Changeset 8cc9048 in sasview


Ignore:
Timestamp:
Jan 12, 2018 10:24:18 AM (7 years ago)
Author:
Adam Washington <adam.washington@…>
Branches:
master, magnetic_scatt, release-4.2.2, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
Children:
4b4b746
Parents:
a40e913
Message:

Remove all instances of \text from the repo

Files:
4 edited

Legend:

Unmodified
Added
Removed
  • docs/sphinx-docs/source/conf.py

    r3ca67dcf r8cc9048  
    224224\newcommand{\lt}{<}              % HTML needs \lt rather than < 
    225225\newcommand{\gt}{>}              % HTML needs \gt rather than > 
    226 \renewcommand{\AA}{\text{\r{A}}} % Allow \AA in math mode 
     226\renewcommand{\AA}{\mathrm{\r{A}}} % Allow \AA in math mode 
    227227\DeclareUnicodeCharacter {212B} {\AA}                  % Angstrom 
    228228\DeclareUnicodeCharacter {00B7} {\ensuremath{\cdot}}   % cdot 
  • src/sas/sasgui/perspectives/calculator/media/resolution_calculator_help.rst

    r5ed76f8 r8cc9048  
    2929   careful to note that distances are specified in cm! 
    3030 
    31 4) Enter values for the source wavelength(s), $\lambda$, and its spread (= $\text{FWHM}/\lambda$). 
     314) Enter values for the source wavelength(s), $\lambda$, and its spread (= $\mathrm{FWHM}/\lambda$). 
    3232 
    3333   For monochromatic sources, the inputs are just one value. For TOF sources, 
     
    5858   region near the beam block/stop 
    5959 
    60    [i.e., $Q < (2 \pi \cdot \text{beam block diameter}) / (\text{sample-to-detector distance} \cdot \lambda_\text{min})$] 
     60   [i.e., $Q < (2 \pi \cdot \mathrm{beam block diameter}) / (\mathrm{sample-to-detector distance} \cdot \lambda_\mathrm{min})$] 
    6161 
    6262   the variance is slightly under estimated. 
  • src/sas/sasgui/perspectives/calculator/media/sas_calculator_help.rst

    r1b67f3e r8cc9048  
    3434 
    3535where $\beta_j$ and $r_j$ are the scattering length density and 
    36 the position of the $j^\text{th}$ pixel respectively. 
     36the position of the $j^\mathrm{th}$ pixel respectively. 
    3737 
    3838The total volume $V$ 
     
    4242    V = \sum_j^N v_j 
    4343 
    44 for $\beta_j \ne 0$ where $v_j$ is the volume of the $j^\text{th}$ 
    45 pixel (or the $j^\text{th}$ natural atomic volume (= atomic mass / (natural molar 
     44for $\beta_j \ne 0$ where $v_j$ is the volume of the $j^\mathrm{th}$ 
     45pixel (or the $j^\mathrm{th}$ natural atomic volume (= atomic mass / (natural molar 
    4646density * Avogadro number) for the atomic structures). 
    4747 
     
    8888 
    8989Now let us assume that the angles of the $\vec Q$ vector and the spin-axis ($x'$) 
    90 to the $x$-axis are $\phi$ and $\theta_\text{up}$ respectively (see above). Then, 
     90to the $x$-axis are $\phi$ and $\theta_\mathrm{up}$ respectively (see above). Then, 
    9191depending upon the polarization (spin) state of neutrons, the scattering 
    9292length densities, including the nuclear scattering length density ($\beta_N$) 
     
    107107.. math:: 
    108108 
    109     M_{\perp x'} &= M_{0q_x}\cos\theta_\text{up} + M_{0q_y}\sin\theta_\text{up} \\ 
    110     M_{\perp y'} &= M_{0q_y}\cos\theta_\text{up} - M_{0q_x}\sin\theta_\text{up} \\ 
     109    M_{\perp x'} &= M_{0q_x}\cos\theta_\mathrm{up} + M_{0q_y}\sin\theta_\mathrm{up} \\ 
     110    M_{\perp y'} &= M_{0q_y}\cos\theta_\mathrm{up} - M_{0q_x}\sin\theta_\mathrm{up} \\ 
    111111    M_{\perp z'} &= M_{0z} \\ 
    112112    M_{0q_x} &= (M_{0x}\cos\phi - M_{0y}\sin\phi)\cos\phi \\ 
     
    161161 
    162162where $v_j \beta_j \equiv b_j$ is the scattering 
    163 length of the $j^\text{th}$ atom. The calculation output is passed to the *Data Explorer* 
     163length of the $j^\mathrm{th}$ atom. The calculation output is passed to the *Data Explorer* 
    164164for further use. 
    165165 
  • src/sas/sasgui/perspectives/corfunc/media/corfunc_help.rst

    rad476d1 r8cc9048  
    130130.. math:: 
    131131    \Gamma(x_k) = 2 \sum_{n=0}^{N-1} x_n \cos{\left[ \frac{\pi}{N} 
    132     \left(n + \frac{1}{2} \right) k \right] } \text{ for } k = 0, 1, \ldots, 
     132    \left(n + \frac{1}{2} \right) k \right] } \mathrm{ for } k = 0, 1, \ldots, 
    133133    N-1, N 
    134134 
     
    188188*   Average Hard Block Thickness :math:`= L_c` 
    189189*   Average Core Thickness :math:`= D_0` 
    190 *   Average Interface Thickness :math:`\text{} = D_{tr}` 
    191 *   Polydispersity :math:`= \Gamma_{\text{min}}/\Gamma_{\text{max}}` 
     190*   Average Interface Thickness :math:`\mathrm{} = D_{tr}` 
     191*   Polydispersity :math:`= \Gamma_{\mathrm{min}}/\Gamma_{\mathrm{max}}` 
    192192*   Local Crystallinity :math:`= L_c/L_p` 
    193193 
     
    203203*   Bound Fraction :math:`= <p>` 
    204204*   Second Moment :math:`= \sigma` 
    205 *   Maximum Extent :math:`= \delta_{\text{h}}` 
     205*   Maximum Extent :math:`= \delta_{\mathrm{h}}` 
    206206*   Adsorbed Amount :math:`= \Gamma` 
    207207 
Note: See TracChangeset for help on using the changeset viewer.