Changeset 785cbec in sasmodels for sasmodels/models/spherical_sld.py


Ignore:
Timestamp:
Aug 5, 2016 11:03:19 AM (8 years ago)
Author:
Paul Kienzle <pkienzle@…>
Branches:
master, core_shell_microgels, costrafo411, magnetic_model, release_v0.94, release_v0.95, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
Children:
c8de1bd
Parents:
e187b25
Message:

doc fixes

File:
1 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/models/spherical_sld.py

    r50ec515 r785cbec  
    4646 
    4747.. math:: 
    48     f_\text{core} = 4 \pi \int_{0}^{r_\text{core}} \rho_\text{core} 
     48 
     49    f_\text{core} &= 4 \pi \int_{0}^{r_\text{core}} \rho_\text{core} 
    4950    \frac{\sin(qr)} {qr} r^2 dr = 
    5051    3 \rho_\text{core} V(r_\text{core}) 
     
    5253    {qr_\text{core}^3} \Big] 
    5354 
    54     f_{\text{inter}_i} = 4 \pi \int_{\Delta t_{ \text{inter}_i } } 
     55    f_{\text{inter}_i} &= 4 \pi \int_{\Delta t_{ \text{inter}_i } } 
    5556    \rho_{ \text{inter}_i } \frac{\sin(qr)} {qr} r^2 dr 
    5657 
    57     f_{\text{shell}_i} = 4 \pi \int_{\Delta t_{ \text{inter}_i } } 
     58    f_{\text{shell}_i} &= 4 \pi \int_{\Delta t_{ \text{inter}_i } } 
    5859    \rho_{ \text{flat}_i } \frac{\sin(qr)} {qr} r^2 dr = 
    5960    3 \rho_{ \text{flat}_i } V ( r_{ \text{inter}_i } + 
     
    6768    \cos(qr_{\text{inter}_i}) } {qr_{\text{inter}_i}^3} \Big] 
    6869 
    69     f_\text{solvent} = 4 \pi \int_{r_N}^{\infty} \rho_\text{solvent} 
     70    f_\text{solvent} &= 4 \pi \int_{r_N}^{\infty} \rho_\text{solvent} 
    7071    \frac{\sin(qr)} {qr} r^2 dr = 
    7172    3 \rho_\text{solvent} V(r_N) 
     
    8081 
    8182.. math:: 
    82     \rho_{{inter}_i} (r) = \begin{cases} 
     83 
     84    \rho_{{inter}_i} (r) &= \begin{cases} 
    8385    B \exp\Big( \frac {\pm A(r - r_{\text{flat}_i})} 
    84     {\Delta t_{ \text{inter}_i }} \Big) +C  & \text{for} A \neq 0 \\ 
     86    {\Delta t_{ \text{inter}_i }} \Big) +C  & \mbox{for } A \neq 0 \\ 
    8587    B \Big( \frac {(r - r_{\text{flat}_i})} 
    86     {\Delta t_{ \text{inter}_i }} \Big) +C  & \text{for} A = 0 \\ 
     88    {\Delta t_{ \text{inter}_i }} \Big) +C  & \mbox{for } A = 0 \\ 
    8789    \end{cases} 
    8890 
     
    9092 
    9193.. math:: 
    92     \rho_{{inter}_i} (r) = \begin{cases} 
     94 
     95    \rho_{{inter}_i} (r) &= \begin{cases} 
    9396    \pm B \Big( \frac {(r - r_{\text{flat}_i} )} {\Delta t_{ \text{inter}_i }} 
    94     \Big) ^A  +C  & \text{for} A \neq 0 \\ 
    95     \rho_{\text{flat}_{i+1}}  & \text{for} A = 0 \\ 
     97    \Big) ^A  +C  & \mbox{for } A \neq 0 \\ 
     98    \rho_{\text{flat}_{i+1}}  & \mbox{for } A = 0 \\ 
    9699    \end{cases} 
    97100 
     
    101104    \rho_{{inter}_i} (r) = \begin{cases} 
    102105    B \text{erf} \Big( \frac { A(r - r_{\text{flat}_i})} 
    103     {\sqrt{2} \Delta t_{ \text{inter}_i }} \Big) +C  & \text{for} A \neq 0 \\ 
     106    {\sqrt{2} \Delta t_{ \text{inter}_i }} \Big) +C  & \mbox{for } A \neq 0 \\ 
    104107    B \Big( \frac {(r - r_{\text{flat}_i} )} {\Delta t_{ \text{inter}_i }} 
    105     \Big)  +C  & \text{for} A = 0 \\ 
     108    \Big)  +C  & \mbox{for } A = 0 \\ 
    106109    \end{cases} 
    107110 
     
    114117 
    115118.. math:: 
    116     f_{\text{inter}_i} = 4 \pi \int_{\Delta t_{ \text{inter}_i } } 
     119 
     120    f_{\text{inter}_i} &= 4 \pi \int_{\Delta t_{ \text{inter}_i } } 
    117121    \rho_{ \text{inter}_i } \frac{\sin(qr)} {qr} r^2 dr = 
    118     4 \pi \sum_{j=0}^{npts_{\text{inter}_i} -1 } 
     122    4 \pi \sum_{j=1}^{n_\text{steps}} 
    119123    \int_{r_j}^{r_{j+1}} \rho_{ \text{inter}_i } (r_j) 
    120     \frac{\sin(qr)} {qr} r^2 dr \approx 
    121  
    122     4 \pi \sum_{j=0}^{npts_{\text{inter}_i} -1 } \Big[ 
     124    \frac{\sin(qr)} {qr} r^2 dr 
     125 
     126    &\approx 4 \pi \sum_{j=1}^{n_\text{steps}} \Big[ 
    123127    3 ( \rho_{ \text{inter}_i } ( r_{j+1} ) - \rho_{ \text{inter}_i } 
    124     ( r_{j} ) V ( r_{ \text{subshell}_j } ) 
     128    ( r_{j} ) V (r_j) 
    125129    \Big[ \frac {r_j^2 \beta_\text{out}^2 \sin(\beta_\text{out}) 
    126130    - (\beta_\text{out}^2-2) \cos(\beta_\text{out}) } 
    127131    {\beta_\text{out}^4 } \Big] 
    128132 
    129     - 3 ( \rho_{ \text{inter}_i } ( r_{j+1} ) - \rho_{ \text{inter}_i } 
    130     ( r_{j} ) V ( r_{ \text{subshell}_j-1 } ) 
     133    &{} - 3 ( \rho_{ \text{inter}_i } ( r_{j+1} ) - \rho_{ \text{inter}_i } 
     134    ( r_{j} ) V ( r_{j-1} ) 
    131135    \Big[ \frac {r_{j-1}^2 \sin(\beta_\text{in}) 
    132136    - (\beta_\text{in}^2-2) \cos(\beta_\text{in}) } 
    133137    {\beta_\text{in}^4 } \Big] 
    134138 
    135     + 3 \rho_{ \text{inter}_i } ( r_{j+1} )  V ( r_j ) 
     139    &{} + 3 \rho_{ \text{inter}_i } ( r_{j+1} )  V ( r_j ) 
    136140    \Big[ \frac {\sin(\beta_\text{out}) - \cos(\beta_\text{out}) } 
    137141    {\beta_\text{out}^4 } \Big] 
    138  
    139142    - 3 \rho_{ \text{inter}_i } ( r_{j} )  V ( r_j ) 
    140143    \Big[ \frac {\sin(\beta_\text{in}) - \cos(\beta_\text{in}) } 
     
    145148 
    146149.. math:: 
    147     V(a) = \frac {4\pi}{3}a^3 
    148  
    149     a_\text{in} ~ \frac{r_j}{r_{j+1} -r_j} \text{, } a_\text{out} 
    150     ~ \frac{r_{j+1}}{r_{j+1} -r_j} 
    151  
    152     \beta_\text{in} = qr_j \text{, } \beta_\text{out} = qr_{j+1} 
     150    :nowrap: 
     151 
     152    \begin{align*} 
     153    V(a) &= \frac {4\pi}{3}a^3 && \\ 
     154    a_\text{in} &\sim \frac{r_j}{r_{j+1} -r_j} \text{, } &a_\text{out} 
     155    &\sim \frac{r_{j+1}}{r_{j+1} -r_j} \\ 
     156    \beta_\text{in} &= qr_j \text{, } &\beta_\text{out} &= qr_{j+1} 
     157    \end{align*} 
    153158 
    154159 
     
    160165.. math:: 
    161166 
    162     P(q) = \frac{[f]^2} {V_\text{particle}} \text{where} V_\text{particle} 
     167    P(q) = \frac{[f]^2} {V_\text{particle}} \mbox{ where } V_\text{particle} 
    163168    = V(r_{\text{shell}_N}) 
    164169 
     
    172177.. note:: 
    173178 
    174     The outer most radius is used as the effective radius for S(Q) 
     179    The outer most radius is used as the effective radius for $S(Q)$ 
    175180    when $P(Q) * S(Q)$ is applied. 
    176181 
Note: See TracChangeset for help on using the changeset viewer.