Changeset 455aaa1 in sasmodels


Ignore:
Timestamp:
Sep 7, 2018 11:27:02 AM (6 years ago)
Author:
butler
Branches:
master, core_shell_microgels, magnetic_model, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
Children:
6e7d7b6
Parents:
15a7577
Message:

update hollow_rectangular_prism docs

Add statement about vol fraction being for shell only. Also fix typos,
clean up/normalize ref and authorship sections and fix/normalize
hollow_cylinder refs and authorship

Location:
sasmodels/models
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • sasmodels/models/hollow_cylinder.py

    r15a7577 r455aaa1  
    5858---------- 
    5959 
    60 L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and 
    61 Neutron Scattering*, Plenum Press, New York, (1987) 
     60.. [#] L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and 
     61   Neutron Scattering*, Plenum Press, New York, (1987) 
    6262 
    6363Authorship and Verification 
  • sasmodels/models/hollow_rectangular_prism.py

    r0e55afe r455aaa1  
    22# Note: model title and parameter table are inserted automatically 
    33r""" 
    4  
    5 This model provides the form factor, $P(q)$, for a hollow rectangular 
    6 parallelepiped with a wall of thickness $\Delta$. 
    7  
    8  
    94Definition 
    105---------- 
    116 
    12 The 1D scattering intensity for this model is calculated by forming 
    13 the difference of the amplitudes of two massive parallelepipeds 
    14 differing in their outermost dimensions in each direction by the 
    15 same length increment $2\Delta$ (Nayuk, 2012). 
     7This model provides the form factor, $P(q)$, for a hollow rectangular 
     8parallelepiped with a wall of thickness $\Delta$. The 1D scattering intensity 
     9for this model is calculated by forming the difference of the amplitudes of two 
     10massive parallelepipeds differing in their outermost dimensions in each 
     11direction by the same length increment $2\Delta$ (\ [#Nayuk2012]_ Nayuk, 2012). 
    1612 
    1713As in the case of the massive parallelepiped model (:ref:`rectangular-prism`), 
     
    6157  \rho_\text{solvent})^2 \times P(q) + \text{background} 
    6258 
    63 where $\rho_\text{p}$ is the scattering length of the parallelepiped, 
    64 $\rho_\text{solvent}$ is the scattering length of the solvent, 
     59where $\rho_\text{p}$ is the scattering length density of the parallelepiped, 
     60$\rho_\text{solvent}$ is the scattering length density of the solvent, 
    6561and (if the data are in absolute units) *scale* represents the volume fraction 
    66 (which is unitless). 
     62(which is unitless) of the rectangular shell of material (i.e. not including 
     63the volume of the solvent filled core). 
    6764 
    6865For 2d data the orientation of the particle is required, described using 
     
    7370 
    7471For 2d, constraints must be applied during fitting to ensure that the inequality 
    75 $A < B < C$ is not violated, and hence the correct definition of angles is preserved. The calculation will not report an error, 
    76 but the results may be not correct. 
     72$A < B < C$ is not violated, and hence the correct definition of angles is 
     73preserved. The calculation will not report an error if the inequality is *not* 
     74preserved, but the results may be not correct. 
    7775 
    7876.. figure:: img/parallelepiped_angle_definition.png 
     
    9997---------- 
    10098 
    101 R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854 
     99.. [#Nayuk2012] R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854 
     100 
     101 
     102Authorship and Verification 
     103---------------------------- 
     104 
     105* **Author:** Miguel Gonzales **Date:** February 26, 2016 
     106* **Last Modified by:** Paul Kienzle **Date:** December 14, 2017 
     107* **Last Reviewed by:** Paul Butler **Date:** September 06, 2018 
    102108""" 
    103109 
Note: See TracChangeset for help on using the changeset viewer.