Changeset 5ed76f8 in sasview for src/sas/sasgui/perspectives/fitting


Ignore:
Timestamp:
Apr 7, 2017 1:11:41 AM (8 years ago)
Author:
Paul Kienzle <pkienzle@…>
Branches:
master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, magnetic_scatt, release-4.2.2, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
Children:
fca1f50
Parents:
727c05f
Message:

docs: use latex in equations rather than unicode + rst markup

Location:
src/sas/sasgui/perspectives/fitting/media
Files:
5 edited

Legend:

Unmodified
Added
Removed
  • src/sas/sasgui/perspectives/fitting/media/fitting_help.rst

    r6aad2e8 r5ed76f8  
    381381 
    382382In the bottom left corner of the *Fit Page* is a box displaying the normalised value 
    383 of the statistical |chi|\  :sup:`2` parameter returned by the optimiser. 
     383of the statistical $\chi^2$ parameter returned by the optimiser. 
    384384 
    385385Now check the box for another model parameter and click *Fit* again. Repeat this 
     
    387387fit of the theory to the experimental data improves the value of 'chi2/Npts' will 
    388388decrease. A good model fit should easily produce values of 'chi2/Npts' that are 
    389 close to zero, and certainly <100. See :ref:`Assessing_Fit_Quality`. 
     389close to one, and certainly <100. See :ref:`Assessing_Fit_Quality`. 
    390390 
    391391SasView has a number of different optimisers (see the section :ref:`Fitting_Options`). 
  • src/sas/sasgui/perspectives/fitting/media/mag_help.rst

    r6aad2e8 r5ed76f8  
    2020-------------------------------- 
    2121 
    22 Magnetic scattering is implemented in five (2D) models  
     22Magnetic scattering is implemented in five (2D) models 
    2323 
    2424*  *sphere* 
     
    2828*  *parallelepiped* 
    2929 
    30 In general, the scattering length density (SLD, = |beta|) in each region where the 
     30In general, the scattering length density (SLD, = $\beta$) in each region where the 
    3131SLD is uniform, is a combination of the nuclear and magnetic SLDs and, for polarised 
    3232neutrons, also depends on the spin states of the neutrons. 
    3333 
    34 For magnetic scattering, only the magnetization component, *M*\ :sub:`perp`, 
    35 perpendicular to the scattering vector *Q* contributes to the the magnetic 
     34For magnetic scattering, only the magnetization component, $M_\perp$, 
     35perpendicular to the scattering vector $Q$ contributes to the the magnetic 
    3636scattering length. 
    3737 
     
    4242.. image:: dm_eq.png 
    4343 
    44 where |gamma| = -1.913 is the gyromagnetic ratio, |mu|\ :sub:`B` is the 
    45 Bohr magneton, *r*\ :sub:`0` is the classical radius of electron, and |sigma| 
     44where $\gamma = -1.913$ is the gyromagnetic ratio, $\mu_B$ is the 
     45Bohr magneton, $r_0$ is the classical radius of electron, and $\sigma$ 
    4646is the Pauli spin. 
    4747 
     
    5555.. image:: M_angles_pic.png 
    5656 
    57 If the angles of the *Q* vector and the spin-axis (*x'*) to the *x*-axis are |phi| 
    58 and |theta|\ :sub:`up`, respectively, then, depending on the spin state of the 
     57If the angles of the $Q$ vector and the spin-axis (*x'*) to the *x*-axis are $\phi$ 
     58and $\theta_\text{up}$, respectively, then, depending on the spin state of the 
    5959neutrons, the scattering length densities, including the nuclear scattering 
    60 length density (|beta|\ :sub:`N`) are 
     60length density ($\beta_N$) are 
    6161 
    6262.. image:: sld1.png 
     
    7878.. image:: mqy.png 
    7979 
    80 Here, *M*\ :sub:`0x`, *M*\ :sub:`0y` and *M*\ :sub:`0z` are the x, y and z components 
    81 of the magnetization vector given in the laboratory xyz frame given by 
     80Here, $M_{0x}$, $M_{0y}$ and $M_{0z}$ are the $x$, $y$ and $z$ components 
     81of the magnetization vector given in the laboratory $xyz$ frame given by 
    8282 
    8383.. image:: m0x_eq.png 
     
    8787.. image:: m0z_eq.png 
    8888 
    89 and the magnetization angles |theta|\ :sub:`M` and |phi|\ :sub:`M` are defined in 
     89and the magnetization angles $\theta_M$ and $\phi_M$ are defined in 
    9090the figure above. 
    9191 
     
    9393 
    9494===========   ================================================================ 
    95  M0_sld        = *D*\ :sub:`M` *M*\ :sub:`0` 
    96  Up_theta      = |theta|\ :sub:`up` 
    97  M_theta       = |theta|\ :sub:`M` 
    98  M_phi         = |phi|\ :sub:`M` 
     95 M0_sld        = $D_M M_0$ 
     96 Up_theta      = $\theta_\text{up}$ 
     97 M_theta       = $\theta_M$ 
     98 M_phi         = $\phi_M$ 
    9999 Up_frac_i     = (spin up)/(spin up + spin down) neutrons *before* the sample 
    100100 Up_frac_f     = (spin up)/(spin up + spin down) neutrons *after* the sample 
  • src/sas/sasgui/perspectives/fitting/media/pd_help.rst

    r6aad2e8 r5ed76f8  
    2424form factor is normalized by the average particle volume such that 
    2525 
    26 *P(q) = scale* * \ <F*\F> / *V + bkg* 
     26.. math:: 
    2727 
    28 where F is the scattering amplitude and the \<\> denote an average over the size 
    29 distribution. 
     28    P(q) = \text{scale} \langle F^*F rangle V + \text{background} 
     29 
     30where $F$ is the scattering amplitude and $\langle\cdot\rangle$ denotes an average 
     31over the size distribution. 
    3032 
    3133Users should note that this computation is very intensive. Applying polydispersion 
     
    5759.. image:: pd_image001.png 
    5860 
    59 where *xmean* is the mean of the distribution, *w* is the half-width, and *Norm* is a 
    60 normalization factor which is determined during the numerical calculation. 
     61where $x_{mean}$ is the mean of the distribution, $w$ is the half-width, and $Norm$ 
     62is a normalization factor which is determined during the numerical calculation. 
    6163 
    62 Note that the standard deviation and the half width *w* are different! 
     64Note that the standard deviation and the half width $w$ are different! 
    6365 
    6466The standard deviation is 
     
    8183.. image:: pd_image005.png 
    8284 
    83 where *xmean* is the mean of the distribution and *Norm* is a normalization factor 
     85where $x_{mean}$ is the mean of the distribution and $Norm$ is a normalization factor 
    8486which is determined during the numerical calculation. 
    8587 
     
    100102.. image:: pd_image007.png 
    101103 
    102 where |mu|\ =ln(*xmed*), *xmed* is the median value of the distribution, and 
    103 *Norm* is a normalization factor which will be determined during the numerical 
     104where $\mu=\ln(x_{med})$, $x_{med}$ is the median value of the distribution, and 
     105$Norm$ is a normalization factor which will be determined during the numerical 
    104106calculation. 
    105107 
     
    107109size parameter in the *FitPage*, for example, radius = 60. 
    108110 
    109 The polydispersity is given by |sigma| 
     111The polydispersity is given by $\sigma$ 
    110112 
    111113.. image:: pd_image008.png 
     
    115117.. image:: pd_image009.png 
    116118 
    117 The mean value is given by *xmean*\ =exp(|mu|\ +p\ :sup:`2`\ /2). The peak value 
    118 is given by *xpeak*\ =exp(|mu|-p\ :sup:`2`\ ). 
     119The mean value is given by $x_{mean} =\exp(\mu + p^2 /2)$. The peak value 
     120is given by $x_{peak} =\exp(\mu-p^2)$. 
    119121 
    120122.. image:: pd_image010.jpg 
    121123 
    122 This distribution function spreads more, and the peak shifts to the left, as *p* 
     124This distribution function spreads more, and the peak shifts to the left, as $p$ 
    123125increases, requiring higher values of Nsigmas and Npts. 
    124126 
     
    132134.. image:: pd_image011.png 
    133135 
    134 where *xmean* is the mean of the distribution and *Norm* is a normalization factor 
    135 which is determined during the numerical calculation, and *z* is a measure of the 
     136where $x_{mean}$ is the mean of the distribution and $Norm$ is a normalization factor 
     137which is determined during the numerical calculation, and $z$ is a measure of the 
    136138width of the distribution such that 
    137139 
    138 z = (1-p\ :sup:`2`\ ) / p\ :sup:`2` 
     140.. math:: 
     141 
     142    z = (1-p^2 ) / p^2 
    139143 
    140144The polydispersity is 
     
    156160 
    157161This user-definable distribution should be given as as a simple ASCII text file 
    158 where the array is defined by two columns of numbers: *x* and *f(x)*. The *f(x)* 
     162where the array is defined by two columns of numbers: $x$ and $f(x)$. The $f(x)$ 
    159163will be normalized by SasView during the computation. 
    160164 
     
    172176 
    173177SasView only uses these array values during the computation, therefore any mean 
    174 value of the parameter represented by *x* present in the *FitPage* 
     178value of the parameter represented by $x$ present in the *FitPage* 
    175179will be ignored. 
    176180 
     
    181185 
    182186Many commercial Dynamic Light Scattering (DLS) instruments produce a size 
    183 polydispersity parameter, sometimes even given the symbol *p*! This parameter is 
     187polydispersity parameter, sometimes even given the symbol $p$! This parameter is 
    184188defined as the relative standard deviation coefficient of variation of the size 
    185189distribution and is NOT the same as the polydispersity parameters in the Lognormal 
  • src/sas/sasgui/perspectives/fitting/media/residuals_help.rst

    r7805458 r5ed76f8  
    1818also provides two other measures of the quality of a fit: 
    1919 
    20 |chi|\  :sup:`2` (or 'Chi2'; pronounced 'chi-squared') 
     20$\chi^2$ (or 'Chi2'; pronounced 'chi-squared') 
    2121*  *Residuals* 
    2222 
     
    3232*Npts* such that 
    3333 
    34   *Chi2/Npts* = { SUM[(*Y_i* - *Y_theory_i*)^2 / (*Y_error_i*)^2] } / *Npts* 
     34.. math:: 
    3535 
    36 This differs slightly from what is sometimes called the 'reduced chi-squared' 
     36  \chi^2/N_{pts} =  \sum[(Y_i - Y_{theory}_i)^2 / (Y_error_i)^2] } / N_{pts} 
     37 
     38This differs slightly from what is sometimes called the 'reduced $\chi^2$' 
    3739because it does not take into account the number of fitting parameters (to 
    38 calculate the number of 'degrees of freedom'), but the 'normalized chi-squared' 
    39 and the 'reduced chi-squared' are very close to each other when *Npts* >> number of 
    40 parameters. 
     40calculate the number of 'degrees of freedom'), but the 'normalized $\chi^2$ 
     41and the 'reduced $\chi^2$ are very close to each other when $N_{pts} \gg 
     42\text{number of parameters}. 
    4143 
    42 For a good fit, *Chi2/Npts* tends to 0. 
     44For a good fit, $\chi^2/N_{pts}$ tends to 1. 
    4345 
    44 *Chi2/Npts* is sometimes referred to as the 'goodness-of-fit' parameter. 
     46$\chi^2/N_{pts}$ is sometimes referred to as the 'goodness-of-fit' parameter. 
    4547 
    4648.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 
     
    5355value and its *true* value is its error). 
    5456 
    55 *SasView* calculates 'normalized residuals', *R_i*, for each data point in the 
     57*SasView* calculates 'normalized residuals', $R_i$, for each data point in the 
    5658fit: 
    5759 
    58   *R_i* = (*Y_i* - *Y_theory_i*) / (*Y_err_i*) 
     60.. math:: 
    5961 
    60 For a good fit, *R_i* ~ 0. 
     62  R_i = (Y_i - Y_theory_i) / (Y_err_i) 
     63 
     64For a good fit, $R_i \sim 0$. 
    6165 
    6266.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 
  • src/sas/sasgui/perspectives/fitting/media/sm_help.rst

    r6aad2e8 r5ed76f8  
    2020================== 
    2121 
    22 Sometimes the instrumental geometry used to acquire the experimental data has  
    23 an impact on the clarity of features in the reduced scattering curve. For  
    24 example, peaks or fringes might be slightly broadened. This is known as  
    25 *Q resolution smearing*. To compensate for this effect one can either try and  
    26 remove the resolution contribution - a process called *desmearing* - or add the  
    27 resolution contribution into a model calculation/simulation (which by definition  
    28 will be exact) to make it more representative of what has been measured  
     22Sometimes the instrumental geometry used to acquire the experimental data has 
     23an impact on the clarity of features in the reduced scattering curve. For 
     24example, peaks or fringes might be slightly broadened. This is known as 
     25*Q resolution smearing*. To compensate for this effect one can either try and 
     26remove the resolution contribution - a process called *desmearing* - or add the 
     27resolution contribution into a model calculation/simulation (which by definition 
     28will be exact) to make it more representative of what has been measured 
    2929experimentally - a process called *smearing*. SasView will do the latter. 
    3030 
    31 Both smearing and desmearing rely on functions to describe the resolution  
     31Both smearing and desmearing rely on functions to describe the resolution 
    3232effect. SasView provides three smearing algorithms: 
    3333 
     
    3636*  *2D Smearing* 
    3737 
    38 SasView also has an option to use Q resolution data (estimated at the time of  
     38SasView also has an option to use $Q$ resolution data (estimated at the time of 
    3939data reduction) supplied in a reduced data file: the *Use dQ data* radio button. 
    4040 
     
    4343dQ Smearing 
    4444----------- 
    45   
    46 If this option is checked, SasView will assume that the supplied dQ values  
     45 
     46If this option is checked, SasView will assume that the supplied $dQ$ values 
    4747represent the standard deviations of Gaussian functions. 
    4848 
     
    6565**[Equation 1]** 
    6666 
    67 The functions |inlineimage004| and |inlineimage005| 
    68 refer to the slit width weighting function and the slit height weighting  
    69 determined at the given *q* point, respectively. It is assumed that the weighting 
     67The functions $W_v(v)$ and $W_u(u)$ 
     68refer to the slit width weighting function and the slit height weighting 
     69determined at the given $q$ point, respectively. It is assumed that the weighting 
    7070function is described by a rectangular function, such that 
    7171 
     
    8080**[Equation 3]** 
    8181 
    82 so that |inlineimage008| |inlineimage009| for |inlineimage010| and *u*\ . 
    83  
    84 Here |inlineimage011| and |inlineimage012| stand for 
    85 the slit height (FWHM/2) and the slit width (FWHM/2) in *q* space. 
     82so that $\Delta q_\alpha = \int_0^\infty d\alpha W_\alpha(\alpha)$ 
     83for $\alpha = v$ and $u$. 
     84 
     85Here $\Delta q_u$ and $\Delta q_v$ stand for 
     86the slit height (FWHM/2) and the slit width (FWHM/2) in $q$ space. 
    8687 
    8788This simplifies the integral in Equation 1 to 
     
    9192**[Equation 4]** 
    9293 
    93 which may be solved numerically, depending on the nature of |inlineimage011| and |inlineimage012| . 
     94which may be solved numerically, depending on the nature of 
     95$\Delta q_u$ and $\Delta q_v$. 
    9496 
    9597Solution 1 
    9698^^^^^^^^^^ 
    9799 
    98 **For** |inlineimage012| **= 0 and** |inlineimage011| **= constant.** 
     100**For $\Delta q_v= 0$ and $\Delta q_u = \text{constant}$.** 
    99101 
    100102.. image:: sm_image016.png 
    101103 
    102 For discrete *q* values, at the *q* values of the data points and at the *q* 
    103 values extended up to *q*\ :sub:`N`\ = *q*\ :sub:`i` + |inlineimage011| the smeared 
     104For discrete $q$ values, at the $q$ values of the data points and at the $q$ 
     105values extended up to $q_N = q_i + \Delta q_u$ the smeared 
    104106intensity can be approximately calculated as 
    105107 
     
    108110**[Equation 5]** 
    109111 
    110 where |inlineimage018| = 0 for *I*\ :sub:`s` when *j* < *i* or *j* > *N-1*. 
     112where |inlineimage018| = 0 for $I_s$ when $j < i$ or $j > N-1$. 
    111113 
    112114Solution 2 
    113115^^^^^^^^^^ 
    114116 
    115 **For** |inlineimage012| **= constant and** |inlineimage011| **= 0.** 
     117**For $\Delta q_v = \text{constant}$ and $\Delta q_u= 0$.** 
    116118 
    117119Similar to Case 1 
    118120 
    119 |inlineimage019| for *q*\ :sub:`p` = *q*\ :sub:`i` - |inlineimage012| and *q*\ :sub:`N` = *q*\ :sub:`i` + |inlineimage012| 
     121|inlineimage019| for $q_p = q_i - \Delta q_v$ and $q_N = q_i + \Delta q_v$ 
    120122 
    121123**[Equation 6]** 
    122124 
    123 where |inlineimage018| = 0 for *I*\ :sub:`s` when *j* < *p* or *j* > *N-1*. 
     125where |inlineimage018| = 0 for $I_s$ when $j < p$ or $j > N-1$. 
    124126 
    125127Solution 3 
    126128^^^^^^^^^^ 
    127129 
    128 **For** |inlineimage011| **= constant and** |inlineimage011| **= constant.** 
     130**For $\Delta q_u = \text{constant}$ and $\Delta q_v = \text{constant}$.** 
    129131 
    130132In this case, the best way is to perform the integration of Equation 1 
     
    142144**[Equation 7]** 
    143145 
    144 for *q*\ :sub:`p` = *q*\ :sub:`i` - |inlineimage012| and *q*\ :sub:`N` = *q*\ :sub:`i` + |inlineimage012| 
    145  
    146 where |inlineimage018| = 0 for *I*\ :sub:`s` when *j* < *p* or *j* > *N-1*. 
     146for *q_p = q_i - \Delta q_v$ and $q_N = q_i + \Delta q_v$ 
     147where |inlineimage018| = 0 for *I_s$ when $j < p$ or $j > N-1$. 
    147148 
    148149.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 
     
    175176**[Equation 9]** 
    176177 
    177 In Equation 9, *x*\ :sub:`0` = *q* cos(|theta|), *y*\ :sub:`0` = *q* sin(|theta|), and 
    178 the primed axes, are all in the coordinate rotated by an angle |theta| about 
    179 the z-axis (see the figure below) so that *x'*\ :sub:`0` = *x*\ :sub:`0` cos(|theta|) + 
    180 *y*\ :sub:`0` sin(|theta|) and *y'*\ :sub:`0` = -*x*\ :sub:`0` sin(|theta|) + 
    181 *y*\ :sub:`0` cos(|theta|). Note that the rotation angle is zero for a x-y symmetric 
    182 elliptical Gaussian distribution. The *A* is a normalization factor. 
     178In Equation 9, $x_0 = q \cos(\theta)$, $y_0 = q \sin(\theta)$, and 
     179the primed axes, are all in the coordinate rotated by an angle $\theta$ about 
     180the z-axis (see the figure below) so that 
     181$x'_0 = x_0 \cos(\theta) + y_0 \sin(\theta)$ and 
     182$y'_0 = -x_0 \sin(\theta) + y_0 \cos(\theta)$. 
     183Note that the rotation angle is zero for a $xy$ symmetric 
     184elliptical Gaussian distribution. The $A$ is a normalization factor. 
    183185 
    184186.. image:: sm_image023.png 
    185187 
    186 Now we consider a numerical integration where each of the bins in |theta| and *R* are 
    187 *evenly* (this is to simplify the equation below) distributed by |bigdelta|\ |theta| 
    188 and |bigdelta|\ R, respectively, and it is further assumed that *I(x',y')* is constant 
     188Now we consider a numerical integration where each of the bins in $\theta$ and $R$ are 
     189*evenly* (this is to simplify the equation below) distributed by $\Delta \theta$ 
     190and $\Delta R$, respectively, and it is further assumed that $I(x',y')$ is constant 
    189191within the bins. Then 
    190192 
     
    194196 
    195197Since the weighting factor on each of the bins is known, it is convenient to 
    196 transform *x'-y'* back to *x-y* coordinates (by rotating it by -|theta| around the 
    197 *z* axis). 
     198transform $x'y'$ back to $xy$ coordinates (by rotating it by $-\theta$ around the 
     199$z$ axis). 
    198200 
    199201Then, for a polar symmetric smear 
     
    207209.. image:: sm_image026.png 
    208210 
    209 while for a *x-y* symmetric smear 
     211while for a $xy$ symmetric smear 
    210212 
    211213.. image:: sm_image027.png 
     
    225227------------------------- 
    226228 
    227 In all the cases above, the weighting matrix *W* is calculated on the first call 
    228 to a smearing function, and includes ~60 *q* values (finely and evenly binned) 
    229 below (>0) and above the *q* range of data in order to smear all data points for 
    230 a given model and slit/pinhole size. The *Norm*  factor is found numerically with the 
    231 weighting matrix and applied on the computation of *I*\ :sub:`s`. 
     229In all the cases above, the weighting matrix $W$ is calculated on the first call 
     230to a smearing function, and includes ~60 $q$ values (finely and evenly binned) 
     231below (>0) and above the $q$ range of data in order to smear all data points for 
     232a given model and slit/pinhole size. The $Norm$  factor is found numerically with the 
     233weighting matrix and applied on the computation of $I_s$. 
    232234 
    233235.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 
Note: See TracChangeset for help on using the changeset viewer.