Changeset 4b0a294 in sasmodels
- Timestamp:
- Apr 5, 2017 7:36:50 AM (8 years ago)
- Branches:
- master, core_shell_microgels, costrafo411, magnetic_model, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
- Children:
- b6e0636
- Parents:
- 933af72
- Location:
- sasmodels/models
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
sasmodels/models/ellipsoid.py
r3b571ae r4b0a294 161 161 def ER(radius_polar, radius_equatorial): 162 162 import numpy as np 163 163 # see equation (26) in A.Isihara, J.Chem.Phys. 18(1950)1446-1449 164 164 ee = np.empty_like(radius_polar) 165 165 idx = radius_polar > radius_equatorial -
sasmodels/models/triaxial_ellipsoid.py
r28d3067 r4b0a294 16 16 \frac{X^2}{R_a^2} + \frac{Y^2}{R_b^2} + \frac{Z^2}{R_c^2} = 1 17 17 18 the scattering is defined by the average over all orientations $\Omega$,18 the scattering for randomly oriented particles is defined by the average over all orientations $\Omega$ of: 19 19 20 20 .. math:: 21 21 22 P(q) = \text{scale} \frac{V}{4 \pi}\int_\Omega \Phi^2(qr) d\Omega + \text{background}22 P(q) = \text{scale}(\Delta\rho)^2\frac{V}{4 \pi}\int_\Omega \Phi^2(qr) d\Omega + \text{background} 23 23 24 24 where … … 79 79 The radius-of-gyration for this system is $R_g^2 = (R_a R_b R_c)^2/5$. 80 80 81 The contrast is defined as SLD(ellipsoid) - SLD(solvent). In the81 The contrast $\Delta\rho$ is defined as SLD(ellipsoid) - SLD(solvent). In the 82 82 parameters, $R_a$ is the minor equatorial radius, $R_b$ is the major 83 83 equatorial radius, and $R_c$ is the polar radius of the ellipsoid. … … 102 102 *Light scattering by ellipsoidal particles in solution*, 103 103 J. Phys. D: Appl. Phys. 4, 72-77. doi:10.1088/0022-3727/4/1/310 104 105 Authorship and Verification 106 ---------------------------- 107 108 * **Author:** NIST IGOR/DANSE **Date:** pre 2010 109 * **Last Modified by:** Paul Kienzle (improved calculation) **Date:** April 4, 2017 110 * **Last Reviewed by:** Paul Kienzle &Richard Heenan **Date:** April 4, 2017 104 111 105 112 """ … … 144 151 import numpy as np 145 152 from .ellipsoid import ER as ellipsoid_ER 153 # now that radii can be in any size order, radii need sorting a,b,c where a~b and c is either much smaller or much larger 154 # also need some unit tests! 155 146 156 return ellipsoid_ER(radius_polar, np.sqrt(radius_equat_minor * radius_equat_major)) 147 157
Note: See TracChangeset
for help on using the changeset viewer.