Changeset 8cc9048 in sasview for src/sas/sasgui/perspectives/calculator/media
- Timestamp:
- Jan 12, 2018 12:24:18 PM (7 years ago)
- Branches:
- master, magnetic_scatt, release-4.2.2, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
- Children:
- 4b4b746
- Parents:
- a40e913
- Location:
- src/sas/sasgui/perspectives/calculator/media
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
src/sas/sasgui/perspectives/calculator/media/resolution_calculator_help.rst
r5ed76f8 r8cc9048 29 29 careful to note that distances are specified in cm! 30 30 31 4) Enter values for the source wavelength(s), $\lambda$, and its spread (= $\ text{FWHM}/\lambda$).31 4) Enter values for the source wavelength(s), $\lambda$, and its spread (= $\mathrm{FWHM}/\lambda$). 32 32 33 33 For monochromatic sources, the inputs are just one value. For TOF sources, … … 58 58 region near the beam block/stop 59 59 60 [i.e., $Q < (2 \pi \cdot \ text{beam block diameter}) / (\text{sample-to-detector distance} \cdot \lambda_\text{min})$]60 [i.e., $Q < (2 \pi \cdot \mathrm{beam block diameter}) / (\mathrm{sample-to-detector distance} \cdot \lambda_\mathrm{min})$] 61 61 62 62 the variance is slightly under estimated. -
src/sas/sasgui/perspectives/calculator/media/sas_calculator_help.rst
r1b67f3e r8cc9048 34 34 35 35 where $\beta_j$ and $r_j$ are the scattering length density and 36 the position of the $j^\ text{th}$ pixel respectively.36 the position of the $j^\mathrm{th}$ pixel respectively. 37 37 38 38 The total volume $V$ … … 42 42 V = \sum_j^N v_j 43 43 44 for $\beta_j \ne 0$ where $v_j$ is the volume of the $j^\ text{th}$45 pixel (or the $j^\ text{th}$ natural atomic volume (= atomic mass / (natural molar44 for $\beta_j \ne 0$ where $v_j$ is the volume of the $j^\mathrm{th}$ 45 pixel (or the $j^\mathrm{th}$ natural atomic volume (= atomic mass / (natural molar 46 46 density * Avogadro number) for the atomic structures). 47 47 … … 88 88 89 89 Now let us assume that the angles of the $\vec Q$ vector and the spin-axis ($x'$) 90 to the $x$-axis are $\phi$ and $\theta_\ text{up}$ respectively (see above). Then,90 to the $x$-axis are $\phi$ and $\theta_\mathrm{up}$ respectively (see above). Then, 91 91 depending upon the polarization (spin) state of neutrons, the scattering 92 92 length densities, including the nuclear scattering length density ($\beta_N$) … … 107 107 .. math:: 108 108 109 M_{\perp x'} &= M_{0q_x}\cos\theta_\ text{up} + M_{0q_y}\sin\theta_\text{up} \\110 M_{\perp y'} &= M_{0q_y}\cos\theta_\ text{up} - M_{0q_x}\sin\theta_\text{up} \\109 M_{\perp x'} &= M_{0q_x}\cos\theta_\mathrm{up} + M_{0q_y}\sin\theta_\mathrm{up} \\ 110 M_{\perp y'} &= M_{0q_y}\cos\theta_\mathrm{up} - M_{0q_x}\sin\theta_\mathrm{up} \\ 111 111 M_{\perp z'} &= M_{0z} \\ 112 112 M_{0q_x} &= (M_{0x}\cos\phi - M_{0y}\sin\phi)\cos\phi \\ … … 161 161 162 162 where $v_j \beta_j \equiv b_j$ is the scattering 163 length of the $j^\ text{th}$ atom. The calculation output is passed to the *Data Explorer*163 length of the $j^\mathrm{th}$ atom. The calculation output is passed to the *Data Explorer* 164 164 for further use. 165 165
Note: See TracChangeset
for help on using the changeset viewer.