Ignore:
Timestamp:
Apr 7, 2017 1:11:41 AM (7 years ago)
Author:
Paul Kienzle <pkienzle@…>
Branches:
master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, magnetic_scatt, release-4.2.2, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
Children:
fca1f50
Parents:
727c05f
Message:

docs: use latex in equations rather than unicode + rst markup

File:
1 edited

Legend:

Unmodified
Added
Removed
  • src/sas/sasgui/perspectives/fitting/media/pd_help.rst

    r6aad2e8 r5ed76f8  
    2424form factor is normalized by the average particle volume such that 
    2525 
    26 *P(q) = scale* * \ <F*\F> / *V + bkg* 
     26.. math:: 
    2727 
    28 where F is the scattering amplitude and the \<\> denote an average over the size 
    29 distribution. 
     28    P(q) = \text{scale} \langle F^*F rangle V + \text{background} 
     29 
     30where $F$ is the scattering amplitude and $\langle\cdot\rangle$ denotes an average 
     31over the size distribution. 
    3032 
    3133Users should note that this computation is very intensive. Applying polydispersion 
     
    5759.. image:: pd_image001.png 
    5860 
    59 where *xmean* is the mean of the distribution, *w* is the half-width, and *Norm* is a 
    60 normalization factor which is determined during the numerical calculation. 
     61where $x_{mean}$ is the mean of the distribution, $w$ is the half-width, and $Norm$ 
     62is a normalization factor which is determined during the numerical calculation. 
    6163 
    62 Note that the standard deviation and the half width *w* are different! 
     64Note that the standard deviation and the half width $w$ are different! 
    6365 
    6466The standard deviation is 
     
    8183.. image:: pd_image005.png 
    8284 
    83 where *xmean* is the mean of the distribution and *Norm* is a normalization factor 
     85where $x_{mean}$ is the mean of the distribution and $Norm$ is a normalization factor 
    8486which is determined during the numerical calculation. 
    8587 
     
    100102.. image:: pd_image007.png 
    101103 
    102 where |mu|\ =ln(*xmed*), *xmed* is the median value of the distribution, and 
    103 *Norm* is a normalization factor which will be determined during the numerical 
     104where $\mu=\ln(x_{med})$, $x_{med}$ is the median value of the distribution, and 
     105$Norm$ is a normalization factor which will be determined during the numerical 
    104106calculation. 
    105107 
     
    107109size parameter in the *FitPage*, for example, radius = 60. 
    108110 
    109 The polydispersity is given by |sigma| 
     111The polydispersity is given by $\sigma$ 
    110112 
    111113.. image:: pd_image008.png 
     
    115117.. image:: pd_image009.png 
    116118 
    117 The mean value is given by *xmean*\ =exp(|mu|\ +p\ :sup:`2`\ /2). The peak value 
    118 is given by *xpeak*\ =exp(|mu|-p\ :sup:`2`\ ). 
     119The mean value is given by $x_{mean} =\exp(\mu + p^2 /2)$. The peak value 
     120is given by $x_{peak} =\exp(\mu-p^2)$. 
    119121 
    120122.. image:: pd_image010.jpg 
    121123 
    122 This distribution function spreads more, and the peak shifts to the left, as *p* 
     124This distribution function spreads more, and the peak shifts to the left, as $p$ 
    123125increases, requiring higher values of Nsigmas and Npts. 
    124126 
     
    132134.. image:: pd_image011.png 
    133135 
    134 where *xmean* is the mean of the distribution and *Norm* is a normalization factor 
    135 which is determined during the numerical calculation, and *z* is a measure of the 
     136where $x_{mean}$ is the mean of the distribution and $Norm$ is a normalization factor 
     137which is determined during the numerical calculation, and $z$ is a measure of the 
    136138width of the distribution such that 
    137139 
    138 z = (1-p\ :sup:`2`\ ) / p\ :sup:`2` 
     140.. math:: 
     141 
     142    z = (1-p^2 ) / p^2 
    139143 
    140144The polydispersity is 
     
    156160 
    157161This user-definable distribution should be given as as a simple ASCII text file 
    158 where the array is defined by two columns of numbers: *x* and *f(x)*. The *f(x)* 
     162where the array is defined by two columns of numbers: $x$ and $f(x)$. The $f(x)$ 
    159163will be normalized by SasView during the computation. 
    160164 
     
    172176 
    173177SasView only uses these array values during the computation, therefore any mean 
    174 value of the parameter represented by *x* present in the *FitPage* 
     178value of the parameter represented by $x$ present in the *FitPage* 
    175179will be ignored. 
    176180 
     
    181185 
    182186Many commercial Dynamic Light Scattering (DLS) instruments produce a size 
    183 polydispersity parameter, sometimes even given the symbol *p*! This parameter is 
     187polydispersity parameter, sometimes even given the symbol $p$! This parameter is 
    184188defined as the relative standard deviation coefficient of variation of the size 
    185189distribution and is NOT the same as the polydispersity parameters in the Lognormal 
Note: See TracChangeset for help on using the changeset viewer.