Ignore:
Timestamp:
Jan 12, 2018 12:24:18 PM (7 years ago)
Author:
Adam Washington <adam.washington@…>
Branches:
master, magnetic_scatt, release-4.2.2, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
Children:
4b4b746
Parents:
a40e913
Message:

Remove all instances of \text from the repo

File:
1 edited

Legend:

Unmodified
Added
Removed
  • src/sas/sasgui/perspectives/calculator/media/sas_calculator_help.rst

    r1b67f3e r8cc9048  
    3434 
    3535where $\beta_j$ and $r_j$ are the scattering length density and 
    36 the position of the $j^\text{th}$ pixel respectively. 
     36the position of the $j^\mathrm{th}$ pixel respectively. 
    3737 
    3838The total volume $V$ 
     
    4242    V = \sum_j^N v_j 
    4343 
    44 for $\beta_j \ne 0$ where $v_j$ is the volume of the $j^\text{th}$ 
    45 pixel (or the $j^\text{th}$ natural atomic volume (= atomic mass / (natural molar 
     44for $\beta_j \ne 0$ where $v_j$ is the volume of the $j^\mathrm{th}$ 
     45pixel (or the $j^\mathrm{th}$ natural atomic volume (= atomic mass / (natural molar 
    4646density * Avogadro number) for the atomic structures). 
    4747 
     
    8888 
    8989Now let us assume that the angles of the $\vec Q$ vector and the spin-axis ($x'$) 
    90 to the $x$-axis are $\phi$ and $\theta_\text{up}$ respectively (see above). Then, 
     90to the $x$-axis are $\phi$ and $\theta_\mathrm{up}$ respectively (see above). Then, 
    9191depending upon the polarization (spin) state of neutrons, the scattering 
    9292length densities, including the nuclear scattering length density ($\beta_N$) 
     
    107107.. math:: 
    108108 
    109     M_{\perp x'} &= M_{0q_x}\cos\theta_\text{up} + M_{0q_y}\sin\theta_\text{up} \\ 
    110     M_{\perp y'} &= M_{0q_y}\cos\theta_\text{up} - M_{0q_x}\sin\theta_\text{up} \\ 
     109    M_{\perp x'} &= M_{0q_x}\cos\theta_\mathrm{up} + M_{0q_y}\sin\theta_\mathrm{up} \\ 
     110    M_{\perp y'} &= M_{0q_y}\cos\theta_\mathrm{up} - M_{0q_x}\sin\theta_\mathrm{up} \\ 
    111111    M_{\perp z'} &= M_{0z} \\ 
    112112    M_{0q_x} &= (M_{0x}\cos\phi - M_{0y}\sin\phi)\cos\phi \\ 
     
    161161 
    162162where $v_j \beta_j \equiv b_j$ is the scattering 
    163 length of the $j^\text{th}$ atom. The calculation output is passed to the *Data Explorer* 
     163length of the $j^\mathrm{th}$ atom. The calculation output is passed to the *Data Explorer* 
    164164for further use. 
    165165 
Note: See TracChangeset for help on using the changeset viewer.