Changeset 15a7577 in sasmodels
- Timestamp:
- Sep 7, 2018 8:38:31 AM (6 years ago)
- Branches:
- master, core_shell_microgels, magnetic_model, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
- Children:
- 455aaa1
- Parents:
- 917d975
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
sasmodels/models/hollow_cylinder.py
ree5fc99 r15a7577 1 1 r""" 2 Definition 3 ---------- 4 2 5 This model provides the form factor, $P(q)$, for a monodisperse hollow right 3 angle circular cylinder (rigid tube) where the form factor is normalized by the 4 volume of the tube (i.e. not by the external volume). 6 angle circular cylinder (rigid tube) where the The inside and outside of the 7 hollow cylinder are assumed to have the same SLD and the form factor is thus 8 normalized by the volume of the tube (i.e. not by the total cylinder volume). 5 9 6 10 .. math:: … … 8 12 P(q) = \text{scale} \left<F^2\right>/V_\text{shell} + \text{background} 9 13 10 where the averaging $\left<\ldots\right>$ is applied only for the 1D calculation. 14 where the averaging $\left<\ldots\right>$ is applied only for the 1D 15 calculation. If Intensity is given on an absolute scale, the scale factor here 16 is the volume fraction of the shell. This differs from 17 the :ref:`core-shell-cylinder` in that, in that case, scale is the volume 18 fraction of the entire cylinder (core+shell). The application might be for a 19 bilayer which wraps into a hollow tube and the volume fraction of material is 20 all in the shell, whereas the :ref:`core-shell-cylinder` model might be used for 21 a cylindrical micelle where the tails in the core have a different SLD than the 22 headgroups (in the shell) and the volume fraction of material comes fromm the 23 whole cyclinder. NOTE: the hollow_cylinder represents a tube whereas the 24 core_shell_cylinder includes a shell layer covering the ends (end caps) as well. 11 25 12 The inside and outside of the hollow cylinder are assumed have the same SLD.13 14 Definition15 ----------16 26 17 27 The 1D scattering intensity is calculated in the following way (Guinier, 1955) … … 55 65 56 66 * **Author:** NIST IGOR/DANSE **Date:** pre 2010 57 * **Last Modified by:** Richard Heenan **Date:** October 06, 201658 ( reparametrised to use thickness, not outer radius)59 * **Last Reviewed by:** Richard Heenan **Date:** October 06, 201667 * **Last Modified by:** Paul Butler **Date:** September 06, 2018 68 (corrected VR calculation) 69 * **Last Reviewed by:** Paul Butler **Date:** September 06, 2018 60 70 """ 61 71
Note: See TracChangeset
for help on using the changeset viewer.