total_pd(self, v): self.details[-3] = v 
     585    @property 
     586    def num_active(self): return self.details[-4] 
     587    @num_active.setter 
     588    def num_active(self, v): self.details[-4] = v 
     589 
     590    def show(self): 
     591        print("total_pd", self.total_pd) 
     592        print("num_active", self.num_active) 
     593        print("pd_par", self.pd_par) 
     594        print("pd_length", self.pd_length) 
     595        print("pd_offset", self.pd_offset) 
     596        print("pd_stride", self.pd_stride) 
     597        print("par_offsets", self.par_offset) 
     598        print("num_coord", self.num_coord) 
     599        print("par_coord", self.par_coord) 
     600        print("pd_coord", self.pd_coord) 
     601        print("theta par", self.details[-1]) 
     602 
     603def mono_details(model_info): 
     604    details = CoordinationDetails(model_info) 
     605    # The zero defaults for monodisperse systems are mostly fine 
     606    details.par_offset[:] = np.arange(2, len(details.par_offset)+2) 
     607    return details 
     608 
     609def poly_details(model_info, weights): 
     610    #print("weights",weights) 
     611    weights = weights[2:] # Skip scale and background 
     612 
     613    # Decreasing list of polydispersity lengths 
     614    # Note: the reversing view, x[::-1], does not require a copy 
     615    pd_length = np.array([len(w) for w in weights]) 
     616    num_active = np.sum(pd_length>1) 
     617    if num_active > model_info['parameters'].max_pd: 
     618        raise ValueError("Too many polydisperse parameters") 
     619 
     620    pd_offset = np.cumsum(np.hstack((0, pd_length))) 
     621    idx = np.argsort(pd_length)[::-1][:num_active] 
     622    par_length = np.array([max(len(w),1) for w in weights]) 
     623    pd_stride = np.cumprod(np.hstack((1, par_length[idx]))) 
     624    par_offsets = np.cumsum(np.hstack((2, par_length))) 
     625 
     626    details = CoordinationDetails(model_info) 
     627    details.pd_par[:num_active] = idx 
     628    details.pd_length[:num_active] = pd_length[idx] 
     629    details.pd_offset[:num_active] = pd_offset[idx] 
     630    details.pd_stride[:num_active] = pd_stride[:-1] 
     631    details.par_offset[:] = par_offsets[:-1] 
     632    details.total_pd = pd_stride[-1] 
     633    details.num_active = num_active 
     634    # Without constraints coordinated parameters are just the pd parameters 
     635    details.par_coord[:num_active] = idx 
     636    details.pd_coord[:num_active] = 2**np.arange(num_active) 
     637    details.num_coord = num_active 
     638    #details.show() 
     639    return details 
     640 
     641def constrained_poly_details(model_info, weights, constraints): 
     642    # Need to find the independently varying pars and sort them 
     643    # Need to build a coordination list for the dependent variables 
     644    # Need to generate a constraints function which takes values 
     645    # and weights, returning par blocks 
     646    raise NotImplementedError("Can't handle constraints yet") 
     647 
     648 
     649def create_default_functions(model_info): 
     650    """ 
     651    Autogenerate missing functions, such as Iqxy from Iq. 
     652 
     653    This only works for Iqxy when Iq is written in python. :func:`make_source` 
     654    performs a similar role for Iq written in C. 
     655    """ 
     656    if callable(model_info['Iq']) and model_info['Iqxy'] is None: 
     657        partable = model_info['parameters'] 
     658        if partable.has_2d: 
     659            raise ValueError("Iqxy model is missing") 
     660        Iq = model_info['Iq'] 
     661        def Iqxy(qx, qy, **kw): 
     662            return Iq(np.sqrt(qx**2 + qy**2), **kw) 
     663        model_info['Iqxy'] = Iqxy 
     664 
    654665 
    655666def make_model_info(kernel_module): 
     
    678689      model variants (e.g., the list of cases) or is None if there are no 
    679690      model variants 
    680     * *defaults* is the *{parameter: value}* table built from the parameter 
    681       description table. 
    682     * *limits* is the *{parameter: [min, max]}* table built from the 
    683       parameter description table. 
    684     * *partypes* categorizes the model parameters. See 
     691    * *par_type* categorizes the model parameters. See 
    685692      :func:`categorize_parameters` for details. 
    686693    * *demo* contains the *{parameter: value}* map used in compare (and maybe 
     
    699706      *model_info* blocks for the composition objects.  This allows us to 
    700707      build complete product and mixture models from just the info. 
    701  
    702708    """ 
    703709    # TODO: maybe turn model_info into a class ModelDefinition 
    704     parameters = COMMON_PARAMETERS + kernel_module.parameters 
     710    #print("make parameter table", kernel_module.parameters) 
     711    parameters = make_parameter_table(kernel_module.parameters) 
    705712    filename = abspath(kernel_module.__file__) 
    706713    kernel_id = splitext(basename(filename))[0] 
     
    712719        filename=abspath(kernel_module.__file__), 
    713720        name=name, 
    714         title=kernel_module.title, 
    715         description=kernel_module.description, 
     721        title=getattr(kernel_module, 'title', name+" model"), 
     722        description=getattr(kernel_module, 'description', 'no description'), 
    716723        parameters=parameters, 
    717724        composition=None, 
     
    720727        single=getattr(kernel_module, 'single', True), 
    721728        structure_factor=getattr(kernel_module, 'structure_factor', False), 
     729        profile_axes=getattr(kernel_module, 'profile_axes', ['x','y']), 
    722730        variant_info=getattr(kernel_module, 'invariant_info', None), 
    723731        demo=getattr(kernel_module, 'demo', None), 
     
    727735        tests=getattr(kernel_module, 'tests', []), 
    728736        ) 
    729     process_parameters(model_info) 
     737    set_demo(model_info, getattr(kernel_module, 'demo', None)) 
    730738    # Check for optional functions 
    731     functions = "ER VR form_volume Iq Iqxy shape sesans".split() 
     739    functions = "ER VR form_volume Iq Iqxy profile sesans".split() 
    732740    model_info.update((k, getattr(kernel_module, k, None)) for k in functions) 
     741    create_default_functions(model_info) 
     742    # Precalculate the monodisperse parameters 
     743    # TODO: make this a lazy evaluator 
     744    # make_model_info is called for every model on sasview startup 
     745    model_info['mono_details'] = mono_details(model_info) 
    733746    return model_info 
    734747 
     
    782795 
    783796 
    784  
    785797def demo_time(): 
    786798    """ 
     
    798810    Program which prints the source produced by the model. 
    799811    """ 
     812    import sys 
     813    from sasmodels.core import make_model_by_name 
    800814    if len(sys.argv) <= 1: 
    801815        print("usage: python -m sasmodels.generate modelname") 
    802816    else: 
    803817        name = sys.argv[1] 
    804         import sasmodels.models 
    805         __import__('sasmodels.models.' + name) 
    806         model = getattr(sasmodels.models, name) 
    807         model_info = make_model_info(model) 
     818        model_info = make_model_by_name(name) 
    808819        source = make_source(model_info) 
    809820        print(source) 
  • sasmodels/kernelcl.py

    r8e0d974 rba32cdd  
    4848harmless, albeit annoying. 
    4949""" 
     50from __future__ import print_function 
    5051import os 
    5152import warnings 
     
    7374# of polydisperse parameters. 
    7475MAX_LOOPS = 2048 
     76 
     77 
     78# Pragmas for enable OpenCL features.  Be sure to protect them so that they 
     79# still compile even if OpenCL is not present. 
     80_F16_PRAGMA = """\ 
     81#if defined(__OPENCL_VERSION__) // && !defined(cl_khr_fp16) 
     82#  pragma OPENCL EXTENSION cl_khr_fp16: enable 
     83#endif 
     84""" 
     85 
     86_F64_PRAGMA = """\ 
     87#if defined(__OPENCL_VERSION__) // && !defined(cl_khr_fp64) 
     88#  pragma OPENCL EXTENSION cl_khr_fp64: enable 
     89#endif 
     90""" 
    7591 
    7692 
     
    142158        raise RuntimeError("%s not supported for devices"%dtype) 
    143159 
    144     source = generate.convert_type(source, dtype) 
     160    source_list = [generate.convert_type(source, dtype)] 
     161 
     162    if dtype == generate.F16: 
     163        source_list.insert(0, _F16_PRAGMA) 
     164    elif dtype == generate.F64: 
     165        source_list.insert(0, _F64_PRAGMA) 
     166 
    145167    # Note: USE_SINCOS makes the intel cpu slower under opencl 
    146168    if context.devices[0].type == cl.device_type.GPU: 
    147         source = "#define USE_SINCOS\n" + source 
     169        source_list.insert(0, "#define USE_SINCOS\n") 
    148170    options = (get_fast_inaccurate_build_options(context.devices[0]) 
    149171               if fast else []) 
     172    source = "\n".join(source_list) 
    150173    program = cl.Program(context, source).build(options=options) 
    151174    return program 
     
    220243        key = "%s-%s-%s"%(name, dtype, fast) 
    221244        if key not in self.compiled: 
    222             #print("compiling",name) 
     245            print("compiling",name) 
    223246            dtype = np.dtype(dtype) 
    224             program = compile_model(self.get_context(dtype), source, dtype, fast) 
     247            program = compile_model(self.get_context(dtype), 
     248                                    str(source), dtype, fast) 
    225249            self.compiled[key] = program 
    226250        return self.compiled[key] 
     
    314338        self.program = None 
    315339 
    316     def __call__(self, q_vectors): 
     340    def make_kernel(self, q_vectors): 
    317341        if self.program is None: 
    318342            compiler = environment().compile_program 
    319             self.program = compiler(self.info['name'], self.source, self.dtype, 
    320                                     self.fast) 
     343            self.program = compiler(self.info['name'], self.source, 
     344                                    self.dtype, self.fast) 
    321345        is_2d = len(q_vectors) == 2 
    322346        kernel_name = generate.kernel_name(self.info, is_2d) 
     
    365389        # at this point, so instead using 32, which is good on the set of 
    366390        # architectures tested so far. 
    367         self.q_vectors = [_stretch_input(q, self.dtype, 32) for q in q_vectors] 
     391        if self.is_2d: 
     392            # Note: 17 rather than 15 because results is 2 elements 
     393            # longer than input. 
     394            width = ((self.nq+17)//16)*16 
     395            self.q = np.empty((width, 2), dtype=dtype) 
     396            self.q[:self.nq, 0] = q_vectors[0] 
     397            self.q[:self.nq, 1] = q_vectors[1] 
     398        else: 
     399            # Note: 33 rather than 31 because results is 2 elements 
     400            # longer than input. 
     401            width = ((self.nq+33)//32)*32 
     402            self.q = np.empty(width, dtype=dtype) 
     403            self.q[:self.nq] = q_vectors[0] 
     404        self.global_size = [self.q.shape[0]] 
    368405        context = env.get_context(self.dtype) 
    369         self.global_size = [self.q_vectors[0].size] 
    370406        #print("creating inputs of size", self.global_size) 
    371         self.q_buffers = [ 
    372             cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=q) 
    373             for q in self.q_vectors 
    374         ] 
     407        self.q_b = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, 
     408                             hostbuf=self.q) 
    375409 
    376410    def release(self): 
     
    378412        Free the memory. 
    379413        """ 
    380         for b in self.q_buffers: 
    381             b.release() 
    382         self.q_buffers = [] 
     414        if self.q is not None: 
     415            self.q.release() 
     416            self.q = None 
    383417 
    384418    def __del__(self): 
     
    406440    """ 
    407441    def __init__(self, kernel, model_info, q_vectors, dtype): 
     442        max_pd = model_info['max_pd'] 
     443        npars = len(model_info['parameters'])-2 
    408444        q_input = GpuInput(q_vectors, dtype) 
     445        self.dtype = dtype 
     446        self.dim = '2d' if q_input.is_2d else '1d' 
    409447        self.kernel = kernel 
    410448        self.info = model_info 
    411         self.res = np.empty(q_input.nq, q_input.dtype) 
    412         dim = '2d' if q_input.is_2d else '1d' 
    413         self.fixed_pars = model_info['partype']['fixed-' + dim] 
    414         self.pd_pars = model_info['partype']['pd-' + dim] 
     449        self.pd_stop_index = 4*max_pd-1 
     450        # plus three for the normalization values 
     451        self.result = np.empty(q_input.nq+3, q_input.dtype) 
    415452 
    416453        # Inputs and outputs for each kernel call 
     
    418455        env = environment() 
    419456        self.queue = env.get_queue(dtype) 
    420         self.loops_b = cl.Buffer(self.queue.context, mf.READ_WRITE, 
    421                                  2 * MAX_LOOPS * q_input.dtype.itemsize) 
    422         self.res_b = cl.Buffer(self.queue.context, mf.READ_WRITE, 
     457 
     458        # details is int32 data, padded to an 8 integer boundary 
     459        size = ((max_pd*5 + npars*3 + 2 + 7)//8)*8 
     460        self.result_b = cl.Buffer(self.queue.context, mf.READ_WRITE, 
    423461                               q_input.global_size[0] * q_input.dtype.itemsize) 
    424         self.q_input = q_input 
    425  
    426         self._need_release = [self.loops_b, self.res_b, self.q_input] 
    427  
    428     def __call__(self, fixed_pars, pd_pars, cutoff): 
     462        self.q_input = q_input # allocated by GpuInput above 
     463 
     464        self._need_release = [ self.result_b, self.q_input ] 
     465 
     466    def __call__(self, details, weights, values, cutoff): 
    429467        real = (np.float32 if self.q_input.dtype == generate.F32 
    430468                else np.float64 if self.q_input.dtype == generate.F64 
    431469                else np.float16 if self.q_input.dtype == generate.F16 
    432470                else np.float32)  # will never get here, so use np.float32 
    433  
    434         #print "pars", fixed_pars, pd_pars 
    435         res_bi = self.res_b 
    436         nq = np.uint32(self.q_input.nq) 
    437         if pd_pars: 
    438             cutoff = real(cutoff) 
    439             loops_N = [np.uint32(len(p[0])) for p in pd_pars] 
    440             loops = np.hstack(pd_pars) \ 
    441                 if pd_pars else np.empty(0, dtype=self.q_input.dtype) 
    442             loops = np.ascontiguousarray(loops.T, self.q_input.dtype).flatten() 
    443             #print("loops",Nloops, loops) 
    444  
    445             #import sys; print("opencl eval",pars) 
    446             #print("opencl eval",pars) 
    447             if len(loops) > 2 * MAX_LOOPS: 
    448                 raise ValueError("too many polydispersity points") 
    449  
    450             loops_bi = self.loops_b 
    451             cl.enqueue_copy(self.queue, loops_bi, loops) 
    452             loops_l = cl.LocalMemory(len(loops.data)) 
    453             #ctx = environment().context 
    454             #loops_bi = cl.Buffer(ctx, mf.READ_ONLY|mf.COPY_HOST_PTR, hostbuf=loops) 
    455             dispersed = [loops_bi, loops_l, cutoff] + loops_N 
    456         else: 
    457             dispersed = [] 
    458         fixed = [real(p) for p in fixed_pars] 
    459         args = self.q_input.q_buffers + [res_bi, nq] + dispersed + fixed 
     471        assert details.dtype == np.int32 
     472        assert weights.dtype == real and values.dtype == real 
     473 
     474        context = self.queue.context 
     475        details_b = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, 
     476                              hostbuf=details) 
     477        weights_b = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, 
     478                              hostbuf=weights) 
     479        values_b = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, 
     480                             hostbuf=values) 
     481 
     482        start, stop = 0, self.details[self.pd_stop_index] 
     483        args = [ 
     484            np.uint32(self.q_input.nq), np.uint32(start), np.uint32(stop), 
     485            self.details_b, self.weights_b, self.values_b, 
     486            self.q_input.q_b, self.result_b, real(cutoff), 
     487        ] 
    460488        self.kernel(self.queue, self.q_input.global_size, None, *args) 
    461         cl.enqueue_copy(self.queue, self.res, res_bi) 
    462  
    463         return self.res 
     489        cl.enqueue_copy(self.queue, self.result, self.result_b) 
     490        [v.release() for v in details_b, weights_b, values_b] 
     491 
     492        return self.result[:self.nq] 
    464493 
    465494    def release(self): 
  • sasmodels/kerneldll.py

    r6ad0e87 rd19962c  
    5050import tempfile 
    5151import ctypes as ct 
    52 from ctypes import c_void_p, c_int, c_longdouble, c_double, c_float 
    53 import _ctypes 
     52from ctypes import c_void_p, c_int32, c_longdouble, c_double, c_float 
    5453 
    5554import numpy as np 
     
    8180        COMPILE = "gcc -shared -fPIC -std=c99 -O2 -Wall %(source)s -o %(output)s -lm" 
    8281        if "SAS_OPENMP" in os.environ: 
    83             COMPILE = COMPILE + " -fopenmp" 
     82            COMPILE += " -fopenmp" 
    8483else: 
    8584    COMPILE = "cc -shared -fPIC -fopenmp -std=c99 -O2 -Wall %(source)s -o %(output)s -lm" 
     
    9089 
    9190 
    92 def dll_path(model_info, dtype="double"): 
    93     """ 
    94     Path to the compiled model defined by *model_info*. 
    95     """ 
    96     from os.path import join as joinpath, split as splitpath, splitext 
    97     basename = splitext(splitpath(model_info['filename'])[1])[0] 
    98     if np.dtype(dtype) == generate.F32: 
    99         basename += "32" 
    100     elif np.dtype(dtype) == generate.F64: 
    101         basename += "64" 
    102     else: 
    103         basename += "128" 
    104     return joinpath(DLL_PATH, basename+'.so') 
    105  
     91def dll_name(model_info, dtype): 
     92    """ 
     93    Name of the dll containing the model.  This is the base file name without 
     94    any path or extension, with a form such as 'sas_sphere32'. 
     95    """ 
     96    bits = 8*dtype.itemsize 
     97    return "sas_%s%d"%(model_info['id'], bits) 
     98 
     99def dll_path(model_info, dtype): 
     100    """ 
     101    Complete path to the dll for the model.  Note that the dll may not 
     102    exist yet if it hasn't been compiled. 
     103    """ 
     104    return os.path.join(DLL_PATH, dll_name(model_info, dtype)+".so") 
    106105 
    107106def make_dll(source, model_info, dtype="double"): 
     
    133132        dtype = generate.F64  # Force 64-bit dll 
    134133 
    135     if dtype == generate.F32: # 32-bit dll 
    136         tempfile_prefix = 'sas_' + model_info['name'] + '32_' 
    137     elif dtype == generate.F64: 
    138         tempfile_prefix = 'sas_' + model_info['name'] + '64_' 
    139     else: 
    140         tempfile_prefix = 'sas_' + model_info['name'] + '128_' 
    141   
    142134    source = generate.convert_type(source, dtype) 
    143     source_files = generate.model_sources(model_info) + [model_info['filename']] 
     135    newest = generate.timestamp(model_info) 
    144136    dll = dll_path(model_info, dtype) 
    145     newest = max(os.path.getmtime(f) for f in source_files) 
    146137    if not os.path.exists(dll) or os.path.getmtime(dll) < newest: 
    147         # Replace with a proper temp file 
    148         fid, filename = tempfile.mkstemp(suffix=".c", prefix=tempfile_prefix) 
     138        basename = dll_name(model_info, dtype) + "_" 
     139        fid, filename = tempfile.mkstemp(suffix=".c", prefix=basename) 
    149140        os.fdopen(fid, "w").write(source) 
    150141        command = COMPILE%{"source":filename, "output":dll} 
     
    171162    return DllModel(filename, model_info, dtype=dtype) 
    172163 
    173  
    174 IQ_ARGS = [c_void_p, c_void_p, c_int] 
    175 IQXY_ARGS = [c_void_p, c_void_p, c_void_p, c_int] 
    176  
    177164class DllModel(object): 
    178165    """ 
     
    197184 
    198185    def _load_dll(self): 
    199         Nfixed1d = len(self.info['partype']['fixed-1d']) 
    200         Nfixed2d = len(self.info['partype']['fixed-2d']) 
    201         Npd1d = len(self.info['partype']['pd-1d']) 
    202         Npd2d = len(self.info['partype']['pd-2d']) 
    203  
    204186        #print("dll", self.dllpath) 
    205187        try: 
     
    212194              else c_double if self.dtype == generate.F64 
    213195              else c_longdouble) 
    214         pd_args_1d = [c_void_p, fp] + [c_int]*Npd1d if Npd1d else [] 
    215         pd_args_2d = [c_void_p, fp] + [c_int]*Npd2d if Npd2d else [] 
     196 
     197        # int, int, int, int*, double*, double*, double*, double*, double*, double 
     198        argtypes = [c_int32]*3 + [c_void_p]*5 + [fp] 
    216199        self.Iq = self.dll[generate.kernel_name(self.info, False)] 
    217         self.Iq.argtypes = IQ_ARGS + pd_args_1d + [fp]*Nfixed1d 
    218  
    219200        self.Iqxy = self.dll[generate.kernel_name(self.info, True)] 
    220         self.Iqxy.argtypes = IQXY_ARGS + pd_args_2d + [fp]*Nfixed2d 
    221          
    222         self.release() 
     201        self.Iq.argtypes = argtypes 
     202        self.Iqxy.argtypes = argtypes 
    223203 
    224204    def __getstate__(self): 
     
    229209        self.dll = None 
    230210 
    231     def __call__(self, q_vectors): 
     211    def make_kernel(self, q_vectors): 
    232212        q_input = PyInput(q_vectors, self.dtype) 
    233213        if self.dll is None: self._load_dll() 
     
    272252    """ 
    273253    def __init__(self, kernel, model_info, q_input): 
     254        self.kernel = kernel 
    274255        self.info = model_info 
    275256        self.q_input = q_input 
    276         self.kernel = kernel 
    277         self.res = np.empty(q_input.nq, q_input.dtype) 
    278         dim = '2d' if q_input.is_2d else '1d' 
    279         self.fixed_pars = model_info['partype']['fixed-' + dim] 
    280         self.pd_pars = model_info['partype']['pd-' + dim] 
    281  
    282         # In dll kernel, but not in opencl kernel 
    283         self.p_res = self.res.ctypes.data 
    284  
    285     def __call__(self, fixed_pars, pd_pars, cutoff): 
     257        self.dtype = q_input.dtype 
     258        self.dim = '2d' if q_input.is_2d else '1d' 
     259        self.result = np.empty(q_input.nq+3, q_input.dtype) 
     260 
     261    def __call__(self, details, weights, values, cutoff): 
    286262        real = (np.float32 if self.q_input.dtype == generate.F32 
    287263                else np.float64 if self.q_input.dtype == generate.F64 
    288264                else np.float128) 
    289  
    290         nq = c_int(self.q_input.nq) 
    291         if pd_pars: 
    292             cutoff = real(cutoff) 
    293             loops_N = [np.uint32(len(p[0])) for p in pd_pars] 
    294             loops = np.hstack(pd_pars) 
    295             loops = np.ascontiguousarray(loops.T, self.q_input.dtype).flatten() 
    296             p_loops = loops.ctypes.data 
    297             dispersed = [p_loops, cutoff] + loops_N 
    298         else: 
    299             dispersed = [] 
    300         fixed = [real(p) for p in fixed_pars] 
    301         args = self.q_input.q_pointers + [self.p_res, nq] + dispersed + fixed 
    302         #print(pars) 
     265        assert isinstance(details, generate.CoordinationDetails) 
     266        assert weights.dtype == real and values.dtype == real 
     267 
     268        start, stop = 0, details.total_pd 
     269        #print("in kerneldll") 
     270        #print("weights", weights) 
     271        #print("values", values) 
     272        args = [ 
     273            self.q_input.nq, # nq 
     274            start, # pd_start 
     275            stop, # pd_stop pd_stride[MAX_PD] 
     276            details.ctypes.data, # problem 
     277            weights.ctypes.data,  # weights 
     278            values.ctypes.data,  #pars 
     279            self.q_input.q.ctypes.data, #q 
     280            self.result.ctypes.data,   # results 
     281            real(cutoff), # cutoff 
     282            ] 
    303283        self.kernel(*args) 
    304  
    305         return self.res 
     284        return self.result[:-3] 
    306285 
    307286    def release(self): 
  • sasmodels/kernelpy.py

    ra84a0ca r48fbd50  
    5353        self.dtype = dtype 
    5454        self.is_2d = (len(q_vectors) == 2) 
    55         self.q_vectors = [np.ascontiguousarray(q, self.dtype) for q in q_vectors] 
    56         self.q_pointers = [q.ctypes.data for q in self.q_vectors] 
     55        if self.is_2d: 
     56            self.q = np.empty((self.nq, 2), dtype=dtype) 
     57            self.q[:, 0] = q_vectors[0] 
     58            self.q[:, 1] = q_vectors[1] 
     59        else: 
     60            self.q = np.empty(self.nq, dtype=dtype) 
     61            self.q[:self.nq] = q_vectors[0] 
    5762 
    5863    def release(self): 
     
    6065        Free resources associated with the model inputs. 
    6166        """ 
    62         self.q_vectors = [] 
     67        self.q = None 
    6368 
    6469class PyKernel(object): 
  • sasmodels/mixture.py

    r72a081d r69aa451  
    1414import numpy as np 
    1515 
    16 from .generate import process_parameters, COMMON_PARAMETERS, Parameter 
     16from .modelinfo import Parameter, ParameterTable 
    1717 
    1818SCALE=0 
     
    3434 
    3535    # Build new parameter list 
    36     pars = COMMON_PARAMETERS + [] 
     36    pars = [] 
    3737    for k, part in enumerate(parts): 
    3838        # Parameter prefix per model, A_, B_, ... 
     39        # Note that prefix must also be applied to id and length_control 
     40        # to support vector parameters 
    3941        prefix = chr(ord('A')+k) + '_' 
    40         for p in part['parameters']: 
    41             # No background on the individual mixture elements 
    42             if p.name == 'background': 
    43                 continue 
    44             # TODO: promote Parameter to a full class 
    45             # this code knows too much about the implementation! 
    46             p = list(p) 
    47             if p[0] == 'scale':  # allow model subtraction 
    48                 p[3] = [-np.inf, np.inf]  # limits 
    49             p[0] = prefix+p[0]   # relabel parameters with A_, ... 
     42        pars.append(Parameter(prefix+'scale')) 
     43        for p in part['parameters'].kernel_pars: 
     44            p = copy(p) 
     45            p.name = prefix+p.name 
     46            p.id = prefix+p.id 
     47            if p.length_control is not None: 
     48                p.length_control = prefix+p.length_control 
    5049            pars.append(p) 
     50    partable = ParameterTable(pars) 
    5151 
    5252    model_info = {} 
     
    5858    model_info['docs'] = model_info['title'] 
    5959    model_info['category'] = "custom" 
    60     model_info['parameters'] = pars 
     60    model_info['parameters'] = partable 
    6161    #model_info['single'] = any(part['single'] for part in parts) 
    6262    model_info['structure_factor'] = False 
     
    6767    # Remember the component info blocks so we can build the model 
    6868    model_info['composition'] = ('mixture', parts) 
    69     process_parameters(model_info) 
    70     return model_info 
    7169 
    7270 
  • sasmodels/model_test.py

    ra84a0ca r48fbd50  
    5151 
    5252from .core import list_models, load_model_info, build_model, HAVE_OPENCL 
    53 from .core import make_kernel, call_kernel, call_ER, call_VR 
     53from .core import call_kernel, call_ER, call_VR 
    5454from .exception import annotate_exception 
    5555 
     
    187187                Qx, Qy = zip(*x) 
    188188                q_vectors = [np.array(Qx), np.array(Qy)] 
    189                 kernel = make_kernel(model, q_vectors) 
     189                kernel = model.make_kernel(q_vectors) 
    190190                actual = call_kernel(kernel, pars) 
    191191            else: 
    192192                q_vectors = [np.array(x)] 
    193                 kernel = make_kernel(model, q_vectors) 
     193                kernel = model.make_kernel(q_vectors) 
    194194                actual = call_kernel(kernel, pars) 
    195195 
  • sasmodels/models/cylinder.c

    r26141cb re9b1663d  
    33double Iqxy(double qx, double qy, double sld, double solvent_sld, 
    44    double radius, double length, double theta, double phi); 
     5 
     6#define INVALID(v) (v.radius<0 || v.length<0) 
    57 
    68double form_volume(double radius, double length) 
     
    1517    double length) 
    1618{ 
    17     // TODO: return NaN if radius<0 or length<0? 
    1819    // precompute qr and qh to save time in the loop 
    1920    const double qr = q*radius; 
     
    4748    double phi) 
    4849{ 
    49     // TODO: return NaN if radius<0 or length<0? 
    5050    double sn, cn; // slots to hold sincos function output 
    5151 
  • sasmodels/models/gel_fit.c

    r30b4ddf r03cac08  
    1 double form_volume(void); 
    2  
    3 double Iq(double q, 
    4           double guinier_scale, 
    5           double lorentzian_scale, 
    6           double gyration_radius, 
    7           double fractal_exp, 
    8           double cor_length); 
    9  
    10 double Iqxy(double qx, double qy, 
    11           double guinier_scale, 
    12           double lorentzian_scale, 
    13           double gyration_radius, 
    14           double fractal_exp, 
    15           double cor_length); 
    16  
    17 static double _gel_fit_kernel(double q, 
     1static double Iq(double q, 
    182          double guinier_scale, 
    193          double lorentzian_scale, 
     
    248    // Lorentzian Term 
    259    ////////////////////////double a(x[i]*x[i]*zeta*zeta); 
    26     double lorentzian_term = q*q*cor_length*cor_length; 
     10    double lorentzian_term = square(q*cor_length); 
    2711    lorentzian_term = 1.0 + ((fractal_exp + 1.0)/3.0)*lorentzian_term; 
    2812    lorentzian_term = pow(lorentzian_term, (fractal_exp/2.0) ); 
     
    3014    // Exponential Term 
    3115    ////////////////////////double d(x[i]*x[i]*rg*rg); 
    32     double exp_term = q*q*gyration_radius*gyration_radius; 
     16    double exp_term = square(q*gyration_radius); 
    3317    exp_term = exp(-1.0*(exp_term/3.0)); 
    3418 
     
    3721    return result; 
    3822} 
    39 double form_volume(void){ 
    40     // Unused, so free to return garbage. 
    41     return NAN; 
    42 } 
    43  
    44 double Iq(double q, 
    45           double guinier_scale, 
    46           double lorentzian_scale, 
    47           double gyration_radius, 
    48           double fractal_exp, 
    49           double cor_length) 
    50 { 
    51     return _gel_fit_kernel(q, 
    52                           guinier_scale, 
    53                           lorentzian_scale, 
    54                           gyration_radius, 
    55                           fractal_exp, 
    56                           cor_length); 
    57 } 
    58  
    59 // Iqxy is never called since no orientation or magnetic parameters. 
    60 double Iqxy(double qx, double qy, 
    61           double guinier_scale, 
    62           double lorentzian_scale, 
    63           double gyration_radius, 
    64           double fractal_exp, 
    65           double cor_length) 
    66 { 
    67     double q = sqrt(qx*qx + qy*qy); 
    68     return _gel_fit_kernel(q, 
    69                           guinier_scale, 
    70                           lorentzian_scale, 
    71                           gyration_radius, 
    72                           fractal_exp, 
    73                           cor_length); 
    74 } 
    75  
  • sasmodels/models/lib/Si.c

    re7678b2 rba32cdd  
     1// integral of sin(x)/x Taylor series approximated to w/i 0.1% 
    12double Si(double x); 
    23 
    3 // integral of sin(x)/x Taylor series approximated to w/i 0.1% 
    44double Si(double x) 
    55{ 
  • sasmodels/models/lib/polevl.c

    r0b05c24 rba32cdd  
    5151*/ 
    5252 
    53 double polevl( double x, constant double *coef, int N ) { 
     53double polevl( double x, constant double *coef, int N ); 
     54double p1evl( double x, constant double *coef, int N ); 
     55 
     56 
     57double polevl( double x, constant double *coef, int N ) 
     58{ 
    5459 
    5560    int i = 0; 
     
    7075 */ 
    7176 
    72 double p1evl( double x, constant double *coef, int N ) { 
     77double p1evl( double x, constant double *coef, int N ) 
     78{ 
    7379    int i=0; 
    7480    double ans = x+coef[i]; 
  • sasmodels/models/lib/sas_J0.c

    ra776125 rba32cdd  
    4949Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier 
    5050*/ 
     51 
     52double sas_J0(double x); 
    5153 
    5254/* Note: all coefficients satisfy the relative error criterion 
     
    177179 }; 
    178180 
    179 double sas_J0(double x) { 
     181double sas_J0(double x) 
     182{ 
    180183 
    181184//Cephes single precission 
  • sasmodels/models/lib/sas_J1.c

    r19b9005 rba32cdd  
    3939Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier 
    4040*/ 
     41double sas_J1(double x); 
     42double sas_J1c(double x); 
    4143 
    4244constant double RPJ1[8] = { 
     
    135137    }; 
    136138 
    137 double sas_J1(double x) { 
     139double sas_J1(double x) 
     140{ 
    138141 
    139142//Cephes double pression function 
  • sasmodels/models/lib/sas_JN.c

    ra776125 rba32cdd  
    4747Copyright 1984, 1987, 2000 by Stephen L. Moshier 
    4848*/ 
    49  
    5049double sas_JN( int n, double x ); 
    5150 
    52 double sas_JN( int n, double x ) { 
     51double sas_JN( int n, double x ) 
     52{ 
    5353 
    5454    const double MACHEP = 1.11022302462515654042E-16; 
  • sasmodels/models/lib/sph_j1c.c

    re6f1410 rba32cdd  
    77* using double precision that are the source. 
    88*/ 
     9double sph_j1c(double q); 
    910 
    1011// The choice of the number of terms in the series and the cutoff value for 
     
    4344#endif 
    4445 
    45 double sph_j1c(double q); 
    4646double sph_j1c(double q) 
    4747{ 
  • sasmodels/models/lib/sphere_form.c

    rad90df9 rba32cdd  
    1 inline double 
    2 sphere_volume(double radius) 
     1double sphere_volume(double radius); 
     2double sphere_form(double q, double radius, double sld, double solvent_sld); 
     3 
     4double sphere_volume(double radius) 
    35{ 
    46    return M_4PI_3*cube(radius); 
    57} 
    68 
    7 inline double 
    8 sphere_form(double q, double radius, double sld, double solvent_sld) 
     9double sphere_form(double q, double radius, double sld, double solvent_sld) 
    910{ 
    1011    const double fq = sphere_volume(radius) * sph_j1c(q*radius); 
  • sasmodels/models/lib/wrc_cyl.c

    re7678b2 rba32cdd  
    22    Functions for WRC implementation of flexible cylinders 
    33*/ 
     4double Sk_WR(double q, double L, double b); 
     5 
     6 
    47static double 
    58AlphaSquare(double x) 
     
    363366} 
    364367 
    365 double Sk_WR(double q, double L, double b); 
    366368double Sk_WR(double q, double L, double b) 
    367369{ 
  • sasmodels/models/onion.c

    rfdb1487 rce896fd  
    44    double thickness, double A) 
    55{ 
    6   const double vol = 4.0/3.0 * M_PI * r * r * r; 
     6  const double vol = M_4PI_3 * cube(r); 
    77  const double qr = q * r; 
    88  const double alpha = A * r/thickness; 
     
    1919    double sinqr, cosqr; 
    2020    SINCOS(qr, sinqr, cosqr); 
    21     fun = -3.0( 
     21    fun = -3.0*( 
    2222            ((alphasq - qrsq)*sinqr/qr - 2.0*alpha*cosqr) / sumsq 
    2323                - (alpha*sinqr/qr - cosqr) 
     
    3232f_linear(double q, double r, double sld, double slope) 
    3333{ 
    34   const double vol = 4.0/3.0 * M_PI * r * r * r; 
     34  const double vol = M_4PI_3 * cube(r); 
    3535  const double qr = q * r; 
    3636  const double bes = sph_j1c(qr); 
     
    5252{ 
    5353  const double bes = sph_j1c(q * r); 
    54   const double vol = 4.0/3.0 * M_PI * r * r * r; 
     54  const double vol = M_4PI_3 * cube(r); 
    5555  return sld * vol * bes; 
    5656} 
     
    6464    r += thickness[i]; 
    6565  } 
    66   return 4.0/3.0 * M_PI * r * r * r; 
     66  return M_4PI_3*cube(r); 
    6767} 
    6868 
    6969static double 
    70 Iq(double q, double core_sld, double core_radius, double solvent_sld, 
    71     double n, double in_sld[], double out_sld[], double thickness[], 
     70Iq(double q, double sld_core, double core_radius, double sld_solvent, 
     71    double n, double sld_in[], double sld_out[], double thickness[], 
    7272    double A[]) 
    7373{ 
    7474  int i; 
    75   r = core_radius; 
    76   f = f_constant(q, r, core_sld); 
     75  double r = core_radius; 
     76  double f = f_constant(q, r, sld_core); 
    7777  for (i=0; i<n; i++){ 
    7878    const double r0 = r; 
     
    9292    } 
    9393  } 
    94   f -= f_constant(q, r, solvent_sld); 
    95   f2 = f * f * 1.0e-4; 
     94  f -= f_constant(q, r, sld_solvent); 
     95  const double f2 = f * f * 1.0e-4; 
    9696 
    9797  return f2; 
  • sasmodels/models/rpa.py

    raad336c re9b1663d  
    8686#   ["name", "units", default, [lower, upper], "type","description"], 
    8787parameters = [ 
    88     ["case_num", CASES, 0, [0, 10], "", "Component organization"], 
     88    ["case_num", "", 1, CASES, "", "Component organization"], 
    8989 
    90     ["Na", "", 1000.0, [1, inf], "", "Degree of polymerization"], 
    91     ["Phia", "", 0.25, [0, 1], "", "volume fraction"], 
    92     ["va", "mL/mol", 100.0, [0, inf], "", "specific volume"], 
    93     ["La", "fm", 10.0, [-inf, inf], "", "scattering length"], 
    94     ["ba", "Ang", 5.0, [0, inf], "", "segment length"], 
    95  
    96     ["Nb", "", 1000.0, [1, inf], "", "Degree of polymerization"], 
    97     ["Phib", "", 0.25, [0, 1], "", "volume fraction"], 
    98     ["vb", "mL/mol", 100.0, [0, inf], "", "specific volume"], 
    99     ["Lb", "fm", 10.0, [-inf, inf], "", "scattering length"], 
    100     ["bb", "Ang", 5.0, [0, inf], "", "segment length"], 
    101  
    102     ["Nc", "", 1000.0, [1, inf], "", "Degree of polymerization"], 
    103     ["Phic", "", 0.25, [0, 1], "", "volume fraction"], 
    104     ["vc", "mL/mol", 100.0, [0, inf], "", "specific volume"], 
    105     ["Lc", "fm", 10.0, [-inf, inf], "", "scattering length"], 
    106     ["bc", "Ang", 5.0, [0, inf], "", "segment length"], 
    107  
    108     ["Nd", "", 1000.0, [1, inf], "", "Degree of polymerization"], 
    109     ["Phid", "", 0.25, [0, 1], "", "volume fraction"], 
    110     ["vd", "mL/mol", 100.0, [0, inf], "", "specific volume"], 
    111     ["Ld", "fm", 10.0, [-inf, inf], "", "scattering length"], 
    112     ["bd", "Ang", 5.0, [0, inf], "", "segment length"], 
     90    ["N[4]", "", 1000.0, [1, inf], "", "Degree of polymerization"], 
     91    ["Phi[4]", "", 0.25, [0, 1], "", "volume fraction"], 
     92    ["v[4]", "mL/mol", 100.0, [0, inf], "", "specific volume"], 
     93    ["L[4]", "fm", 10.0, [-inf, inf], "", "scattering length"], 
     94    ["b[4]", "Ang", 5.0, [0, inf], "", "segment length"], 
    11395 
    11496    ["Kab", "", -0.0004, [-inf, inf], "", "Interaction parameter"], 
  • sasmodels/models/spherical_sld.py

    re42b0b9 rce896fd  
    163163title = "Sperical SLD intensity calculation" 
    164164description = """ 
    165             I(q) = 
    166                background = Incoherent background [1/cm] 
    167         """ 
     165    I(q) = 
     166    background = Incoherent background [1/cm] 
     167    """ 
    168168category = "sphere-based" 
    169169 
    170170# pylint: disable=bad-whitespace, line-too-long 
    171171#            ["name", "units", default, [lower, upper], "type", "description"], 
    172 parameters = [["n_shells",         "",               1,      [0, 9],         "", "number of shells"], 
    173               ["thick_inter[n]",   "Ang",            50,     [-inf, inf],    "", "intern layer thickness"], 
    174               ["func_inter[n]",    "",               0,      [0, 4],         "", "Erf:0, RPower:1, LPower:2, RExp:3, LExp:4"], 
    175               ["sld_core",         "1e-6/Ang^2",     2.07,   [-inf, inf],    "", "sld function flat"], 
    176               ["sld_solvent",      "1e-6/Ang^2",     1.0,    [-inf, inf],    "", "sld function solvent"], 
    177               ["sld_flat[n]",      "1e-6/Ang^2",     4.06,   [-inf, inf],    "", "sld function flat"], 
    178               ["thick_inter[n]",   "Ang",            50.0,   [0, inf],    "", "intern layer thickness"], 
    179               ["thick_flat[n]",    "Ang",            100.0,  [0, inf],    "", "flat layer_thickness"], 
    180               ["inter_nu[n]",      "",               2.5,    [-inf, inf],    "", "steepness parameter"], 
    181               ["npts_inter",       "",               35,     [0, 35],        "", "number of points in each sublayer Must be odd number"], 
    182               ["core_rad",         "Ang",            50.0,   [0, inf],    "", "intern layer thickness"], 
     172parameters = [["n_shells",                "",               1,      [0, 9],      "", "number of shells"], 
     173              ["thick_inter[n_shells]",   "Ang",            50,     [-inf, inf], "", "intern layer thickness"], 
     174              ["func_inter[n_shells]",    "",               0,      [0, 4],      "", "Erf:0, RPower:1, LPower:2, RExp:3, LExp:4"], 
     175              ["sld_core",                "1e-6/Ang^2",     2.07,   [-inf, inf], "", "sld function flat"], 
     176              ["sld_solvent",             "1e-6/Ang^2",     1.0,    [-inf, inf], "", "sld function solvent"], 
     177              ["sld_flat[n_shells]",      "1e-6/Ang^2",     4.06,   [-inf, inf], "", "sld function flat"], 
     178              ["thick_inter[n_shells]",   "Ang",            50.0,   [0, inf],    "", "intern layer thickness"], 
     179              ["thick_flat[n_shells]",    "Ang",            100.0,  [0, inf],    "", "flat layer_thickness"], 
     180              ["inter_nu[n_shells]",      "",               2.5,    [-inf, inf], "", "steepness parameter"], 
     181              ["npts_inter",              "",               35,     [0, 35],     "", "number of points in each sublayer Must be odd number"], 
     182              ["core_rad",                "Ang",            50.0,   [0, inf],    "", "intern layer thickness"], 
    183183              ] 
    184184# pylint: enable=bad-whitespace, line-too-long 
     185 
    185186#source = ["lib/librefl.c",  "lib/sph_j1c.c", "spherical_sld.c"] 
    186  
    187187def Iq(q, *args, **kw): 
    188188    return q 
    189189 
    190 def Iqxy(qx, *args, **kw): 
    191     return qx 
    192  
    193  
    194190demo = dict( 
    195         n_shells=4, 
    196         scale=1.0, 
    197         solvent_sld=1.0, 
    198         background=0.0, 
    199         npts_inter=35.0, 
    200         func_inter_0=0, 
    201         nu_inter_0=2.5, 
    202         rad_core_0=50.0, 
    203         core0_sld=2.07, 
    204         thick_inter_0=50.0, 
    205         func_inter_1=0, 
    206         nu_inter_1=2.5, 
    207         thick_inter_1=50.0, 
    208         flat1_sld=4.0, 
    209         thick_flat_1=100.0, 
    210         func_inter_2=0, 
    211         nu_inter_2=2.5, 
    212         thick_inter_2=50.0, 
    213         flat2_sld=3.5, 
    214         thick_flat_2=100.0, 
    215         func_inter_3=0, 
    216         nu_inter_3=2.5, 
    217         thick_inter_3=50.0, 
    218         flat3_sld=4.0, 
    219         thick_flat_3=100.0, 
    220         func_inter_4=0, 
    221         nu_inter_4=2.5, 
    222         thick_inter_4=50.0, 
    223         flat4_sld=3.5, 
    224         thick_flat_4=100.0, 
    225         func_inter_5=0, 
    226         nu_inter_5=2.5, 
    227         thick_inter_5=50.0, 
    228         flat5_sld=4.0, 
    229         thick_flat_5=100.0, 
    230         func_inter_6=0, 
    231         nu_inter_6=2.5, 
    232         thick_inter_6=50.0, 
    233         flat6_sld=3.5, 
    234         thick_flat_6=100.0, 
    235         func_inter_7=0, 
    236         nu_inter_7=2.5, 
    237         thick_inter_7=50.0, 
    238         flat7_sld=4.0, 
    239         thick_flat_7=100.0, 
    240         func_inter_8=0, 
    241         nu_inter_8=2.5, 
    242         thick_inter_8=50.0, 
    243         flat8_sld=3.5, 
    244         thick_flat_8=100.0, 
    245         func_inter_9=0, 
    246         nu_inter_9=2.5, 
    247         thick_inter_9=50.0, 
    248         flat9_sld=4.0, 
    249         thick_flat_9=100.0, 
    250         func_inter_10=0, 
    251         nu_inter_10=2.5, 
    252         thick_inter_10=50.0, 
    253         flat10_sld=3.5, 
    254         thick_flat_10=100.0 
    255         ) 
     191    n_shells=4, 
     192    scale=1.0, 
     193    solvent_sld=1.0, 
     194    background=0.0, 
     195    npts_inter=35.0, 
     196    func_inter_0=0, 
     197    nu_inter_0=2.5, 
     198    rad_core_0=50.0, 
     199    core0_sld=2.07, 
     200    thick_inter_0=50.0, 
     201    func_inter_1=0, 
     202    nu_inter_1=2.5, 
     203    thick_inter_1=50.0, 
     204    flat1_sld=4.0, 
     205    thick_flat_1=100.0, 
     206    func_inter_2=0, 
     207    nu_inter_2=2.5, 
     208    thick_inter_2=50.0, 
     209    flat2_sld=3.5, 
     210    thick_flat_2=100.0, 
     211    func_inter_3=0, 
     212    nu_inter_3=2.5, 
     213    thick_inter_3=50.0, 
     214    flat3_sld=4.0, 
     215    thick_flat_3=100.0, 
     216    func_inter_4=0, 
     217    nu_inter_4=2.5, 
     218    thick_inter_4=50.0, 
     219    flat4_sld=3.5, 
     220    thick_flat_4=100.0, 
     221    func_inter_5=0, 
     222    nu_inter_5=2.5, 
     223    thick_inter_5=50.0, 
     224    flat5_sld=4.0, 
     225    thick_flat_5=100.0, 
     226    func_inter_6=0, 
     227    nu_inter_6=2.5, 
     228    thick_inter_6=50.0, 
     229    flat6_sld=3.5, 
     230    thick_flat_6=100.0, 
     231    func_inter_7=0, 
     232    nu_inter_7=2.5, 
     233    thick_inter_7=50.0, 
     234    flat7_sld=4.0, 
     235    thick_flat_7=100.0, 
     236    func_inter_8=0, 
     237    nu_inter_8=2.5, 
     238    thick_inter_8=50.0, 
     239    flat8_sld=3.5, 
     240    thick_flat_8=100.0, 
     241    func_inter_9=0, 
     242    nu_inter_9=2.5, 
     243    thick_inter_9=50.0, 
     244    flat9_sld=4.0, 
     245    thick_flat_9=100.0, 
     246    func_inter_10=0, 
     247    nu_inter_10=2.5, 
     248    thick_inter_10=50.0, 
     249    flat10_sld=3.5, 
     250    thick_flat_10=100.0 
     251    ) 
    256252 
    257253oldname = "SphereSLDModel" 
    258254oldpars = dict( 
    259         n_shells="n_shells", 
    260         scale="scale", 
    261         npts_inter='npts_inter', 
    262         solvent_sld='sld_solv', 
    263         func_inter_0='func_inter0', 
    264         nu_inter_0='nu_inter0', 
    265         background='background', 
    266         rad_core_0='rad_core0', 
    267         core0_sld='sld_core0', 
    268         thick_inter_0='thick_inter0', 
    269         func_inter_1='func_inter1', 
    270         nu_inter_1='nu_inter1', 
    271         thick_inter_1='thick_inter1', 
    272         flat1_sld='sld_flat1', 
    273         thick_flat_1='thick_flat1', 
    274         func_inter_2='func_inter2', 
    275         nu_inter_2='nu_inter2', 
    276         thick_inter_2='thick_inter2', 
    277         flat2_sld='sld_flat2', 
    278         thick_flat_2='thick_flat2', 
    279         func_inter_3='func_inter3', 
    280         nu_inter_3='nu_inter3', 
    281         thick_inter_3='thick_inter3', 
    282         flat3_sld='sld_flat3', 
    283         thick_flat_3='thick_flat3', 
    284         func_inter_4='func_inter4', 
    285         nu_inter_4='nu_inter4', 
    286         thick_inter_4='thick_inter4', 
    287         flat4_sld='sld_flat4', 
    288         thick_flat_4='thick_flat4', 
    289         func_inter_5='func_inter5', 
    290         nu_inter_5='nu_inter5', 
    291         thick_inter_5='thick_inter5', 
    292         flat5_sld='sld_flat5', 
    293         thick_flat_5='thick_flat5', 
    294         func_inter_6='func_inter6', 
    295         nu_inter_6='nu_inter6', 
    296         thick_inter_6='thick_inter6', 
    297         flat6_sld='sld_flat6', 
    298         thick_flat_6='thick_flat6', 
    299         func_inter_7='func_inter7', 
    300         nu_inter_7='nu_inter7', 
    301         thick_inter_7='thick_inter7', 
    302         flat7_sld='sld_flat7', 
    303         thick_flat_7='thick_flat7', 
    304         func_inter_8='func_inter8', 
    305         nu_inter_8='nu_inter8', 
    306         thick_inter_8='thick_inter8', 
    307         flat8_sld='sld_flat8', 
    308         thick_flat_8='thick_flat8', 
    309         func_inter_9='func_inter9', 
    310         nu_inter_9='nu_inter9', 
    311         thick_inter_9='thick_inter9', 
    312         flat9_sld='sld_flat9', 
    313         thick_flat_9='thick_flat9', 
    314         func_inter_10='func_inter10', 
    315         nu_inter_10='nu_inter10', 
    316         thick_inter_10='thick_inter10', 
    317         flat10_sld='sld_flat10', 
    318         thick_flat_10='thick_flat10') 
     255    n_shells="n_shells", 
     256    scale="scale", 
     257    background='background', 
     258    npts_inter='npts_inter', 
     259    solvent_sld='sld_solv', 
     260 
     261    func_inter_0='func_inter0', 
     262    nu_inter_0='nu_inter0', 
     263    rad_core_0='rad_core0', 
     264    core0_sld='sld_core0', 
     265    thick_inter_0='thick_inter0', 
     266    func_inter_1='func_inter1', 
     267    nu_inter_1='nu_inter1', 
     268    thick_inter_1='thick_inter1', 
     269    flat1_sld='sld_flat1', 
     270    thick_flat_1='thick_flat1', 
     271    func_inter_2='func_inter2', 
     272    nu_inter_2='nu_inter2', 
     273    thick_inter_2='thick_inter2', 
     274    flat2_sld='sld_flat2', 
     275    thick_flat_2='thick_flat2', 
     276    func_inter_3='func_inter3', 
     277    nu_inter_3='nu_inter3', 
     278    thick_inter_3='thick_inter3', 
     279    flat3_sld='sld_flat3', 
     280    thick_flat_3='thick_flat3', 
     281    func_inter_4='func_inter4', 
     282    nu_inter_4='nu_inter4', 
     283    thick_inter_4='thick_inter4', 
     284    flat4_sld='sld_flat4', 
     285    thick_flat_4='thick_flat4', 
     286    func_inter_5='func_inter5', 
     287    nu_inter_5='nu_inter5', 
     288    thick_inter_5='thick_inter5', 
     289    flat5_sld='sld_flat5', 
     290    thick_flat_5='thick_flat5', 
     291    func_inter_6='func_inter6', 
     292    nu_inter_6='nu_inter6', 
     293    thick_inter_6='thick_inter6', 
     294    flat6_sld='sld_flat6', 
     295    thick_flat_6='thick_flat6', 
     296    func_inter_7='func_inter7', 
     297    nu_inter_7='nu_inter7', 
     298    thick_inter_7='thick_inter7', 
     299    flat7_sld='sld_flat7', 
     300    thick_flat_7='thick_flat7', 
     301    func_inter_8='func_inter8', 
     302    nu_inter_8='nu_inter8', 
     303    thick_inter_8='thick_inter8', 
     304    flat8_sld='sld_flat8', 
     305    thick_flat_8='thick_flat8', 
     306    func_inter_9='func_inter9', 
     307    nu_inter_9='nu_inter9', 
     308    thick_inter_9='thick_inter9', 
     309    flat9_sld='sld_flat9', 
     310    thick_flat_9='thick_flat9', 
     311    func_inter_10='func_inter10', 
     312    nu_inter_10='nu_inter10', 
     313    thick_inter_10='thick_inter10', 
     314    flat10_sld='sld_flat10', 
     315    thick_flat_10='thick_flat10') 
    319316 
    320317#TODO: Not working yet 
  • sasmodels/sasview_model.py

    r787be86 rfb5914f  
    2121 
    2222from . import core 
    23 from . import generate 
     23from . import weights 
    2424 
    2525def standard_models(): 
     
    3232 
    3333    Returns a class that can be used directly as a sasview model.t 
    34  
    35     Defaults to using the new name for a model.  Setting 
    36     *namestyle='oldname'* will produce a class with a name 
    37     compatible with SasView. 
    3834    """ 
    3935    model_info = core.load_model_info(model_name) 
     
    5652    """ 
    5753    def __init__(self): 
    58         self._kernel = None 
     54        self._model = None 
    5955        model_info = self._model_info 
     56        parameters = model_info['parameters'] 
    6057 
    6158        self.name = model_info['name'] 
    62         self.oldname = model_info['oldname'] 
    6359        self.description = model_info['description'] 
    6460        self.category = None 
    65         self.multiplicity_info = None 
    66         self.is_multifunc = False 
     61        #self.is_multifunc = False 
     62        for p in parameters.kernel_parameters: 
     63            if p.is_control: 
     64                profile_axes = model_info['profile_axes'] 
     65                self.multiplicity_info = [ 
     66                    p.limits[1], p.name, p.choices, profile_axes[0] 
     67                    ] 
     68                break 
     69        else: 
     70            self.multiplicity_info = [] 
    6771 
    6872        ## interpret the parameters 
     
    7175        self.params = collections.OrderedDict() 
    7276        self.dispersion = dict() 
    73         partype = model_info['partype'] 
    74  
    75         for p in model_info['parameters']: 
     77 
     78        self.orientation_params = [] 
     79        self.magnetic_params = [] 
     80        self.fixed = [] 
     81        for p in parameters.user_parameters(): 
    7682            self.params[p.name] = p.default 
    7783            self.details[p.name] = [p.units] + p.limits 
    78  
    79         for name in partype['pd-2d']: 
    80             self.dispersion[name] = { 
    81                 'width': 0, 
    82                 'npts': 35, 
    83                 'nsigmas': 3, 
    84                 'type': 'gaussian', 
    85             } 
    86  
    87         self.orientation_params = ( 
    88             partype['orientation'] 
    89             + [n + '.width' for n in partype['orientation']] 
    90             + partype['magnetic']) 
    91         self.magnetic_params = partype['magnetic'] 
    92         self.fixed = [n + '.width' for n in partype['pd-2d']] 
     84            if p.polydisperse: 
     85                self.dispersion[p.name] = { 
     86                    'width': 0, 
     87                    'npts': 35, 
     88                    'nsigmas': 3, 
     89                    'type': 'gaussian', 
     90                } 
     91            if p.type == 'orientation': 
     92                self.orientation_params.append(p.name) 
     93                self.orientation_params.append(p.name+".width") 
     94                self.fixed.append(p.name+".width") 
     95            if p.type == 'magnetic': 
     96                self.orientation_params.append(p.name) 
     97                self.magnetic_params.append(p.name) 
     98                self.fixed.append(p.name+".width") 
     99 
    93100        self.non_fittable = [] 
    94101 
     
    109116    def __get_state__(self): 
    110117        state = self.__dict__.copy() 
    111         model_id = self._model_info['id'] 
    112118        state.pop('_kernel') 
    113119        # May need to reload model info on set state since it has pointers 
     
    118124    def __set_state__(self, state): 
    119125        self.__dict__ = state 
    120         self._kernel = None 
     126        self._model = None 
    121127 
    122128    def __str__(self): 
     
    207213    def getDispParamList(self): 
    208214        """ 
    209         Return a list of all available parameters for the model 
     215        Return a list of polydispersity parameters for the model 
    210216        """ 
    211217        # TODO: fix test so that parameter order doesn't matter 
    212         ret = ['%s.%s' % (d.lower(), p) 
    213                for d in self._model_info['partype']['pd-2d'] 
    214                for p in ('npts', 'nsigmas', 'width')] 
     218        ret = ['%s.%s' % (p.name.lower(), ext) 
     219               for p in self._model_info['parameters'].user_parameters() 
     220               for ext in ('npts', 'nsigmas', 'width') 
     221               if p.polydisperse] 
    215222        #print(ret) 
    216223        return ret 
     
    285292            # Check whether we have a list of ndarrays [qx,qy] 
    286293            qx, qy = qdist 
    287             partype = self._model_info['partype'] 
    288             if not partype['orientation'] and not partype['magnetic']: 
     294            if not self._model_info['parameters'].has_2d: 
    289295                return self.calculate_Iq(np.sqrt(qx ** 2 + qy ** 2)) 
    290296            else: 
     
    308314        to the card for each evaluation. 
    309315        """ 
    310         if self._kernel is None: 
    311             self._kernel = core.build_model(self._model_info) 
     316        if self._model is None: 
     317            self._model = core.build_model(self._model_info, platform='dll') 
    312318        q_vectors = [np.asarray(q) for q in args] 
    313         fn = self._kernel(q_vectors) 
    314         pars = [self.params[v] for v in fn.fixed_pars] 
    315         pd_pars = [self._get_weights(p) for p in fn.pd_pars] 
    316         result = fn(pars, pd_pars, self.cutoff) 
    317         fn.q_input.release() 
    318         fn.release() 
     319        kernel = self._model.make_kernel(q_vectors) 
     320        pairs = [self._get_weights(p) 
     321                 for p in self._model_info['parameters'].call_parameters] 
     322        details, weights, values = core.build_details(kernel, pairs) 
     323        return kernel(details, weights, values, cutoff=self.cutoff) 
     324        kernel.q_input.release() 
     325        kernel.release() 
    319326        return result 
    320327 
     
    389396    def _get_weights(self, par): 
    390397        """ 
    391             Return dispersion weights 
    392             :param par parameter name 
    393         """ 
    394         from . import weights 
    395  
    396         relative = self._model_info['partype']['pd-rel'] 
    397         limits = self._model_info['limits'] 
    398         dis = self.dispersion[par] 
    399         value, weight = weights.get_weights( 
    400             dis['type'], dis['npts'], dis['width'], dis['nsigmas'], 
    401             self.params[par], limits[par], par in relative) 
    402         return value, weight / np.sum(weight) 
    403  
     398        Return dispersion weights for parameter 
     399        """ 
     400        if par.polydisperse: 
     401            dis = self.dispersion[par.name] 
     402            value, weight = weights.get_weights( 
     403                dis['type'], dis['npts'], dis['width'], dis['nsigmas'], 
     404                self.params[par.name], par.limits, par.relative_pd) 
     405            return value, weight / np.sum(weight) 
     406        else: 
     407            return [self.params[par.name]], [] 
     408 
     409def test_model(): 
     410    Cylinder = make_class('cylinder') 
     411    cylinder = Cylinder() 
     412    return cylinder.evalDistribution([0.1,0.1]) 
     413 
     414if __name__ == "__main__": 
     415    print("cylinder(0.1,0.1)=%g"%test_model()) 
Note: See TracChangeset for help on using the changeset viewer.