source: sasmodels/sasmodels/models/spherical_sld.py @ e42b0b9

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since e42b0b9 was e42b0b9, checked in by smk78, 8 years ago

Changed OnionExpShellModel? to <onion> in doc string

  • Property mode set to 100644
File size: 12.4 KB
Line 
1r"""
2This model calculates an empirical functional form for SAS data using SpericalSLD profile
3
4Similarly to the OnionExpShellModel, this model provides the form factor, P(q), for a multi-shell sphere,
5where the interface between the each neighboring shells can be described by one of a number of functions
6including error, power-law, and exponential functions. This model is to calculate the scattering intensity
7by building a continuous custom SLD profile against the radius of the particle. The SLD profile is composed
8of a flat core, a flat solvent, a number (up to 9 ) flat shells, and the interfacial layers between
9the adjacent flat shells (or core, and solvent) (see below).
10
11.. figure:: img/spherical_sld_profile.gif
12
13    Exemplary SLD profile
14
15Unlike the <onion> model (using an analytical integration),
16the interfacial layers here are sub-divided and numerically integrated assuming each of the sub-layers are described
17by a line function. The number of the sub-layer can be given by users by setting the integer values of npts_inter.
18The form factor is normalized by the total volume of the sphere.
19
20Definition
21----------
22
23The form factor $P(q)$ in 1D is calculated by:
24
25.. math::
26
27    P(q) = \frac{f^2}{V_\text{particle}} \text{ where }
28    f = f_\text{core} + \sum_{\text{inter}_i=0}^N f_{\text{inter}_i} +
29    \sum_{\text{flat}_i=0}^N f_{\text{flat}_i} +f_\text{solvent}
30
31For a spherically symmetric particle with a particle density $\rho_x(r)$ the sld function can be defined as:
32
33.. math::
34
35    f_x = 4 \pi \int_{0}^{\infty} \rho_x(r)  \frac{\sin(qr)} {qr^2} r^2 dr
36
37
38so that individual terms can be calcualted as follows:
39
40.. math::
41    f_\text{core} = 4 \pi \int_{0}^{r_\text{core}} \rho_\text{core} \frac{\sin(qr)} {qr} r^2 dr =
42    3 \rho_\text{core} V(r_\text{core})
43    \Big[ \frac{\sin(qr_\text{core}) - qr_\text{core} \cos(qr_\text{core})} {qr_\text{core}^3} \Big]
44
45    f_{\text{inter}_i} = 4 \pi \int_{\Delta t_{ \text{inter}_i } } \rho_{ \text{inter}_i } \frac{\sin(qr)} {qr} r^2 dr
46
47    f_{\text{shell}_i} = 4 \pi \int_{\Delta t_{ \text{inter}_i } } \rho_{ \text{flat}_i } \frac{\sin(qr)} {qr} r^2 dr =
48    3 \rho_{ \text{flat}_i } V ( r_{ \text{inter}_i } + \Delta t_{ \text{inter}_i } )
49    \Big[ \frac{\sin(qr_{\text{inter}_i} + \Delta t_{ \text{inter}_i } ) - q (r_{\text{inter}_i} +
50    \Delta t_{ \text{inter}_i }) \cos(q( r_{\text{inter}_i} + \Delta t_{ \text{inter}_i } ) ) }
51    {q ( r_{\text{inter}_i} + \Delta t_{ \text{inter}_i } )^3 }  \Big]
52    -3 \rho_{ \text{flat}_i } V(r_{ \text{inter}_i })
53    \Big[ \frac{\sin(qr_{\text{inter}_i}) - qr_{\text{flat}_i} \cos(qr_{\text{inter}_i}) } {qr_{\text{inter}_i}^3} \Big]
54
55    f_\text{solvent} = 4 \pi \int_{r_N}^{\infty} \rho_\text{solvent} \frac{\sin(qr)} {qr} r^2 dr =
56    3 \rho_\text{solvent} V(r_N)
57    \Big[ \frac{\sin(qr_N) - qr_N \cos(qr_N)} {qr_N^3} \Big]
58
59
60Here we assumed that the SLDs of the core and solvent are constant against $r$.
61The SLD at the interface between shells, $\rho_{\text {inter}_i}$
62is calculated with a function chosen by an user, where the functions are
63
64Exp:
65
66.. math::
67    \rho_{{inter}_i} (r) = \begin{cases}
68    B \exp\Big( \frac {\pm A(r - r_{\text{flat}_i})} {\Delta t_{ \text{inter}_i }} \Big) +C  & \text{for} A \neq 0 \\
69    B \Big( \frac {(r - r_{\text{flat}_i})} {\Delta t_{ \text{inter}_i }} \Big) +C  & \text{for} A = 0 \\
70    \end{cases}
71
72Power-Law
73
74.. math::
75    \rho_{{inter}_i} (r) = \begin{cases}
76    \pm B \Big( \frac {(r - r_{\text{flat}_i} )} {\Delta t_{ \text{inter}_i }} \Big) ^A  +C  & \text{for} A \neq 0 \\
77    \rho_{\text{flat}_{i+1}}  & \text{for} A = 0 \\
78    \end{cases}
79
80Erf:
81
82.. math::
83    \rho_{{inter}_i} (r) = \begin{cases}
84    B \text{erf} \Big( \frac { A(r - r_{\text{flat}_i})} {\sqrt{2} \Delta t_{ \text{inter}_i }} \Big) +C  & \text{for} A \neq 0 \\
85    B \Big( \frac {(r - r_{\text{flat}_i} )} {\Delta t_{ \text{inter}_i }} \Big)  +C  & \text{for} A = 0 \\
86    \end{cases}
87
88The functions are normalized so that they vary between 0 and 1, and they are constrained such that the SLD
89is continuous at the boundaries of the interface as well as each sub-layers. Thus B and C are determined.
90
91Once $\rho_{\text{inter}_i}$ is found at the boundary of the sub-layer of the interface, we can find its contribution
92to the form factor $P(q)$
93
94.. math::
95    f_{\text{inter}_i} = 4 \pi \int_{\Delta t_{ \text{inter}_i } } \rho_{ \text{inter}_i } \frac{\sin(qr)} {qr} r^2 dr =
96    4 \pi \sum_{j=0}^{npts_{\text{inter}_i} -1 }
97    \int_{r_j}^{r_{j+1}} \rho_{ \text{inter}_i } (r_j) \frac{\sin(qr)} {qr} r^2 dr \approx
98
99    4 \pi \sum_{j=0}^{npts_{\text{inter}_i} -1 } \Big[
100    3 ( \rho_{ \text{inter}_i } ( r_{j+1} ) - \rho_{ \text{inter}_i } ( r_{j} ) V ( r_{ \text{sublayer}_j } )
101    \Big[ \frac {r_j^2 \beta_\text{out}^2 \sin(\beta_\text{out}) - (\beta_\text{out}^2-2) \cos(\beta_\text{out}) }
102    {\beta_\text{out}^4 } \Big]
103
104    - 3 ( \rho_{ \text{inter}_i } ( r_{j+1} ) - \rho_{ \text{inter}_i } ( r_{j} ) V ( r_{ \text{sublayer}_j-1 } )
105    \Big[ \frac {r_{j-1}^2 \sin(\beta_\text{in}) - (\beta_\text{in}^2-2) \cos(\beta_\text{in}) }
106    {\beta_\text{in}^4 } \Big]
107
108    + 3 \rho_{ \text{inter}_i } ( r_{j+1} )  V ( r_j )
109    \Big[ \frac {\sin(\beta_\text{out}) - \cos(\beta_\text{out}) }
110    {\beta_\text{out}^4 } \Big]
111
112    - 3 \rho_{ \text{inter}_i } ( r_{j} )  V ( r_j )
113    \Big[ \frac {\sin(\beta_\text{in}) - \cos(\beta_\text{in}) }
114    {\beta_\text{in}^4 } \Big]
115    \Big]
116
117where
118
119.. math::
120    V(a) = \frac {4\pi}{3}a^3
121
122    a_\text{in} ~ \frac{r_j}{r_{j+1} -r_j} \text{, } a_\text{out} ~ \frac{r_{j+1}}{r_{j+1} -r_j}
123
124    \beta_\text{in} = qr_j \text{, } \beta_\text{out} = qr_{j+1}
125
126
127We assume the $\rho_{\text{inter}_i} (r)$ can be approximately linear within a sub-layer $j$
128
129Finally form factor can be calculated by
130
131.. math::
132
133    P(q) = \frac{[f]^2} {V_\text{particle}} \text{where} V_\text{particle} = V(r_{\text{shell}_N})
134
135For 2D data the scattering intensity is calculated in the same way as 1D,
136where the $q$ vector is defined as
137
138.. math::
139
140    q = \sqrt{q_x^2 + q_y^2}
141
142
143.. figure:: img/spherical_sld_1d.jpg
144
145    1D plot using the default values (w/400 data point).
146
147.. figure:: img/spherical_sld_default_profile.jpg
148
149    SLD profile from the default values.
150
151.. note::
152    The outer most radius is used as the effective radius for S(Q) when $P(Q) * S(Q)$ is applied.
153
154References
155----------
156L A Feigin and D I Svergun, Structure Analysis by Small-Angle X-Ray and Neutron Scattering, Plenum Press, New York, (1987)
157
158"""
159
160from numpy import inf
161
162name = "spherical_sld"
163title = "Sperical SLD intensity calculation"
164description = """
165            I(q) =
166               background = Incoherent background [1/cm]
167        """
168category = "sphere-based"
169
170# pylint: disable=bad-whitespace, line-too-long
171#            ["name", "units", default, [lower, upper], "type", "description"],
172parameters = [["n_shells",         "",               1,      [0, 9],         "", "number of shells"],
173              ["thick_inter[n]",   "Ang",            50,     [-inf, inf],    "", "intern layer thickness"],
174              ["func_inter[n]",    "",               0,      [0, 4],         "", "Erf:0, RPower:1, LPower:2, RExp:3, LExp:4"],
175              ["sld_core",         "1e-6/Ang^2",     2.07,   [-inf, inf],    "", "sld function flat"],
176              ["sld_solvent",      "1e-6/Ang^2",     1.0,    [-inf, inf],    "", "sld function solvent"],
177              ["sld_flat[n]",      "1e-6/Ang^2",     4.06,   [-inf, inf],    "", "sld function flat"],
178              ["thick_inter[n]",   "Ang",            50.0,   [0, inf],    "", "intern layer thickness"],
179              ["thick_flat[n]",    "Ang",            100.0,  [0, inf],    "", "flat layer_thickness"],
180              ["inter_nu[n]",      "",               2.5,    [-inf, inf],    "", "steepness parameter"],
181              ["npts_inter",       "",               35,     [0, 35],        "", "number of points in each sublayer Must be odd number"],
182              ["core_rad",         "Ang",            50.0,   [0, inf],    "", "intern layer thickness"],
183              ]
184# pylint: enable=bad-whitespace, line-too-long
185#source = ["lib/librefl.c",  "lib/sph_j1c.c", "spherical_sld.c"]
186
187def Iq(q, *args, **kw):
188    return q
189
190def Iqxy(qx, *args, **kw):
191    return qx
192
193
194demo = dict(
195        n_shells=4,
196        scale=1.0,
197        solvent_sld=1.0,
198        background=0.0,
199        npts_inter=35.0,
200        func_inter_0=0,
201        nu_inter_0=2.5,
202        rad_core_0=50.0,
203        core0_sld=2.07,
204        thick_inter_0=50.0,
205        func_inter_1=0,
206        nu_inter_1=2.5,
207        thick_inter_1=50.0,
208        flat1_sld=4.0,
209        thick_flat_1=100.0,
210        func_inter_2=0,
211        nu_inter_2=2.5,
212        thick_inter_2=50.0,
213        flat2_sld=3.5,
214        thick_flat_2=100.0,
215        func_inter_3=0,
216        nu_inter_3=2.5,
217        thick_inter_3=50.0,
218        flat3_sld=4.0,
219        thick_flat_3=100.0,
220        func_inter_4=0,
221        nu_inter_4=2.5,
222        thick_inter_4=50.0,
223        flat4_sld=3.5,
224        thick_flat_4=100.0,
225        func_inter_5=0,
226        nu_inter_5=2.5,
227        thick_inter_5=50.0,
228        flat5_sld=4.0,
229        thick_flat_5=100.0,
230        func_inter_6=0,
231        nu_inter_6=2.5,
232        thick_inter_6=50.0,
233        flat6_sld=3.5,
234        thick_flat_6=100.0,
235        func_inter_7=0,
236        nu_inter_7=2.5,
237        thick_inter_7=50.0,
238        flat7_sld=4.0,
239        thick_flat_7=100.0,
240        func_inter_8=0,
241        nu_inter_8=2.5,
242        thick_inter_8=50.0,
243        flat8_sld=3.5,
244        thick_flat_8=100.0,
245        func_inter_9=0,
246        nu_inter_9=2.5,
247        thick_inter_9=50.0,
248        flat9_sld=4.0,
249        thick_flat_9=100.0,
250        func_inter_10=0,
251        nu_inter_10=2.5,
252        thick_inter_10=50.0,
253        flat10_sld=3.5,
254        thick_flat_10=100.0
255        )
256
257oldname = "SphereSLDModel"
258oldpars = dict(
259        n_shells="n_shells",
260        scale="scale",
261        npts_inter='npts_inter',
262        solvent_sld='sld_solv',
263        func_inter_0='func_inter0',
264        nu_inter_0='nu_inter0',
265        background='background',
266        rad_core_0='rad_core0',
267        core0_sld='sld_core0',
268        thick_inter_0='thick_inter0',
269        func_inter_1='func_inter1',
270        nu_inter_1='nu_inter1',
271        thick_inter_1='thick_inter1',
272        flat1_sld='sld_flat1',
273        thick_flat_1='thick_flat1',
274        func_inter_2='func_inter2',
275        nu_inter_2='nu_inter2',
276        thick_inter_2='thick_inter2',
277        flat2_sld='sld_flat2',
278        thick_flat_2='thick_flat2',
279        func_inter_3='func_inter3',
280        nu_inter_3='nu_inter3',
281        thick_inter_3='thick_inter3',
282        flat3_sld='sld_flat3',
283        thick_flat_3='thick_flat3',
284        func_inter_4='func_inter4',
285        nu_inter_4='nu_inter4',
286        thick_inter_4='thick_inter4',
287        flat4_sld='sld_flat4',
288        thick_flat_4='thick_flat4',
289        func_inter_5='func_inter5',
290        nu_inter_5='nu_inter5',
291        thick_inter_5='thick_inter5',
292        flat5_sld='sld_flat5',
293        thick_flat_5='thick_flat5',
294        func_inter_6='func_inter6',
295        nu_inter_6='nu_inter6',
296        thick_inter_6='thick_inter6',
297        flat6_sld='sld_flat6',
298        thick_flat_6='thick_flat6',
299        func_inter_7='func_inter7',
300        nu_inter_7='nu_inter7',
301        thick_inter_7='thick_inter7',
302        flat7_sld='sld_flat7',
303        thick_flat_7='thick_flat7',
304        func_inter_8='func_inter8',
305        nu_inter_8='nu_inter8',
306        thick_inter_8='thick_inter8',
307        flat8_sld='sld_flat8',
308        thick_flat_8='thick_flat8',
309        func_inter_9='func_inter9',
310        nu_inter_9='nu_inter9',
311        thick_inter_9='thick_inter9',
312        flat9_sld='sld_flat9',
313        thick_flat_9='thick_flat9',
314        func_inter_10='func_inter10',
315        nu_inter_10='nu_inter10',
316        thick_inter_10='thick_inter10',
317        flat10_sld='sld_flat10',
318        thick_flat_10='thick_flat10')
319
320#TODO: Not working yet
321tests = [
322    # Accuracy tests based on content in test/utest_extra_models.py
323    [{'npts_iter':35,
324        'sld_solv':1,
325        'func_inter_1':0.0,
326        'nu_inter':2.5,
327        'thick_inter_1':50,
328        'sld_flat_1':4,
329        'thick_flat_1':100,
330        'func_inter_0':0.0,
331        'nu_inter_0':2.5,
332        'rad_core_0':50.0,
333        'sld_core_0':2.07,
334        'thick_inter_0':50,
335        'background': 0.0,
336    }, 0.001, 1000],
337]
Note: See TracBrowser for help on using the repository browser.