Changeset 925b3b5 in sasmodels
- Timestamp:
- Jan 16, 2018 6:26:28 PM (7 years ago)
- Branches:
- master, core_shell_microgels, magnetic_model, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
- Children:
- c1bccff
- Parents:
- ec8d4ac (diff), a1c32c2 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent. - git-author:
- Paul Butler <butlerpd@…> (01/16/18 18:26:28)
- git-committer:
- GitHub <noreply@…> (01/16/18 18:26:28)
- Files:
-
- 1 added
- 10 edited
Legend:
- Unmodified
- Added
- Removed
-
explore/asymint.py
r1820208 ra1c32c2 86 86 a, b, c = env.mpf(a), env.mpf(b), env.mpf(c) 87 87 def Fq(qa, qb, qc): 88 siA = env.sas_sinx_x( 0.5*a*qa/2)89 siB = env.sas_sinx_x( 0.5*b*qb/2)90 siC = env.sas_sinx_x( 0.5*c*qc/2)88 siA = env.sas_sinx_x(a*qa/2) 89 siB = env.sas_sinx_x(b*qb/2) 90 siC = env.sas_sinx_x(c*qc/2) 91 91 return siA * siB * siC 92 92 Fq.__doc__ = "parallelepiped a=%g, b=%g c=%g"%(a, b, c) 93 93 volume = a*b*c 94 94 norm = CONTRAST**2*volume/10000 95 return norm, Fq 96 97 def make_core_shell_parallelepiped(a, b, c, da, db, dc, slda, sldb, sldc, env=NPenv): 98 overlapping = False 99 a, b, c = env.mpf(a), env.mpf(b), env.mpf(c) 100 da, db, dc = env.mpf(da), env.mpf(db), env.mpf(dc) 101 slda, sldb, sldc = env.mpf(slda), env.mpf(sldb), env.mpf(sldc) 102 dr0 = CONTRAST 103 drA, drB, drC = slda-SLD_SOLVENT, sldb-SLD_SOLVENT, sldc-SLD_SOLVENT 104 tA, tB, tC = a + 2*da, b + 2*db, c + 2*dc 105 def Fq(qa, qb, qc): 106 siA = a*env.sas_sinx_x(a*qa/2) 107 siB = b*env.sas_sinx_x(b*qb/2) 108 siC = c*env.sas_sinx_x(c*qc/2) 109 siAt = tA*env.sas_sinx_x(tA*qa/2) 110 siBt = tB*env.sas_sinx_x(tB*qb/2) 111 siCt = tC*env.sas_sinx_x(tC*qc/2) 112 if overlapping: 113 return (dr0*siA*siB*siC 114 + drA*(siAt-siA)*siB*siC 115 + drB*siAt*(siBt-siB)*siC 116 + drC*siAt*siBt*(siCt-siC)) 117 else: 118 return (dr0*siA*siB*siC 119 + drA*(siAt-siA)*siB*siC 120 + drB*siA*(siBt-siB)*siC 121 + drC*siA*siB*(siCt-siC)) 122 Fq.__doc__ = "core-shell parallelepiped a=%g, b=%g c=%g"%(a, b, c) 123 if overlapping: 124 volume = a*b*c + 2*da*b*c + 2*tA*db*c + 2*tA*tB*dc 125 else: 126 volume = a*b*c + 2*da*b*c + 2*a*db*c + 2*a*b*dc 127 norm = 1/(volume*10000) 95 128 return norm, Fq 96 129 … … 184 217 NORM, KERNEL = make_parallelepiped(A, B, C) 185 218 NORM_MP, KERNEL_MP = make_parallelepiped(A, B, C, env=MPenv) 219 elif shape == 'core_shell_parallelepiped': 220 #A, B, C = 4450, 14000, 47 221 #A, B, C = 445, 140, 47 # integer for the sake of mpf 222 A, B, C = 6800, 114, 1380 223 DA, DB, DC = 2300, 21, 58 224 SLDA, SLDB, SLDC = "5", "-0.3", "11.5" 225 #A,B,C,DA,DB,DC,SLDA,SLDB,SLDC = 10,20,30,100,200,300,1,2,3 226 #SLD_SOLVENT,CONTRAST = 0, 4 227 if 1: # C shortest 228 B, C = C, B 229 DB, DC = DC, DB 230 SLDB, SLDC = SLDC, SLDB 231 elif 0: # C longest 232 A, C = C, A 233 DA, DC = DC, DA 234 SLDA, SLDC = SLDC, SLDA 235 NORM, KERNEL = make_core_shell_parallelepiped(A, B, C, DA, DB, DC, SLDA, SLDB, SLDC) 236 NORM_MP, KERNEL_MP = make_core_shell_parallelepiped(A, B, C, DA, DB, DC, SLDA, SLDB, SLDC, env=MPenv) 186 237 elif shape == 'paracrystal': 187 238 LATTICE = 'bcc' … … 342 393 print("gauss-150", *gauss_quad_2d(Q, n=150)) 343 394 print("gauss-500", *gauss_quad_2d(Q, n=500)) 395 print("gauss-1025", *gauss_quad_2d(Q, n=1025)) 396 print("gauss-2049", *gauss_quad_2d(Q, n=2049)) 344 397 #gridded_2d(Q, n=2**8+1) 345 398 gridded_2d(Q, n=2**10+1) 346 #gridded_2d(Q, n=2**1 3+1)399 #gridded_2d(Q, n=2**12+1) 347 400 #gridded_2d(Q, n=2**15+1) 348 if shape != 'paracrystal': # adaptive forms are too slow! 401 if shape not in ('paracrystal', 'core_shell_parallelepiped'): 402 # adaptive forms on models for which the calculations are fast enough 349 403 print("dblquad", *scipy_dblquad_2d(Q)) 350 404 print("semi-romberg-100", *semi_romberg_2d(Q, n=100)) -
sasmodels/compare.py
r2d81cfe r0e55afe 693 693 data = empty_data2D(q, resolution=res) 694 694 data.accuracy = opts['accuracy'] 695 set_beam_stop(data, 0.0004)695 set_beam_stop(data, qmin) 696 696 index = ~data.mask 697 697 else: … … 1274 1274 if model_info != model_info2: 1275 1275 pars2 = randomize_pars(model_info2, pars2) 1276 limit_dimensions(model_info , pars2, maxdim)1276 limit_dimensions(model_info2, pars2, maxdim) 1277 1277 # Share values for parameters with the same name 1278 1278 for k, v in pars.items(): -
sasmodels/models/core_shell_parallelepiped.c
r904cd9c r4493288 1 // Set OVERLAPPING to 1 in order to fill in the edges of the box, with 2 // c endcaps and b overlapping a. With the proper choice of parameters, 3 // (setting rim slds to sld, core sld to solvent, rim thickness to thickness 4 // and subtracting 2*thickness from length, this should match the hollow 5 // rectangular prism.) Set it to 0 for the documented behaviour. 6 #define OVERLAPPING 0 1 7 static double 2 8 form_volume(double length_a, double length_b, double length_c, 3 9 double thick_rim_a, double thick_rim_b, double thick_rim_c) 4 10 { 5 //return length_a * length_b * length_c; 6 return length_a * length_b * length_c + 7 2.0 * thick_rim_a * length_b * length_c + 8 2.0 * thick_rim_b * length_a * length_c + 9 2.0 * thick_rim_c * length_a * length_b; 11 return 12 #if OVERLAPPING 13 // Hollow rectangular prism only includes the volume of the shell 14 // so uncomment the next line when comparing. Solid rectangular 15 // prism, or parallelepiped want filled cores, so comment when 16 // comparing. 17 //-length_a * length_b * length_c + 18 (length_a + 2.0*thick_rim_a) * 19 (length_b + 2.0*thick_rim_b) * 20 (length_c + 2.0*thick_rim_c); 21 #else 22 length_a * length_b * length_c + 23 2.0 * thick_rim_a * length_b * length_c + 24 2.0 * length_a * thick_rim_b * length_c + 25 2.0 * length_a * length_b * thick_rim_c; 26 #endif 10 27 } 11 28 … … 24 41 double thick_rim_c) 25 42 { 26 // Code converted from functions CSPPKernel and CSParallelepiped in libCylinder.c _scaled43 // Code converted from functions CSPPKernel and CSParallelepiped in libCylinder.c 27 44 // Did not understand the code completely, it should be rechecked (Miguel Gonzalez) 28 //Code is rewritten,the code is compliant with Diva Singhs thesis now (Dirk Honecker) 45 // Code is rewritten,the code is compliant with Diva Singhs thesis now (Dirk Honecker) 46 // Code rewritten (PAK) 29 47 30 const double mu = 0.5 * q * length_b;48 const double half_q = 0.5*q; 31 49 32 //calculate volume before rescaling (in original code, but not used) 33 //double vol = form_volume(length_a, length_b, length_c, thick_rim_a, thick_rim_b, thick_rim_c); 34 //double vol = length_a * length_b * length_c + 35 // 2.0 * thick_rim_a * length_b * length_c + 36 // 2.0 * thick_rim_b * length_a * length_c + 37 // 2.0 * thick_rim_c * length_a * length_b; 50 const double tA = length_a + 2.0*thick_rim_a; 51 const double tB = length_b + 2.0*thick_rim_b; 52 const double tC = length_c + 2.0*thick_rim_c; 38 53 39 // Scale sides by B 40 const double a_scaled = length_a / length_b; 41 const double c_scaled = length_c / length_b; 42 43 double ta = a_scaled + 2.0*thick_rim_a/length_b; // incorrect ta = (a_scaled + 2.0*thick_rim_a)/length_b; 44 double tb = 1+ 2.0*thick_rim_b/length_b; // incorrect tb = (a_scaled + 2.0*thick_rim_b)/length_b; 45 double tc = c_scaled + 2.0*thick_rim_c/length_b; //not present 46 47 double Vin = length_a * length_b * length_c; 48 //double Vot = (length_a * length_b * length_c + 49 // 2.0 * thick_rim_a * length_b * length_c + 50 // 2.0 * length_a * thick_rim_b * length_c + 51 // 2.0 * length_a * length_b * thick_rim_c); 52 double V1 = (2.0 * thick_rim_a * length_b * length_c); // incorrect V1 (aa*bb*cc+2*ta*bb*cc) 53 double V2 = (2.0 * length_a * thick_rim_b * length_c); // incorrect V2(aa*bb*cc+2*aa*tb*cc) 54 double V3 = (2.0 * length_a * length_b * thick_rim_c); //not present 55 56 // Scale factors (note that drC is not used later) 57 const double drho0 = (core_sld-solvent_sld); 58 const double drhoA = (arim_sld-solvent_sld); 59 const double drhoB = (brim_sld-solvent_sld); 60 const double drhoC = (crim_sld-solvent_sld); // incorrect const double drC_Vot = (crim_sld-solvent_sld)*Vot; 61 62 63 // Precompute scale factors for combining cross terms from the shape 64 const double scale23 = drhoA*V1; 65 const double scale14 = drhoB*V2; 66 const double scale24 = drhoC*V3; 67 const double scale11 = drho0*Vin; 68 const double scale12 = drho0*Vin - scale23 - scale14 - scale24; 54 // Scale factors 55 const double dr0 = (core_sld-solvent_sld); 56 const double drA = (arim_sld-solvent_sld); 57 const double drB = (brim_sld-solvent_sld); 58 const double drC = (crim_sld-solvent_sld); 69 59 70 60 // outer integral (with gauss points), integration limits = 0, 1 71 double outer_total = 0; //initialize integral 61 double outer_sum = 0; //initialize integral 62 for( int i=0; i<76; i++) { 63 const double cos_alpha = 0.5 * ( Gauss76Z[i] + 1.0 ); 64 const double mu = half_q * sqrt(1.0-cos_alpha*cos_alpha); 72 65 73 for( int i=0; i<76; i++) { 74 double sigma = 0.5 * ( Gauss76Z[i] + 1.0 ); 75 double mu_proj = mu * sqrt(1.0-sigma*sigma); 66 // inner integral (with gauss points), integration limits = 0, pi/2 67 const double siC = length_c * sas_sinx_x(length_c * cos_alpha * half_q); 68 const double siCt = tC * sas_sinx_x(tC * cos_alpha * half_q); 69 double inner_sum = 0.0; 70 for(int j=0; j<76; j++) { 71 const double beta = 0.5 * ( Gauss76Z[j] + 1.0 ); 72 double sin_beta, cos_beta; 73 SINCOS(M_PI_2*beta, sin_beta, cos_beta); 74 const double siA = length_a * sas_sinx_x(length_a * mu * sin_beta); 75 const double siB = length_b * sas_sinx_x(length_b * mu * cos_beta); 76 const double siAt = tA * sas_sinx_x(tA * mu * sin_beta); 77 const double siBt = tB * sas_sinx_x(tB * mu * cos_beta); 76 78 77 // inner integral (with gauss points), integration limits = 0, 1 78 double inner_total = 0.0;79 double inner_total_crim = 0.0;80 for(int j=0; j<76; j++) {81 const double uu = 0.5 * ( Gauss76Z[j] + 1.0);82 double sin_uu, cos_uu; 83 SINCOS(M_PI_2*uu, sin_uu, cos_uu);84 const double si1 = sas_sinx_x(mu_proj * sin_uu * a_scaled);85 const double si2 = sas_sinx_x(mu_proj * cos_uu );86 const double si3 = sas_sinx_x(mu_proj * sin_uu * ta);87 const double si4 = sas_sinx_x(mu_proj * cos_uu * tb); 79 #if OVERLAPPING 80 const double f = dr0*siA*siB*siC 81 + drA*(siAt-siA)*siB*siC 82 + drB*siAt*(siBt-siB)*siC 83 + drC*siAt*siBt*(siCt-siC); 84 #else 85 const double f = dr0*siA*siB*siC 86 + drA*(siAt-siA)*siB*siC 87 + drB*siA*(siBt-siB)*siC 88 + drC*siA*siB*(siCt-siC); 89 #endif 88 90 89 // Expression in libCylinder.c (neither drC nor Vot are used) 90 const double form = scale12*si1*si2 + scale23*si2*si3 + scale14*si1*si4; 91 const double form_crim = scale11*si1*si2; 92 93 // correct FF : sum of square of phase factors 94 inner_total += Gauss76Wt[j] * form * form; 95 inner_total_crim += Gauss76Wt[j] * form_crim * form_crim; 91 inner_sum += Gauss76Wt[j] * f * f; 96 92 } 97 inner_total *= 0.5; 98 inner_total_crim *= 0.5; 93 inner_sum *= 0.5; 99 94 // now sum up the outer integral 100 const double si = sas_sinx_x(mu * c_scaled * sigma); 101 const double si_crim = sas_sinx_x(mu * tc * sigma); 102 outer_total += Gauss76Wt[i] * (inner_total * si * si + inner_total_crim * si_crim * si_crim); 95 outer_sum += Gauss76Wt[i] * inner_sum; 103 96 } 104 outer_ total*= 0.5;97 outer_sum *= 0.5; 105 98 106 99 //convert from [1e-12 A-1] to [cm-1] 107 return 1.0e-4 * outer_ total;100 return 1.0e-4 * outer_sum; 108 101 } 109 102 … … 128 121 const double drC = crim_sld-solvent_sld; 129 122 130 double Vin = length_a * length_b * length_c;131 double V1 = 2.0 * thick_rim_a * length_b * length_c; // incorrect V1(aa*bb*cc+2*ta*bb*cc)132 double V2 = 2.0 * length_a * thick_rim_b * length_c; // incorrect V2(aa*bb*cc+2*aa*tb*cc)133 double V3 = 2.0 * length_a * length_b * thick_rim_c;134 // As for the 1D case, Vot is not used135 //double Vot = (length_a * length_b * length_c +136 // 2.0 * thick_rim_a * length_b * length_c +137 // 2.0 * length_a * thick_rim_b * length_c +138 // 2.0 * length_a * length_b * thick_rim_c);139 140 123 // The definitions of ta, tb, tc are not the same as in the 1D case because there is no 141 124 // the scaling by B. 142 double ta = length_a + 2.0*thick_rim_a; 143 double tb = length_b + 2.0*thick_rim_b; 144 double tc = length_c + 2.0*thick_rim_c; 145 //handle arg=0 separately, as sin(t)/t -> 1 as t->0 146 double siA = sas_sinx_x(0.5*length_a*qa); 147 double siB = sas_sinx_x(0.5*length_b*qb); 148 double siC = sas_sinx_x(0.5*length_c*qc); 149 double siAt = sas_sinx_x(0.5*ta*qa); 150 double siBt = sas_sinx_x(0.5*tb*qb); 151 double siCt = sas_sinx_x(0.5*tc*qc); 125 const double tA = length_a + 2.0*thick_rim_a; 126 const double tB = length_b + 2.0*thick_rim_b; 127 const double tC = length_c + 2.0*thick_rim_c; 128 const double siA = length_a*sas_sinx_x(0.5*length_a*qa); 129 const double siB = length_b*sas_sinx_x(0.5*length_b*qb); 130 const double siC = length_c*sas_sinx_x(0.5*length_c*qc); 131 const double siAt = tA*sas_sinx_x(0.5*tA*qa); 132 const double siBt = tB*sas_sinx_x(0.5*tB*qb); 133 const double siCt = tC*sas_sinx_x(0.5*tC*qc); 152 134 153 154 // f uses Vin, V1, V2, and V3 and it seems to have more sense than the value computed 155 // in the 1D code, but should be checked! 156 double f = ( dr0*siA*siB*siC*Vin 157 + drA*(siAt-siA)*siB*siC*V1 158 + drB*siA*(siBt-siB)*siC*V2 159 + drC*siA*siB*(siCt-siC)*V3); 135 #if OVERLAPPING 136 const double f = dr0*siA*siB*siC 137 + drA*(siAt-siA)*siB*siC 138 + drB*siAt*(siBt-siB)*siC 139 + drC*siAt*siBt*(siCt-siC); 140 #else 141 const double f = dr0*siA*siB*siC 142 + drA*(siAt-siA)*siB*siC 143 + drB*siA*(siBt-siB)*siC 144 + drC*siA*siB*(siCt-siC); 145 #endif 160 146 161 147 return 1.0e-4 * f * f; -
sasmodels/models/core_shell_parallelepiped.py
r2d81cfe r10ee838 5 5 Calculates the form factor for a rectangular solid with a core-shell structure. 6 6 The thickness and the scattering length density of the shell or 7 "rim" can be different on each (pair) of faces. However at this time the 1D 8 calculation does **NOT** actually calculate a c face rim despite the presence 9 of the parameter. Some other aspects of the 1D calculation may be wrong. 10 11 .. note:: 12 This model was originally ported from NIST IGOR macros. However, it is not 13 yet fully understood by the SasView developers and is currently under review. 7 "rim" can be different on each (pair) of faces. 14 8 15 9 The form factor is normalized by the particle volume $V$ such that … … 21 15 where $\langle \ldots \rangle$ is an average over all possible orientations 22 16 of the rectangular solid. 23 24 17 25 18 The function calculated is the form factor of the rectangular solid below. … … 41 34 V = ABC + 2t_ABC + 2t_BAC + 2t_CAB 42 35 43 **meaning that there are "gaps" at the corners of the solid.** Again note that 44 $t_C = 0$ currently. 36 **meaning that there are "gaps" at the corners of the solid.** 45 37 46 38 The intensity calculated follows the :ref:`parallelepiped` model, with the 47 39 core-shell intensity being calculated as the square of the sum of the 48 amplitudes of the core and shell, in the same manner as a core-shell model. 49 50 .. math:: 51 52 F_{a}(Q,\alpha,\beta)= 53 \left[\frac{\sin(\tfrac{1}{2}Q(L_A+2t_A)\sin\alpha \sin\beta) 54 }{\tfrac{1}{2}Q(L_A+2t_A)\sin\alpha\sin\beta} 55 - \frac{\sin(\tfrac{1}{2}QL_A\sin\alpha \sin\beta) 56 }{\tfrac{1}{2}QL_A\sin\alpha \sin\beta} \right] 57 \left[\frac{\sin(\tfrac{1}{2}QL_B\sin\alpha \sin\beta) 58 }{\tfrac{1}{2}QL_B\sin\alpha \sin\beta} \right] 59 \left[\frac{\sin(\tfrac{1}{2}QL_C\sin\alpha \sin\beta) 60 }{\tfrac{1}{2}QL_C\sin\alpha \sin\beta} \right] 61 62 .. note:: 63 64 Why does t_B not appear in the above equation? 65 For the calculation of the form factor to be valid, the sides of the solid 66 MUST (perhaps not any more?) be chosen such that** $A < B < C$. 67 If this inequality is not satisfied, the model will not report an error, 68 but the calculation will not be correct and thus the result wrong. 40 amplitudes of the core and the slabs on the edges. 41 42 the scattering amplitude is computed for a particular orientation of the 43 core-shell parallelepiped with respect to the scattering vector and then 44 averaged over all possible orientations, where $\alpha$ is the angle between 45 the $z$ axis and the $C$ axis of the parallelepiped, $\beta$ is 46 the angle between projection of the particle in the $xy$ detector plane 47 and the $y$ axis. 48 49 .. math:: 50 51 F(Q) 52 &= (\rho_\text{core}-\rho_\text{solvent}) 53 S(Q_A, A) S(Q_B, B) S(Q_C, C) \\ 54 &+ (\rho_\text{A}-\rho_\text{solvent}) 55 \left[S(Q_A, A+2t_A) - S(Q_A, Q)\right] S(Q_B, B) S(Q_C, C) \\ 56 &+ (\rho_\text{B}-\rho_\text{solvent}) 57 S(Q_A, A) \left[S(Q_B, B+2t_B) - S(Q_B, B)\right] S(Q_C, C) \\ 58 &+ (\rho_\text{C}-\rho_\text{solvent}) 59 S(Q_A, A) S(Q_B, B) \left[S(Q_C, C+2t_C) - S(Q_C, C)\right] 60 61 with 62 63 .. math:: 64 65 S(Q, L) = L \frac{\sin \tfrac{1}{2} Q L}{\tfrac{1}{2} Q L} 66 67 and 68 69 .. math:: 70 71 Q_A &= \sin\alpha \sin\beta \\ 72 Q_B &= \sin\alpha \cos\beta \\ 73 Q_C &= \cos\alpha 74 75 76 where $\rho_\text{core}$, $\rho_\text{A}$, $\rho_\text{B}$ and $\rho_\text{C}$ 77 are the scattering length of the parallelepiped core, and the rectangular 78 slabs of thickness $t_A$, $t_B$ and $t_C$, respectively. $\rho_\text{solvent}$ 79 is the scattering length of the solvent. 69 80 70 81 FITTING NOTES 82 ~~~~~~~~~~~~~ 83 71 84 If the scale is set equal to the particle volume fraction, $\phi$, the returned 72 value is the scattered intensity per unit volume, $I(q) = \phi P(q)$. 73 However, **no interparticle interference effects are included in this 74 calculation.** 85 value is the scattered intensity per unit volume, $I(q) = \phi P(q)$. However, 86 **no interparticle interference effects are included in this calculation.** 75 87 76 88 There are many parameters in this model. Hold as many fixed as possible with 77 89 known values, or you will certainly end up at a solution that is unphysical. 78 90 79 Constraints must be applied during fitting to ensure that the inequality80 $A < B < C$ is not violated. The calculation will not report an error,81 but the results will not be correct.82 83 91 The returned value is in units of |cm^-1|, on absolute scale. 84 92 85 93 NB: The 2nd virial coefficient of the core_shell_parallelepiped is calculated 86 94 based on the the averaged effective radius $(=\sqrt{(A+2t_A)(B+2t_B)/\pi})$ 87 and length $(C+2t_C)$ values, after appropriately 88 sorting the three dimensions to give an oblate or prolate particle, to give an 89 effective radius,for $S(Q)$ when $P(Q) * S(Q)$ is applied.95 and length $(C+2t_C)$ values, after appropriately sorting the three dimensions 96 to give an oblate or prolate particle, to give an effective radius, 97 for $S(Q)$ when $P(Q) * S(Q)$ is applied. 90 98 91 99 For 2d data the orientation of the particle is required, described using 92 angles $\theta$, $\phi$ and $\Psi$ as in the diagrams below, for further details93 of the calculation and angular dispersions see :ref:`orientation`.100 angles $\theta$, $\phi$ and $\Psi$ as in the diagrams below, for further 101 details of the calculation and angular dispersions see :ref:`orientation`. 94 102 The angle $\Psi$ is the rotational angle around the *long_c* axis. For example, 95 103 $\Psi = 0$ when the *short_b* axis is parallel to the *x*-axis of the detector. 104 105 For 2d, constraints must be applied during fitting to ensure that the 106 inequality $A < B < C$ is not violated, and hence the correct definition 107 of angles is preserved. The calculation will not report an error, 108 but the results may be not correct. 96 109 97 110 .. figure:: img/parallelepiped_angle_definition.png … … 114 127 Equations (1), (13-14). (in German) 115 128 .. [#] D Singh (2009). *Small angle scattering studies of self assembly in 116 lipid mixtures*, John 's Hopkins University Thesis (2009) 223-225. `Available129 lipid mixtures*, Johns Hopkins University Thesis (2009) 223-225. `Available 117 130 from Proquest <http://search.proquest.com/docview/304915826?accountid 118 131 =26379>`_ … … 175 188 Return equivalent radius (ER) 176 189 """ 177 178 # surface average radius (rough approximation) 179 surf_rad = sqrt((length_a + 2.0*thick_rim_a) * (length_b + 2.0*thick_rim_b) / pi) 180 181 height = length_c + 2.0*thick_rim_c 182 183 ddd = 0.75 * surf_rad * (2 * surf_rad * height + (height + surf_rad) * (height + pi * surf_rad)) 184 return 0.5 * (ddd) ** (1. / 3.) 190 from .parallelepiped import ER as ER_p 191 192 a = length_a + 2*thick_rim_a 193 b = length_b + 2*thick_rim_b 194 c = length_c + 2*thick_rim_c 195 return ER_p(a, b, c) 185 196 186 197 # VR defaults to 1.0 … … 216 227 psi_pd=10, psi_pd_n=1) 217 228 218 # rkh 7/4/17 add random unit test for 2d, note make all params different, 2d values not tested against other codes or models 229 # rkh 7/4/17 add random unit test for 2d, note make all params different, 230 # 2d values not tested against other codes or models 219 231 if 0: # pak: model rewrite; need to update tests 220 232 qx, qy = 0.2 * cos(pi/6.), 0.2 * sin(pi/6.) -
sasmodels/models/hollow_rectangular_prism.c
r1e7b0db0 r8de1477 1 1 double form_volume(double length_a, double b2a_ratio, double c2a_ratio, double thickness); 2 double Iq(double q, double sld, double solvent_sld, double length_a, 2 double Iq(double q, double sld, double solvent_sld, double length_a, 3 3 double b2a_ratio, double c2a_ratio, double thickness); 4 4 … … 37 37 const double v2a = 0.0; 38 38 const double v2b = M_PI_2; //phi integration limits 39 39 40 40 double outer_sum = 0.0; 41 41 for(int i=0; i<76; i++) { … … 84 84 return 1.0e-4 * delrho * delrho * form; 85 85 } 86 87 double Iqxy(double qa, double qb, double qc, 88 double sld, 89 double solvent_sld, 90 double length_a, 91 double b2a_ratio, 92 double c2a_ratio, 93 double thickness) 94 { 95 const double length_b = length_a * b2a_ratio; 96 const double length_c = length_a * c2a_ratio; 97 const double a_half = 0.5 * length_a; 98 const double b_half = 0.5 * length_b; 99 const double c_half = 0.5 * length_c; 100 const double vol_total = length_a * length_b * length_c; 101 const double vol_core = 8.0 * (a_half-thickness) * (b_half-thickness) * (c_half-thickness); 102 103 // Amplitude AP from eqn. (13) 104 105 const double termA1 = sas_sinx_x(qa * a_half); 106 const double termA2 = sas_sinx_x(qa * (a_half-thickness)); 107 108 const double termB1 = sas_sinx_x(qb * b_half); 109 const double termB2 = sas_sinx_x(qb * (b_half-thickness)); 110 111 const double termC1 = sas_sinx_x(qc * c_half); 112 const double termC2 = sas_sinx_x(qc * (c_half-thickness)); 113 114 const double AP1 = vol_total * termA1 * termB1 * termC1; 115 const double AP2 = vol_core * termA2 * termB2 * termC2; 116 117 // Multiply by contrast^2. Factor corresponding to volume^2 cancels with previous normalization. 118 const double delrho = sld - solvent_sld; 119 120 // Convert from [1e-12 A-1] to [cm-1] 121 return 1.0e-4 * square(delrho * (AP1-AP2)); 122 } -
sasmodels/models/hollow_rectangular_prism.py
r2d81cfe r0e55afe 5 5 This model provides the form factor, $P(q)$, for a hollow rectangular 6 6 parallelepiped with a wall of thickness $\Delta$. 7 It computes only the 1D scattering, not the 2D. 7 8 8 9 9 Definition … … 66 66 (which is unitless). 67 67 68 **The 2D scattering intensity is not computed by this model.** 68 For 2d data the orientation of the particle is required, described using 69 angles $\theta$, $\phi$ and $\Psi$ as in the diagrams below, for further details 70 of the calculation and angular dispersions see :ref:`orientation` . 71 The angle $\Psi$ is the rotational angle around the long *C* axis. For example, 72 $\Psi = 0$ when the *B* axis is parallel to the *x*-axis of the detector. 73 74 For 2d, constraints must be applied during fitting to ensure that the inequality 75 $A < B < C$ is not violated, and hence the correct definition of angles is preserved. The calculation will not report an error, 76 but the results may be not correct. 77 78 .. figure:: img/parallelepiped_angle_definition.png 79 80 Definition of the angles for oriented hollow rectangular prism. 81 Note that rotation $\theta$, initially in the $xz$ plane, is carried out first, then 82 rotation $\phi$ about the $z$ axis, finally rotation $\Psi$ is now around the axis of the prism. 83 The neutron or X-ray beam is along the $z$ axis. 84 85 .. figure:: img/parallelepiped_angle_projection.png 86 87 Examples of the angles for oriented hollow rectangular prisms against the 88 detector plane. 69 89 70 90 … … 113 133 ["thickness", "Ang", 1, [0, inf], "volume", 114 134 "Thickness of parallelepiped"], 135 ["theta", "degrees", 0, [-360, 360], "orientation", 136 "c axis to beam angle"], 137 ["phi", "degrees", 0, [-360, 360], "orientation", 138 "rotation about beam"], 139 ["psi", "degrees", 0, [-360, 360], "orientation", 140 "rotation about c axis"], 115 141 ] 116 142 -
sasmodels/models/rectangular_prism.c
r1e7b0db0 r8de1477 1 1 double form_volume(double length_a, double b2a_ratio, double c2a_ratio); 2 double Iq(double q, double sld, double solvent_sld, double length_a, 2 double Iq(double q, double sld, double solvent_sld, double length_a, 3 3 double b2a_ratio, double c2a_ratio); 4 4 … … 26 26 const double v2a = 0.0; 27 27 const double v2b = M_PI_2; //phi integration limits 28 28 29 29 double outer_sum = 0.0; 30 30 for(int i=0; i<76; i++) { … … 53 53 double answer = 0.5*(v1b-v1a)*outer_sum; 54 54 55 // Normalize by Pi (Eqn. 16). 56 // The term (ABC)^2 does not appear because it was introduced before on 55 // Normalize by Pi (Eqn. 16). 56 // The term (ABC)^2 does not appear because it was introduced before on 57 57 // the definitions of termA, termB, termC. 58 // The factor 2 appears because the theta integral has been defined between 58 // The factor 2 appears because the theta integral has been defined between 59 59 // 0 and pi/2, instead of 0 to pi. 60 60 answer /= M_PI_2; //Form factor P(q) … … 64 64 answer *= square((sld-solvent_sld)*volume); 65 65 66 // Convert from [1e-12 A-1] to [cm-1] 66 // Convert from [1e-12 A-1] to [cm-1] 67 67 answer *= 1.0e-4; 68 68 69 69 return answer; 70 70 } 71 72 73 double Iqxy(double qa, double qb, double qc, 74 double sld, 75 double solvent_sld, 76 double length_a, 77 double b2a_ratio, 78 double c2a_ratio) 79 { 80 const double length_b = length_a * b2a_ratio; 81 const double length_c = length_a * c2a_ratio; 82 const double a_half = 0.5 * length_a; 83 const double b_half = 0.5 * length_b; 84 const double c_half = 0.5 * length_c; 85 const double volume = length_a * length_b * length_c; 86 87 // Amplitude AP from eqn. (13) 88 89 const double termA = sas_sinx_x(qa * a_half); 90 const double termB = sas_sinx_x(qb * b_half); 91 const double termC = sas_sinx_x(qc * c_half); 92 93 const double AP = termA * termB * termC; 94 95 // Multiply by contrast^2. Factor corresponding to volume^2 cancels with previous normalization. 96 const double delrho = sld - solvent_sld; 97 98 // Convert from [1e-12 A-1] to [cm-1] 99 return 1.0e-4 * square(volume * delrho * AP); 100 } -
sasmodels/models/rectangular_prism.py
r2d81cfe r0e55afe 12 12 the prism (e.g. setting $b/a = 1$ and $c/a = 1$ and applying polydispersity 13 13 to *a* will generate a distribution of cubes of different sizes). 14 Note also that, contrary to :ref:`parallelepiped`, it does not compute15 the 2D scattering.16 14 17 15 … … 26 24 that reference), with $\theta$ corresponding to $\alpha$ in that paper, 27 25 and not to the usual convention used for example in the 28 :ref:`parallelepiped` model. As the present model does not compute 29 the 2D scattering, this has no further consequences. 26 :ref:`parallelepiped` model. 30 27 31 28 In this model the scattering from a massive parallelepiped with an … … 65 62 units) *scale* represents the volume fraction (which is unitless). 66 63 67 **The 2D scattering intensity is not computed by this model.** 64 For 2d data the orientation of the particle is required, described using 65 angles $\theta$, $\phi$ and $\Psi$ as in the diagrams below, for further details 66 of the calculation and angular dispersions see :ref:`orientation` . 67 The angle $\Psi$ is the rotational angle around the long *C* axis. For example, 68 $\Psi = 0$ when the *B* axis is parallel to the *x*-axis of the detector. 69 70 For 2d, constraints must be applied during fitting to ensure that the inequality 71 $A < B < C$ is not violated, and hence the correct definition of angles is preserved. The calculation will not report an error, 72 but the results may be not correct. 73 74 .. figure:: img/parallelepiped_angle_definition.png 75 76 Definition of the angles for oriented core-shell parallelepipeds. 77 Note that rotation $\theta$, initially in the $xz$ plane, is carried out first, then 78 rotation $\phi$ about the $z$ axis, finally rotation $\Psi$ is now around the axis of the cylinder. 79 The neutron or X-ray beam is along the $z$ axis. 80 81 .. figure:: img/parallelepiped_angle_projection.png 82 83 Examples of the angles for oriented rectangular prisms against the 84 detector plane. 85 68 86 69 87 … … 108 126 ["c2a_ratio", "", 1, [0, inf], "volume", 109 127 "Ratio sides c/a"], 128 ["theta", "degrees", 0, [-360, 360], "orientation", 129 "c axis to beam angle"], 130 ["phi", "degrees", 0, [-360, 360], "orientation", 131 "rotation about beam"], 132 ["psi", "degrees", 0, [-360, 360], "orientation", 133 "rotation about c axis"], 110 134 ] 111 135 -
.travis.yml
rce8c388 r2d09df1 6 6 env: 7 7 - PY=2.7 8 - DEPLOY=True 8 9 - os: linux 9 10 env: … … 51 52 on: 52 53 branch: master 54 condition: $DEPLOY = True 53 55 notifications: 54 56 slack: -
sasmodels/kernel_iq.c
r6aee3ab rec8d4ac 173 173 static double 174 174 qac_apply( 175 QACRotation rotation,175 QACRotation *rotation, 176 176 double qx, double qy, 177 177 double *qa_out, double *qc_out) 178 178 { 179 const double dqc = rotation .R31*qx + rotation.R32*qy;179 const double dqc = rotation->R31*qx + rotation->R32*qy; 180 180 // Indirect calculation of qab, from qab^2 = |q|^2 - qc^2 181 181 const double dqa = sqrt(-dqc*dqc + qx*qx + qy*qy); … … 246 246 static double 247 247 qabc_apply( 248 QABCRotation rotation,248 QABCRotation *rotation, 249 249 double qx, double qy, 250 250 double *qa_out, double *qb_out, double *qc_out) 251 251 { 252 *qa_out = rotation .R11*qx + rotation.R12*qy;253 *qb_out = rotation .R21*qx + rotation.R22*qy;254 *qc_out = rotation .R31*qx + rotation.R32*qy;252 *qa_out = rotation->R11*qx + rotation->R12*qy; 253 *qb_out = rotation->R21*qx + rotation->R22*qy; 254 *qc_out = rotation->R31*qx + rotation->R32*qy; 255 255 } 256 256 … … 453 453 // theta, phi, dtheta, dphi are defined below in projection to avoid repeated code. 454 454 #define BUILD_ROTATION() qac_rotation(&rotation, theta, phi, dtheta, dphi); 455 #define APPLY_ROTATION() qac_apply( rotation, qx, qy, &qa, &qc)455 #define APPLY_ROTATION() qac_apply(&rotation, qx, qy, &qa, &qc) 456 456 #define CALL_KERNEL() CALL_IQ_AC(qa, qc, local_values.table) 457 457 … … 467 467 local_values.table.psi = 0.; 468 468 #define BUILD_ROTATION() qabc_rotation(&rotation, theta, phi, psi, dtheta, dphi, local_values.table.psi) 469 #define APPLY_ROTATION() qabc_apply( rotation, qx, qy, &qa, &qb, &qc)469 #define APPLY_ROTATION() qabc_apply(&rotation, qx, qy, &qa, &qb, &qc) 470 470 #define CALL_KERNEL() CALL_IQ_ABC(qa, qb, qc, local_values.table) 471 471 #endif
Note: See TracChangeset
for help on using the changeset viewer.