Changeset 3fb3449 in sasmodels
- Timestamp:
- Apr 6, 2016 3:42:25 PM (9 years ago)
- Branches:
- master, core_shell_microgels, costrafo411, magnetic_model, release_v0.94, release_v0.95, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
- Children:
- 398aa94
- Parents:
- 21b116f (diff), c4e7a5f (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent. - Files:
-
- 5 added
- 42 edited
Legend:
- Unmodified
- Added
- Removed
-
sasmodels/kernel_template.c
rcf85329 rc4e7a5f 158 158 #ifdef IQ_OPEN_LOOPS 159 159 double ret=0.0, norm=0.0; 160 #ifdef VOLUME_PARAMETERS161 double vol=0.0, norm_vol=0.0;162 #endif163 160 IQ_OPEN_LOOPS 164 161 //for (int radius_i=0; radius_i < Nradius; radius_i++) { … … 172 169 if (!isnan(scattering)) { 173 170 ret += weight*scattering; 171 #ifdef VOLUME_PARAMETERS 172 norm += weight * form_volume(VOLUME_PARAMETERS); 173 #else 174 174 norm += weight; 175 #ifdef VOLUME_PARAMETERS176 const double vol_weight = VOLUME_WEIGHT_PRODUCT;177 vol += vol_weight*form_volume(VOLUME_PARAMETERS);178 norm_vol += vol_weight;179 175 #endif 180 176 } … … 182 178 } 183 179 IQ_CLOSE_LOOPS 184 #ifdef VOLUME_PARAMETERS 185 if (vol*norm_vol != 0.0) { 186 ret *= norm_vol/vol; 187 } 188 #endif 189 result[i] = scale*ret/norm+background; 180 // norm can only be zero if volume is zero, so no scattering 181 result[i] = (norm > 0. ? scale*ret/norm + background : background); 190 182 #else 191 183 result[i] = scale*Iq(qi, IQ_PARAMETERS) + background; … … 241 233 // const double radius = loops[2*(radius_i)]; 242 234 // const double radius_w = loops[2*(radius_i)+1]; 243 244 const double weight = IQXY_WEIGHT_PRODUCT; 235 double weight = IQXY_WEIGHT_PRODUCT; 245 236 if (weight > cutoff) { 246 237 247 238 const double scattering = Iqxy(qxi, qyi, IQXY_PARAMETERS); 248 239 if (!isnan(scattering)) { // if scattering is bad, exclude it from sum 249 //if (scattering >= 0.0) { // scattering cannot be negative 250 // TODO: use correct angle for spherical correction 251 // Definition of theta and phi are probably reversed relative to the 252 // equation which gave rise to this correction, leading to an 253 // attenuation of the pattern as theta moves through pi/2. Either 254 // reverse the meanings of phi and theta in the forms, or use phi 255 // rather than theta in this correction. Current code uses cos(theta) 256 // so that values match those of sasview. 257 #if defined(IQXY_HAS_THETA) // && 0 258 const double spherical_correction 259 = (Ntheta>1 ? fabs(cos(M_PI_180*theta))*M_PI_2:1.0); 260 const double next = spherical_correction * weight * scattering; 261 #else 262 const double next = weight * scattering; 263 #endif 240 #if defined(IQXY_HAS_THETA) 241 // Force a nominal value for the spherical correction even when 242 // theta is +90/-90 so that there are no divide by zero problems. 243 // For cos(theta) fixed at 90, we effectively multiply top and bottom 244 // by 1e-6, so the effect cancels. 245 const double spherical_correction = fmax(fabs(cos(M_PI_180*theta)), 1e-6); 246 weight *= spherical_correction; 247 #endif 248 const double next = weight * scattering; 264 249 #if USE_KAHAN_SUMMATION 265 250 const double y = next - accumulated_error; … … 270 255 ret += next; 271 256 #endif 257 #ifdef VOLUME_PARAMETERS 258 norm += weight*form_volume(VOLUME_PARAMETERS); 259 #else 272 260 norm += weight; 273 #ifdef VOLUME_PARAMETERS274 const double vol_weight = VOLUME_WEIGHT_PRODUCT;275 vol += vol_weight*form_volume(VOLUME_PARAMETERS);276 norm_vol += vol_weight;277 261 #endif 278 262 } … … 280 264 } 281 265 IQXY_CLOSE_LOOPS 282 #ifdef VOLUME_PARAMETERS 283 if (vol*norm_vol != 0.0) { 284 ret *= norm_vol/vol; 285 } 286 #endif 287 result[i] = scale*ret/norm+background; 266 // norm can only be zero if volume is zero, so no scattering 267 result[i] = (norm>0. ? scale*ret/norm + background : background); 288 268 #else 289 269 result[i] = scale*Iqxy(qxi, qyi, IQXY_PARAMETERS) + background; -
doc/developer/index.rst
r56fc97a rb85be2d 3 3 *************************** 4 4 5 .. toctree:: 6 :numbered: 4 7 :maxdepth: 4 5 8 9 calculator.rst -
sasmodels/bumps_model.py
rea75043 r21b116f 81 81 from bumps.names import Parameter 82 82 83 pars = {} 84 for p in model_info['parameters']: 83 pars = {} # floating point parameters 84 pd_types = {} # distribution names 85 for p in model_info['parameters'].call_parameters: 85 86 value = kwargs.pop(p.name, p.default) 86 87 pars[p.name] = Parameter.default(value, name=p.name, limits=p.limits) 87 for name in model_info['partype']['pd-2d']: 88 for xpart, xdefault, xlimits in [ 89 ('_pd', 0., pars[name].limits), 90 ('_pd_n', 35., (0, 1000)), 91 ('_pd_nsigma', 3., (0, 10)), 92 ]: 93 xname = name + xpart 94 xvalue = kwargs.pop(xname, xdefault) 95 pars[xname] = Parameter.default(xvalue, name=xname, limits=xlimits) 96 97 pd_types = {} 98 for name in model_info['partype']['pd-2d']: 99 xname = name + '_pd_type' 100 xvalue = kwargs.pop(xname, 'gaussian') 101 pd_types[xname] = xvalue 88 if p.polydisperse: 89 for part, default, limits in [ 90 ('_pd', 0., pars[p.name].limits), 91 ('_pd_n', 35., (0, 1000)), 92 ('_pd_nsigma', 3., (0, 10)), 93 ]: 94 name = p.name + part 95 value = kwargs.pop(name, default) 96 pars[name] = Parameter.default(value, name=name, limits=limits) 97 name = p.name + '_pd_type' 98 pd_types[name] = kwargs.pop(name, 'gaussian') 102 99 103 100 if kwargs: # args not corresponding to parameters -
sasmodels/compare.py
rf247314 r21b116f 38 38 from . import core 39 39 from . import kerneldll 40 from . import product41 40 from .data import plot_theory, empty_data1D, empty_data2D 42 41 from .direct_model import DirectModel … … 306 305 Format the parameter list for printing. 307 306 """ 308 if is2d:309 exclude = lambda n: False310 else:311 partype = model_info['partype']312 par1d = set(partype['fixed-1d']+partype['pd-1d'])313 exclude = lambda n: n not in par1d314 307 lines = [] 315 for p in model_info['parameters']:316 if exclude(p.name): continue308 parameters = model_info['parameters'] 309 for p in parameters.user_parameters(pars, is2d): 317 310 fields = dict( 318 value=pars.get(p. name, p.default),319 pd=pars.get(p. name+"_pd", 0.),320 n=int(pars.get(p. name+"_pd_n", 0)),321 nsigma=pars.get(p. name+"_pd_nsgima", 3.),322 type=pars.get(p. name+"_pd_type", 'gaussian'))311 value=pars.get(p.id, p.default), 312 pd=pars.get(p.id+"_pd", 0.), 313 n=int(pars.get(p.id+"_pd_n", 0)), 314 nsigma=pars.get(p.id+"_pd_nsgima", 3.), 315 type=pars.get(p.id+"_pd_type", 'gaussian')) 323 316 lines.append(_format_par(p.name, **fields)) 324 317 return "\n".join(lines) … … 454 447 """ 455 448 # initialize the code so time is more accurate 456 value = calculator(**suppress_pd(pars)) 449 if Nevals > 1: 450 value = calculator(**suppress_pd(pars)) 457 451 toc = tic() 458 452 for _ in range(max(Nevals, 1)): # make sure there is at least one eval … … 661 655 """ 662 656 # Get the default values for the parameters 663 pars = dict((p.name, p.default) for p in model_info['parameters']) 664 665 # Fill in default values for the polydispersity parameters 666 for p in model_info['parameters']: 667 if p.type in ('volume', 'orientation'): 668 pars[p.name+'_pd'] = 0.0 669 pars[p.name+'_pd_n'] = 0 670 pars[p.name+'_pd_nsigma'] = 3.0 671 pars[p.name+'_pd_type'] = "gaussian" 657 pars = {} 658 for p in model_info['parameters'].call_parameters: 659 parts = [('', p.default)] 660 if p.polydisperse: 661 parts.append(('_pd', 0.0)) 662 parts.append(('_pd_n', 0)) 663 parts.append(('_pd_nsigma', 3.0)) 664 parts.append(('_pd_type', "gaussian")) 665 for ext, val in parts: 666 if p.length > 1: 667 dict(("%s%d%s"%(p.id,k,ext), val) for k in range(p.length)) 668 else: 669 pars[p.id+ext] = val 672 670 673 671 # Plug in values given in demo … … 774 772 775 773 if len(engines) == 0: 776 engines.extend(['single', ' sasview'])774 engines.extend(['single', 'double']) 777 775 elif len(engines) == 1: 778 if engines[0][0] != ' sasview':779 engines.append(' sasview')776 if engines[0][0] != 'double': 777 engines.append('double') 780 778 else: 781 779 engines.append('single') … … 879 877 model_info = opts['def'] 880 878 pars, pd_types = bumps_model.create_parameters(model_info, **opts['pars']) 879 # Initialize parameter ranges, fixing the 2D parameters for 1D data. 881 880 if not opts['is2d']: 882 active = [base + ext 883 for base in model_info['partype']['pd-1d'] 884 for ext in ['', '_pd', '_pd_n', '_pd_nsigma']] 885 active.extend(model_info['partype']['fixed-1d']) 886 for k in active: 887 v = pars[k] 888 v.range(*parameter_range(k, v.value)) 881 for p in model_info['parameters'].user_parameters(is2d=False): 882 for ext in ['', '_pd', '_pd_n', '_pd_nsigma']: 883 k = p.name+ext 884 v = pars.get(k, None) 885 if v is not None: 886 v.range(*parameter_range(k, v.value)) 889 887 else: 890 888 for k, v in pars.items(): -
sasmodels/convert.json
rec45c4f rd2bb604 623 623 "SphereSLDModel", 624 624 { 625 "n": "n_shells", 625 626 "radius_core": "rad_core", 626 627 "sld_solvent": "sld_solv" -
sasmodels/core.py
r4d76711 rd2bb604 170 170 171 171 172 def get_weights( model_info, pars, name):172 def get_weights(parameter, values): 173 173 """ 174 174 Generate the distribution for parameter *name* given the parameter values … … 178 178 from the *pars* dictionary for parameter value and parameter dispersion. 179 179 """ 180 relative = name in model_info['partype']['pd-rel'] 181 limits = model_info['limits'][name] 182 disperser = pars.get(name+'_pd_type', 'gaussian') 183 value = pars.get(name, model_info['defaults'][name]) 184 npts = pars.get(name+'_pd_n', 0) 185 width = pars.get(name+'_pd', 0.0) 186 nsigma = pars.get(name+'_pd_nsigma', 3.0) 180 value = float(values.get(parameter.name, parameter.default)) 181 relative = parameter.relative_pd 182 limits = parameter.limits 183 disperser = values.get(parameter.name+'_pd_type', 'gaussian') 184 npts = values.get(parameter.name+'_pd_n', 0) 185 width = values.get(parameter.name+'_pd', 0.0) 186 nsigma = values.get(parameter.name+'_pd_nsigma', 3.0) 187 if npts == 0 or width == 0: 188 return [value], [] 187 189 value, weight = weights.get_weights( 188 190 disperser, npts, width, nsigma, value, limits, relative) … … 198 200 """ 199 201 value, weight = zip(*pars) 202 weight = [w if w else [1.] for w in weight] 200 203 value = [v.flatten() for v in meshgrid(*value)] 201 204 weight = np.vstack([v.flatten() for v in meshgrid(*weight)]) … … 216 219 *mono* is True if polydispersity should be set to none on all parameters. 217 220 """ 218 fixed_pars = [pars.get(name, kernel.info['defaults'][name]) 219 for name in kernel.fixed_pars] 221 parameters = kernel.info['parameters'] 220 222 if mono: 221 pd_pars = [( np.array([pars[name]]), np.array([1.0]) ) 222 for name in kernel.pd_pars] 223 else: 224 pd_pars = [get_weights(kernel.info, pars, name) for name in kernel.pd_pars] 225 return kernel(fixed_pars, pd_pars, cutoff=cutoff) 223 active = lambda name: False 224 elif kernel.dim == '1d': 225 active = lambda name: name in parameters.pd_1d 226 elif kernel.dim == '2d': 227 active = lambda name: name in parameters.pd_2d 228 else: 229 active = lambda name: True 230 231 vw_pairs = [(get_weights(p, pars) if active(p.name) 232 else ([pars.get(p.name, p.default)], [])) 233 for p in parameters.call_parameters] 234 235 details, weights, values = build_details(kernel, vw_pairs) 236 return kernel(details, weights, values, cutoff) 237 238 def build_details(kernel, pairs): 239 values, weights = zip(*pairs) 240 if max([len(w) for w in weights]) > 1: 241 details = generate.poly_details(kernel.info, weights) 242 else: 243 details = kernel.info['mono_details'] 244 weights, values = [np.hstack(v) for v in (weights, values)] 245 weights = weights.astype(dtype=kernel.dtype) 246 values = values.astype(dtype=kernel.dtype) 247 return details, weights, values 248 226 249 227 250 def call_ER_VR(model_info, vol_pars): … … 256 279 return 1.0 257 280 else: 258 vol_pars = [get_weights(model_info, values, name) 259 for name in model_info['partype']['volume']] 281 vol_pars = [get_weights(parameter, values) 282 for parameter in model_info['parameters'].call_parameters 283 if parameter.type == 'volume'] 260 284 value, weight = dispersion_mesh(vol_pars) 261 285 individual_radii = ER(*value) 262 #print(values[0].shape, weights.shape, fv.shape)263 286 return np.sum(weight*individual_radii) / np.sum(weight) 264 287 … … 273 296 return 1.0 274 297 else: 275 vol_pars = [get_weights(model_info, values, name) 276 for name in model_info['partype']['volume']] 298 vol_pars = [get_weights(parameter, values) 299 for parameter in model_info['parameters'].call_parameters 300 if parameter.type == 'volume'] 277 301 value, weight = dispersion_mesh(vol_pars) 278 302 whole, part = VR(*value) -
sasmodels/direct_model.py
r4d76711 r68e7f9d 67 67 self.data_type = 'Iq' 68 68 69 partype = model.info['partype']70 71 69 if self.data_type == 'sesans': 72 70 … … 82 80 q_mono = sesans.make_all_q(data) 83 81 elif self.data_type == 'Iqxy': 84 if not partype['orientation'] and not partype['magnetic']:85 raise ValueError("not 2D without orientation or magnetic parameters")82 #if not model.info['parameters'].has_2d: 83 # raise ValueError("not 2D without orientation or magnetic parameters") 86 84 q = np.sqrt(data.qx_data**2 + data.qy_data**2) 87 85 qmin = getattr(data, 'qmin', 1e-16) … … 172 170 def _calc_theory(self, pars, cutoff=0.0): 173 171 if self._kernel is None: 174 self._kernel = self._model.make_kernel(self._kernel_inputs) # pylint: disable=attribute-dedata_type172 self._kernel = self._model.make_kernel(self._kernel_inputs) 175 173 self._kernel_mono = (self._model.make_kernel(self._kernel_mono_inputs) 176 174 if self._kernel_mono_inputs else None) -
sasmodels/generate.py
r4d76711 rd2bb604 21 21 22 22 *VR(p1, p2, ...)* returns the volume ratio for core-shell style forms. 23 24 #define INVALID(v) (expr) returns False if v.parameter is invalid 25 for some parameter or other (e.g., v.bell_radius < v.radius). If 26 necessary, the expression can call a function. 23 27 24 28 These functions are defined in a kernel module .py script and an associated … … 65 69 The constructor code will generate the necessary vectors for computing 66 70 them with the desired polydispersity. 67 68 The available kernel parameters are defined as a list, with each parameter69 defined as a sublist with the following elements:70 71 *name* is the name that will be used in the call to the kernel72 function and the name that will be displayed to the user. Names73 should be lower case, with words separated by underscore. If74 acronyms are used, the whole acronym should be upper case.75 76 *units* should be one of *degrees* for angles, *Ang* for lengths,77 *1e-6/Ang^2* for SLDs.78 79 *default value* will be the initial value for the model when it80 is selected, or when an initial value is not otherwise specified.81 82 *limits = [lb, ub]* are the hard limits on the parameter value, used to83 limit the polydispersity density function. In the fit, the parameter limits84 given to the fit are the limits on the central value of the parameter.85 If there is polydispersity, it will evaluate parameter values outside86 the fit limits, but not outside the hard limits specified in the model.87 If there are no limits, use +/-inf imported from numpy.88 89 *type* indicates how the parameter will be used. "volume" parameters90 will be used in all functions. "orientation" parameters will be used91 in *Iqxy* and *Imagnetic*. "magnetic* parameters will be used in92 *Imagnetic* only. If *type* is the empty string, the parameter will93 be used in all of *Iq*, *Iqxy* and *Imagnetic*. "sld" parameters94 can automatically be promoted to magnetic parameters, each of which95 will have a magnitude and a direction, which may be different from96 other sld parameters.97 98 *description* is a short description of the parameter. This will99 be displayed in the parameter table and used as a tool tip for the100 parameter value in the user interface.101 102 71 The kernel module must set variables defining the kernel meta data: 103 72 … … 204 173 from __future__ import print_function 205 174 206 #TODO: identify model files which have changed since loading and reload them.207 175 #TODO: determine which functions are useful outside of generate 208 176 #__all__ = ["model_info", "make_doc", "make_source", "convert_type"] 209 177 210 import sys211 178 from os.path import abspath, dirname, join as joinpath, exists, basename, \ 212 splitext 179 splitext, getmtime 213 180 import re 214 181 import string 215 182 import warnings 216 from collections import namedtuple217 183 218 184 import numpy as np 219 185 186 from .modelinfo import ModelInfo, Parameter, make_parameter_table, set_demo 220 187 from .custom import load_custom_kernel_module 221 188 222 PARAMETER_FIELDS = ['name', 'units', 'default', 'limits', 'type', 'description'] 223 Parameter = namedtuple('Parameter', PARAMETER_FIELDS) 224 225 C_KERNEL_TEMPLATE_PATH = joinpath(dirname(__file__), 'kernel_template.c') 189 TEMPLATE_ROOT = dirname(__file__) 226 190 227 191 F16 = np.dtype('float16') … … 232 196 except TypeError: 233 197 F128 = None 234 235 # Scale and background, which are parameters common to every form factor236 COMMON_PARAMETERS = [237 ["scale", "", 1, [0, np.inf], "", "Source intensity"],238 ["background", "1/cm", 1e-3, [0, np.inf], "", "Source background"],239 ]240 198 241 199 # Conversion from units defined in the parameter table for each model … … 331 289 raise ValueError("%r not found in %s" % (filename, search_path)) 332 290 291 333 292 def model_sources(model_info): 334 293 """ … … 339 298 return [_search(search_path, f) for f in model_info['source']] 340 299 341 # Pragmas for enable OpenCL features. Be sure to protect them so that they 342 # still compile even if OpenCL is not present. 343 _F16_PRAGMA = """\ 344 #if defined(__OPENCL_VERSION__) // && !defined(cl_khr_fp16) 345 # pragma OPENCL EXTENSION cl_khr_fp16: enable 346 #endif 347 """ 348 349 _F64_PRAGMA = """\ 350 #if defined(__OPENCL_VERSION__) // && !defined(cl_khr_fp64) 351 # pragma OPENCL EXTENSION cl_khr_fp64: enable 352 #endif 353 """ 300 def timestamp(model_info): 301 """ 302 Return a timestamp for the model corresponding to the most recently 303 changed file or dependency. 304 """ 305 source_files = (model_sources(model_info) 306 + model_templates() 307 + [model_info['filename']]) 308 newest = max(getmtime(f) for f in source_files) 309 return newest 354 310 355 311 def convert_type(source, dtype): … … 362 318 if dtype == F16: 363 319 fbytes = 2 364 source = _ F16_PRAGMA + _convert_type(source, "half", "f")320 source = _convert_type(source, "half", "f") 365 321 elif dtype == F32: 366 322 fbytes = 4 … … 368 324 elif dtype == F64: 369 325 fbytes = 8 370 source = _F64_PRAGMA + source # Sourceis already double326 # no need to convert if it is already double 371 327 elif dtype == F128: 372 328 fbytes = 16 … … 411 367 412 368 413 LOOP_OPEN = """\ 414 for (int %(name)s_i=0; %(name)s_i < N%(name)s; %(name)s_i++) { 415 const double %(name)s = loops[2*(%(name)s_i%(offset)s)]; 416 const double %(name)s_w = loops[2*(%(name)s_i%(offset)s)+1];\ 369 _template_cache = {} 370 def load_template(filename): 371 path = joinpath(TEMPLATE_ROOT, filename) 372 mtime = getmtime(path) 373 if filename not in _template_cache or mtime > _template_cache[filename][0]: 374 with open(path) as fid: 375 _template_cache[filename] = (mtime, fid.read(), path) 376 return _template_cache[filename][1] 377 378 def model_templates(): 379 # TODO: fails DRY; templates are listed in two places. 380 # should instead have model_info contain a list of paths 381 return [joinpath(TEMPLATE_ROOT, filename) 382 for filename in ('kernel_header.c', 'kernel_iq.c')] 383 384 385 _FN_TEMPLATE = """\ 386 double %(name)s(%(pars)s); 387 double %(name)s(%(pars)s) { 388 %(body)s 389 } 390 391 417 392 """ 418 def build_polydispersity_loops(pd_pars): 419 """ 420 Build polydispersity loops 421 422 Returns loop opening and loop closing 423 """ 424 depth = 4 425 offset = "" 426 loop_head = [] 427 loop_end = [] 428 for name in pd_pars: 429 subst = {'name': name, 'offset': offset} 430 loop_head.append(indent(LOOP_OPEN % subst, depth)) 431 loop_end.insert(0, (" "*depth) + "}") 432 offset += '+N' + name 433 depth += 2 434 return "\n".join(loop_head), "\n".join(loop_end) 435 436 C_KERNEL_TEMPLATE = None 393 394 def _gen_fn(name, pars, body): 395 """ 396 Generate a function given pars and body. 397 398 Returns the following string:: 399 400 double fn(double a, double b, ...); 401 double fn(double a, double b, ...) { 402 .... 403 } 404 """ 405 par_decl = ', '.join(p.as_function_argument() for p in pars) if pars else 'void' 406 return _FN_TEMPLATE % {'name': name, 'body': body, 'pars': par_decl} 407 408 def _call_pars(prefix, pars): 409 """ 410 Return a list of *prefix.parameter* from parameter items. 411 """ 412 return [p.as_call_reference(prefix) for p in pars] 413 414 _IQXY_PATTERN = re.compile("^((inline|static) )? *(double )? *Iqxy *([(]|$)", 415 flags=re.MULTILINE) 416 def _have_Iqxy(sources): 417 """ 418 Return true if any file defines Iqxy. 419 420 Note this is not a C parser, and so can be easily confused by 421 non-standard syntax. Also, it will incorrectly identify the following 422 as having Iqxy:: 423 424 /* 425 double Iqxy(qx, qy, ...) { ... fill this in later ... } 426 */ 427 428 If you want to comment out an Iqxy function, use // on the front of the 429 line instead. 430 """ 431 for code in sources: 432 if _IQXY_PATTERN.search(code): 433 return True 434 else: 435 return False 436 437 437 def make_source(model_info): 438 438 """ … … 453 453 # for computing volume even if we allow non-disperse volume parameters. 454 454 455 # Load template 456 global C_KERNEL_TEMPLATE 457 if C_KERNEL_TEMPLATE is None: 458 with open(C_KERNEL_TEMPLATE_PATH) as fid: 459 C_KERNEL_TEMPLATE = fid.read() 460 461 # Load additional sources 462 source = [open(f).read() for f in model_sources(model_info)] 463 464 # Prepare defines 465 defines = [] 466 partype = model_info['partype'] 467 pd_1d = partype['pd-1d'] 468 pd_2d = partype['pd-2d'] 469 fixed_1d = partype['fixed-1d'] 470 fixed_2d = partype['fixed-1d'] 471 472 iq_parameters = [p.name 473 for p in model_info['parameters'][2:] # skip scale, background 474 if p.name in set(fixed_1d + pd_1d)] 475 iqxy_parameters = [p.name 476 for p in model_info['parameters'][2:] # skip scale, background 477 if p.name in set(fixed_2d + pd_2d)] 478 volume_parameters = [p.name 479 for p in model_info['parameters'] 480 if p.type == 'volume'] 481 482 # Fill in defintions for volume parameters 483 if volume_parameters: 484 defines.append(('VOLUME_PARAMETERS', 485 ','.join(volume_parameters))) 486 defines.append(('VOLUME_WEIGHT_PRODUCT', 487 '*'.join(p + '_w' for p in volume_parameters))) 488 489 # Generate form_volume function from body only 455 partable = model_info['parameters'] 456 457 # Identify parameters for Iq, Iqxy, Iq_magnetic and form_volume. 458 # Note that scale and volume are not possible types. 459 460 # Load templates and user code 461 kernel_header = load_template('kernel_header.c') 462 kernel_code = load_template('kernel_iq.c') 463 user_code = [open(f).read() for f in model_sources(model_info)] 464 465 # Build initial sources 466 source = [kernel_header] + user_code 467 468 # Make parameters for q, qx, qy so that we can use them in declarations 469 q, qx, qy = [Parameter(name=v) for v in ('q', 'qx', 'qy')] 470 # Generate form_volume function, etc. from body only 490 471 if model_info['form_volume'] is not None: 491 if volume_parameters: 492 vol_par_decl = ', '.join('double ' + p for p in volume_parameters) 493 else: 494 vol_par_decl = 'void' 495 defines.append(('VOLUME_PARAMETER_DECLARATIONS', 496 vol_par_decl)) 497 fn = """\ 498 double form_volume(VOLUME_PARAMETER_DECLARATIONS); 499 double form_volume(VOLUME_PARAMETER_DECLARATIONS) { 500 %(body)s 501 } 502 """ % {'body':model_info['form_volume']} 503 source.append(fn) 504 505 # Fill in definitions for Iq parameters 506 defines.append(('IQ_KERNEL_NAME', model_info['name'] + '_Iq')) 507 defines.append(('IQ_PARAMETERS', ', '.join(iq_parameters))) 508 if fixed_1d: 509 defines.append(('IQ_FIXED_PARAMETER_DECLARATIONS', 510 ', \\\n '.join('const double %s' % p for p in fixed_1d))) 511 if pd_1d: 512 defines.append(('IQ_WEIGHT_PRODUCT', 513 '*'.join(p + '_w' for p in pd_1d))) 514 defines.append(('IQ_DISPERSION_LENGTH_DECLARATIONS', 515 ', \\\n '.join('const int N%s' % p for p in pd_1d))) 516 defines.append(('IQ_DISPERSION_LENGTH_SUM', 517 '+'.join('N' + p for p in pd_1d))) 518 open_loops, close_loops = build_polydispersity_loops(pd_1d) 519 defines.append(('IQ_OPEN_LOOPS', 520 open_loops.replace('\n', ' \\\n'))) 521 defines.append(('IQ_CLOSE_LOOPS', 522 close_loops.replace('\n', ' \\\n'))) 472 pars = partable.form_volume_parameters 473 source.append(_gen_fn('form_volume', pars, model_info['form_volume'])) 523 474 if model_info['Iq'] is not None: 524 defines.append(('IQ_PARAMETER_DECLARATIONS', 525 ', '.join('double ' + p for p in iq_parameters))) 526 fn = """\ 527 double Iq(double q, IQ_PARAMETER_DECLARATIONS); 528 double Iq(double q, IQ_PARAMETER_DECLARATIONS) { 529 %(body)s 530 } 531 """ % {'body':model_info['Iq']} 532 source.append(fn) 533 534 # Fill in definitions for Iqxy parameters 535 defines.append(('IQXY_KERNEL_NAME', model_info['name'] + '_Iqxy')) 536 defines.append(('IQXY_PARAMETERS', ', '.join(iqxy_parameters))) 537 if fixed_2d: 538 defines.append(('IQXY_FIXED_PARAMETER_DECLARATIONS', 539 ', \\\n '.join('const double %s' % p for p in fixed_2d))) 540 if pd_2d: 541 defines.append(('IQXY_WEIGHT_PRODUCT', 542 '*'.join(p + '_w' for p in pd_2d))) 543 defines.append(('IQXY_DISPERSION_LENGTH_DECLARATIONS', 544 ', \\\n '.join('const int N%s' % p for p in pd_2d))) 545 defines.append(('IQXY_DISPERSION_LENGTH_SUM', 546 '+'.join('N' + p for p in pd_2d))) 547 open_loops, close_loops = build_polydispersity_loops(pd_2d) 548 defines.append(('IQXY_OPEN_LOOPS', 549 open_loops.replace('\n', ' \\\n'))) 550 defines.append(('IQXY_CLOSE_LOOPS', 551 close_loops.replace('\n', ' \\\n'))) 475 pars = [q] + partable.iq_parameters 476 source.append(_gen_fn('Iq', pars, model_info['Iq'])) 552 477 if model_info['Iqxy'] is not None: 553 defines.append(('IQXY_PARAMETER_DECLARATIONS', 554 ', '.join('double ' + p for p in iqxy_parameters))) 555 fn = """\ 556 double Iqxy(double qx, double qy, IQXY_PARAMETER_DECLARATIONS); 557 double Iqxy(double qx, double qy, IQXY_PARAMETER_DECLARATIONS) { 558 %(body)s 559 } 560 """ % {'body':model_info['Iqxy']} 561 source.append(fn) 562 563 # Need to know if we have a theta parameter for Iqxy; it is not there 564 # for the magnetic sphere model, for example, which has a magnetic 565 # orientation but no shape orientation. 566 if 'theta' in pd_2d: 567 defines.append(('IQXY_HAS_THETA', '1')) 568 569 #for d in defines: print(d) 570 defines = '\n'.join('#define %s %s' % (k, v) for k, v in defines) 571 sources = '\n\n'.join(source) 572 return C_KERNEL_TEMPLATE % { 573 'DEFINES': defines, 574 'SOURCES': sources, 575 } 576 577 def categorize_parameters(pars): 578 """ 579 Build parameter categories out of the the parameter definitions. 580 581 Returns a dictionary of categories. 582 583 Note: these categories are subject to change, depending on the needs of 584 the UI and the needs of the kernel calling function. 585 586 The categories are as follows: 587 588 * *volume* list of volume parameter names 589 * *orientation* list of orientation parameters 590 * *magnetic* list of magnetic parameters 591 * *<empty string>* list of parameters that have no type info 592 593 Each parameter is in one and only one category. 594 595 The following derived categories are created: 596 597 * *fixed-1d* list of non-polydisperse parameters for 1D models 598 * *pd-1d* list of polydisperse parameters for 1D models 599 * *fixed-2d* list of non-polydisperse parameters for 2D models 600 * *pd-d2* list of polydisperse parameters for 2D models 601 """ 602 partype = { 603 'volume': [], 'orientation': [], 'magnetic': [], 'sld': [], '': [], 604 'fixed-1d': [], 'fixed-2d': [], 'pd-1d': [], 'pd-2d': [], 605 'pd-rel': set(), 606 } 607 608 for p in pars: 609 if p.type == 'volume': 610 partype['pd-1d'].append(p.name) 611 partype['pd-2d'].append(p.name) 612 partype['pd-rel'].add(p.name) 613 elif p.type == 'magnetic': 614 partype['fixed-2d'].append(p.name) 615 elif p.type == 'orientation': 616 partype['pd-2d'].append(p.name) 617 elif p.type in ('', 'sld'): 618 partype['fixed-1d'].append(p.name) 619 partype['fixed-2d'].append(p.name) 620 else: 621 raise ValueError("unknown parameter type %r" % p.type) 622 partype[p.type].append(p.name) 623 624 return partype 625 626 def process_parameters(model_info): 627 """ 628 Process parameter block, precalculating parameter details. 629 """ 630 # convert parameters into named tuples 631 for p in model_info['parameters']: 632 if p[4] == '' and (p[0].startswith('sld') or p[0].endswith('sld')): 633 p[4] = 'sld' 634 # TODO: make sure all models explicitly label their sld parameters 635 #raise ValueError("%s.%s needs to be explicitly set to type 'sld'" %(model_info['id'], p[0])) 636 637 pars = [Parameter(*p) for p in model_info['parameters']] 638 # Fill in the derived attributes 639 model_info['parameters'] = pars 640 partype = categorize_parameters(pars) 641 model_info['limits'] = dict((p.name, p.limits) for p in pars) 642 model_info['partype'] = partype 643 model_info['defaults'] = dict((p.name, p.default) for p in pars) 644 if model_info.get('demo', None) is None: 645 model_info['demo'] = model_info['defaults'] 646 model_info['has_2d'] = partype['orientation'] or partype['magnetic'] 478 pars = [qx, qy] + partable.iqxy_parameters 479 source.append(_gen_fn('Iqxy', pars, model_info['Iqxy'])) 480 481 # Define the parameter table 482 source.append("#define PARAMETER_TABLE \\") 483 source.append("\\\n".join(p.as_definition() 484 for p in partable.kernel_parameters)) 485 486 # Define the function calls 487 if partable.form_volume_parameters: 488 refs = _call_pars("_v.", partable.form_volume_parameters) 489 call_volume = "#define CALL_VOLUME(_v) form_volume(%s)" % (",".join(refs)) 490 else: 491 # Model doesn't have volume. We could make the kernel run a little 492 # faster by not using/transferring the volume normalizations, but 493 # the ifdef's reduce readability more than is worthwhile. 494 call_volume = "#define CALL_VOLUME(v) 1.0" 495 source.append(call_volume) 496 497 refs = ["_q[_i]"] + _call_pars("_v.", partable.iq_parameters) 498 call_iq = "#define CALL_IQ(_q,_i,_v) Iq(%s)" % (",".join(refs)) 499 if _have_Iqxy(user_code): 500 # Call 2D model 501 refs = ["q[2*i]", "q[2*i+1]"] + _call_pars("_v.", partable.iqxy_parameters) 502 call_iqxy = "#define CALL_IQ(_q,_i,_v) Iqxy(%s)" % (",".join(refs)) 503 else: 504 # Call 1D model with sqrt(qx^2 + qy^2) 505 warnings.warn("Creating Iqxy = Iq(sqrt(qx^2 + qy^2))") 506 # still defined:: refs = ["q[i]"] + _call_pars("v", iq_parameters) 507 pars_sqrt = ["sqrt(_q[2*_i]*_q[2*_i]+_q[2*_i+1]*_q[2*_i+1])"] + refs[1:] 508 call_iqxy = "#define CALL_IQ(_q,_i,_v) Iq(%s)" % (",".join(pars_sqrt)) 509 510 # Fill in definitions for numbers of parameters 511 source.append("#define MAX_PD %s"%partable.max_pd) 512 source.append("#define NPARS %d"%partable.npars) 513 514 # TODO: allow mixed python/opencl kernels? 515 516 # define the Iq kernel 517 source.append("#define KERNEL_NAME %s_Iq"%model_info['name']) 518 source.append(call_iq) 519 source.append(kernel_code) 520 source.append("#undef CALL_IQ") 521 source.append("#undef KERNEL_NAME") 522 523 # define the Iqxy kernel from the same source with different #defines 524 source.append("#define KERNEL_NAME %s_Iqxy"%model_info['name']) 525 source.append(call_iqxy) 526 source.append(kernel_code) 527 source.append("#undef CALL_IQ") 528 source.append("#undef KERNEL_NAME") 529 530 return '\n'.join(source) 531 532 class CoordinationDetails(object): 533 def __init__(self, model_info): 534 parameters = model_info['parameters'] 535 max_pd = parameters.max_pd 536 npars = parameters.npars 537 par_offset = 4*max_pd 538 self.details = np.zeros(par_offset + 3*npars + 4, 'i4') 539 540 # generate views on different parts of the array 541 self._pd_par = self.details[0*max_pd:1*max_pd] 542 self._pd_length = self.details[1*max_pd:2*max_pd] 543 self._pd_offset = self.details[2*max_pd:3*max_pd] 544 self._pd_stride = self.details[3*max_pd:4*max_pd] 545 self._par_offset = self.details[par_offset+0*npars:par_offset+1*npars] 546 self._par_coord = self.details[par_offset+1*npars:par_offset+2*npars] 547 self._pd_coord = self.details[par_offset+2*npars:par_offset+3*npars] 548 549 # theta_par is fixed 550 self.details[-1] = parameters.theta_offset 551 552 @property 553 def ctypes(self): return self.details.ctypes 554 @property 555 def pd_par(self): return self._pd_par 556 @property 557 def pd_length(self): return self._pd_length 558 @property 559 def pd_offset(self): return self._pd_offset 560 @property 561 def pd_stride(self): return self._pd_stride 562 @property 563 def pd_coord(self): return self._pd_coord 564 @property 565 def par_coord(self): return self._par_coord 566 @property 567 def par_offset(self): return self._par_offset 568 @property 569 def num_coord(self): return self.details[-2] 570 @num_coord.setter 571 def num_coord(self, v): self.details[-2] = v 572 @property 573 def total_pd(self): return self.details[-3] 574 @total_pd.setter 575 def total_pd(self, v): self.details[-3] = v 576 @property 577 def num_active(self): return self.details[-4] 578 @num_active.setter 579 def num_active(self, v): self.details[-4] = v 580 581 def show(self): 582 print("total_pd", self.total_pd) 583 print("num_active", self.num_active) 584 print("pd_par", self.pd_par) 585 print("pd_length", self.pd_length) 586 print("pd_offset", self.pd_offset) 587 print("pd_stride", self.pd_stride) 588 print("par_offsets", self.par_offset) 589 print("num_coord", self.num_coord) 590 print("par_coord", self.par_coord) 591 print("pd_coord", self.pd_coord) 592 print("theta par", self.details[-1]) 593 594 def mono_details(model_info): 595 details = CoordinationDetails(model_info) 596 # The zero defaults for monodisperse systems are mostly fine 597 details.par_offset[:] = np.arange(2, len(details.par_offset)+2) 598 return details 599 600 def poly_details(model_info, weights): 601 #print("weights",weights) 602 weights = weights[2:] # Skip scale and background 603 604 # Decreasing list of polydispersity lengths 605 # Note: the reversing view, x[::-1], does not require a copy 606 pd_length = np.array([len(w) for w in weights]) 607 num_active = np.sum(pd_length>1) 608 if num_active > model_info['parameters'].max_pd: 609 raise ValueError("Too many polydisperse parameters") 610 611 pd_offset = np.cumsum(np.hstack((0, pd_length))) 612 idx = np.argsort(pd_length)[::-1][:num_active] 613 par_length = np.array([max(len(w),1) for w in weights]) 614 pd_stride = np.cumprod(np.hstack((1, par_length[idx]))) 615 par_offsets = np.cumsum(np.hstack((2, par_length))) 616 617 details = CoordinationDetails(model_info) 618 details.pd_par[:num_active] = idx 619 details.pd_length[:num_active] = pd_length[idx] 620 details.pd_offset[:num_active] = pd_offset[idx] 621 details.pd_stride[:num_active] = pd_stride[:-1] 622 details.par_offset[:] = par_offsets[:-1] 623 details.total_pd = pd_stride[-1] 624 details.num_active = num_active 625 # Without constraints coordinated parameters are just the pd parameters 626 details.par_coord[:num_active] = idx 627 details.pd_coord[:num_active] = 2**np.arange(num_active) 628 details.num_coord = num_active 629 #details.show() 630 return details 631 632 def constrained_poly_details(model_info, weights, constraints): 633 # Need to find the independently varying pars and sort them 634 # Need to build a coordination list for the dependent variables 635 # Need to generate a constraints function which takes values 636 # and weights, returning par blocks 637 raise NotImplementedError("Can't handle constraints yet") 638 639 640 def create_default_functions(model_info): 641 """ 642 Autogenerate missing functions, such as Iqxy from Iq. 643 644 This only works for Iqxy when Iq is written in python. :func:`make_source` 645 performs a similar role for Iq written in C. 646 """ 647 if callable(model_info['Iq']) and model_info['Iqxy'] is None: 648 partable = model_info['parameters'] 649 if partable.has_2d: 650 raise ValueError("Iqxy model is missing") 651 Iq = model_info['Iq'] 652 def Iqxy(qx, qy, **kw): 653 return Iq(np.sqrt(qx**2 + qy**2), **kw) 654 model_info['Iqxy'] = Iqxy 647 655 648 656 … … 682 690 model variants (e.g., the list of cases) or is None if there are no 683 691 model variants 684 * *defaults* is the *{parameter: value}* table built from the parameter 685 description table. 686 * *limits* is the *{parameter: [min, max]}* table built from the 687 parameter description table. 688 * *partypes* categorizes the model parameters. See 692 * *par_type* categorizes the model parameters. See 689 693 :func:`categorize_parameters` for details. 690 694 * *demo* contains the *{parameter: value}* map used in compare (and maybe … … 700 704 *model_info* blocks for the composition objects. This allows us to 701 705 build complete product and mixture models from just the info. 702 703 706 """ 704 707 # TODO: maybe turn model_info into a class ModelDefinition 705 parameters = COMMON_PARAMETERS + kernel_module.parameters 708 #print("make parameter table", kernel_module.parameters) 709 parameters = make_parameter_table(kernel_module.parameters) 706 710 filename = abspath(kernel_module.__file__) 707 711 kernel_id = splitext(basename(filename))[0] … … 713 717 filename=abspath(kernel_module.__file__), 714 718 name=name, 715 title= kernel_module.title,716 description= kernel_module.description,719 title=getattr(kernel_module, 'title', name+" model"), 720 description=getattr(kernel_module, 'description', 'no description'), 717 721 parameters=parameters, 718 722 composition=None, … … 721 725 single=getattr(kernel_module, 'single', True), 722 726 structure_factor=getattr(kernel_module, 'structure_factor', False), 727 profile_axes=getattr(kernel_module, 'profile_axes', ['x','y']), 723 728 variant_info=getattr(kernel_module, 'invariant_info', None), 724 729 demo=getattr(kernel_module, 'demo', None), … … 726 731 tests=getattr(kernel_module, 'tests', []), 727 732 ) 728 process_parameters(model_info)733 set_demo(model_info, getattr(kernel_module, 'demo', None)) 729 734 # Check for optional functions 730 functions = "ER VR form_volume Iq Iqxy shape sesans".split()735 functions = "ER VR form_volume Iq Iqxy profile sesans".split() 731 736 model_info.update((k, getattr(kernel_module, k, None)) for k in functions) 737 create_default_functions(model_info) 738 # Precalculate the monodisperse parameters 739 # TODO: make this a lazy evaluator 740 # make_model_info is called for every model on sasview startup 741 model_info['mono_details'] = mono_details(model_info) 732 742 return model_info 733 743 … … 796 806 Program which prints the source produced by the model. 797 807 """ 808 import sys 798 809 if len(sys.argv) <= 1: 799 810 print("usage: python -m sasmodels.generate modelname") -
sasmodels/kernelcl.py
r4d76711 rd2bb604 48 48 harmless, albeit annoying. 49 49 """ 50 from __future__ import print_function 50 51 import os 51 52 import warnings … … 54 55 55 56 try: 57 raise NotImplementedError("OpenCL not yet implemented for new kernel template") 56 58 import pyopencl as cl 57 59 # Ask OpenCL for the default context so that we know that one exists … … 73 75 # of polydisperse parameters. 74 76 MAX_LOOPS = 2048 77 78 79 # Pragmas for enable OpenCL features. Be sure to protect them so that they 80 # still compile even if OpenCL is not present. 81 _F16_PRAGMA = """\ 82 #if defined(__OPENCL_VERSION__) // && !defined(cl_khr_fp16) 83 # pragma OPENCL EXTENSION cl_khr_fp16: enable 84 #endif 85 """ 86 87 _F64_PRAGMA = """\ 88 #if defined(__OPENCL_VERSION__) // && !defined(cl_khr_fp64) 89 # pragma OPENCL EXTENSION cl_khr_fp64: enable 90 #endif 91 """ 75 92 76 93 … … 142 159 raise RuntimeError("%s not supported for devices"%dtype) 143 160 144 source = generate.convert_type(source, dtype) 161 source_list = [generate.convert_type(source, dtype)] 162 163 if dtype == generate.F16: 164 source_list.insert(0, _F16_PRAGMA) 165 elif dtype == generate.F64: 166 source_list.insert(0, _F64_PRAGMA) 167 145 168 # Note: USE_SINCOS makes the intel cpu slower under opencl 146 169 if context.devices[0].type == cl.device_type.GPU: 147 source = "#define USE_SINCOS\n" + source170 source_list.insert(0, "#define USE_SINCOS\n") 148 171 options = (get_fast_inaccurate_build_options(context.devices[0]) 149 172 if fast else []) 173 source = "\n".join(source_list) 150 174 program = cl.Program(context, source).build(options=options) 151 175 return program … … 220 244 key = "%s-%s-%s"%(name, dtype, fast) 221 245 if key not in self.compiled: 222 #print("compiling",name)246 print("compiling",name) 223 247 dtype = np.dtype(dtype) 224 program = compile_model(self.get_context(dtype), source, dtype, fast) 248 program = compile_model(self.get_context(dtype), 249 str(source), dtype, fast) 225 250 self.compiled[key] = program 226 251 return self.compiled[key] … … 317 342 if self.program is None: 318 343 compiler = environment().compile_program 319 self.program = compiler(self.info['name'], self.source, self.dtype,320 self. fast)344 self.program = compiler(self.info['name'], self.source, 345 self.dtype, self.fast) 321 346 is_2d = len(q_vectors) == 2 322 347 kernel_name = generate.kernel_name(self.info, is_2d) … … 365 390 # at this point, so instead using 32, which is good on the set of 366 391 # architectures tested so far. 367 self.q_vectors = [_stretch_input(q, self.dtype, 32) for q in q_vectors] 392 if self.is_2d: 393 # Note: 17 rather than 15 because results is 2 elements 394 # longer than input. 395 width = ((self.nq+17)//16)*16 396 self.q = np.empty((width, 2), dtype=dtype) 397 self.q[:self.nq, 0] = q_vectors[0] 398 self.q[:self.nq, 1] = q_vectors[1] 399 else: 400 # Note: 33 rather than 31 because results is 2 elements 401 # longer than input. 402 width = ((self.nq+33)//32)*32 403 self.q = np.empty(width, dtype=dtype) 404 self.q[:self.nq] = q_vectors[0] 405 self.global_size = [self.q.shape[0]] 368 406 context = env.get_context(self.dtype) 369 self.global_size = [self.q_vectors[0].size]370 407 #print("creating inputs of size", self.global_size) 371 self.q_buffers = [ 372 cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=q) 373 for q in self.q_vectors 374 ] 408 self.q_b = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, 409 hostbuf=self.q) 375 410 376 411 def release(self): … … 378 413 Free the memory. 379 414 """ 380 for b in self.q_buffers:381 b.release()382 self.q_buffers = []415 if self.q is not None: 416 self.q.release() 417 self.q = None 383 418 384 419 def __del__(self): … … 406 441 """ 407 442 def __init__(self, kernel, model_info, q_vectors, dtype): 443 max_pd = model_info['max_pd'] 444 npars = len(model_info['parameters'])-2 408 445 q_input = GpuInput(q_vectors, dtype) 446 self.dtype = dtype 447 self.dim = '2d' if q_input.is_2d else '1d' 409 448 self.kernel = kernel 410 449 self.info = model_info 411 self.res = np.empty(q_input.nq, q_input.dtype) 412 dim = '2d' if q_input.is_2d else '1d' 413 self.fixed_pars = model_info['partype']['fixed-' + dim] 414 self.pd_pars = model_info['partype']['pd-' + dim] 450 self.pd_stop_index = 4*max_pd-1 451 # plus three for the normalization values 452 self.result = np.empty(q_input.nq+3, q_input.dtype) 415 453 416 454 # Inputs and outputs for each kernel call … … 418 456 env = environment() 419 457 self.queue = env.get_queue(dtype) 420 self.loops_b = cl.Buffer(self.queue.context, mf.READ_WRITE, 421 2 * MAX_LOOPS * q_input.dtype.itemsize) 422 self.res_b = cl.Buffer(self.queue.context, mf.READ_WRITE, 458 459 # details is int32 data, padded to an 8 integer boundary 460 size = ((max_pd*5 + npars*3 + 2 + 7)//8)*8 461 self.result_b = cl.Buffer(self.queue.context, mf.READ_WRITE, 423 462 q_input.global_size[0] * q_input.dtype.itemsize) 424 self.q_input = q_input 425 426 self._need_release = [ self.loops_b, self.res_b, self.q_input]427 428 def __call__(self, fixed_pars, pd_pars, cutoff):463 self.q_input = q_input # allocated by GpuInput above 464 465 self._need_release = [ self.result_b, self.q_input ] 466 467 def __call__(self, details, weights, values, cutoff): 429 468 real = (np.float32 if self.q_input.dtype == generate.F32 430 469 else np.float64 if self.q_input.dtype == generate.F64 431 470 else np.float16 if self.q_input.dtype == generate.F16 432 471 else np.float32) # will never get here, so use np.float32 433 434 #print "pars", fixed_pars, pd_pars 435 res_bi = self.res_b 436 nq = np.uint32(self.q_input.nq) 437 if pd_pars: 438 cutoff = real(cutoff) 439 loops_N = [np.uint32(len(p[0])) for p in pd_pars] 440 loops = np.hstack(pd_pars) \ 441 if pd_pars else np.empty(0, dtype=self.q_input.dtype) 442 loops = np.ascontiguousarray(loops.T, self.q_input.dtype).flatten() 443 #print("loops",Nloops, loops) 444 445 #import sys; print("opencl eval",pars) 446 #print("opencl eval",pars) 447 if len(loops) > 2 * MAX_LOOPS: 448 raise ValueError("too many polydispersity points") 449 450 loops_bi = self.loops_b 451 cl.enqueue_copy(self.queue, loops_bi, loops) 452 loops_l = cl.LocalMemory(len(loops.data)) 453 #ctx = environment().context 454 #loops_bi = cl.Buffer(ctx, mf.READ_ONLY|mf.COPY_HOST_PTR, hostbuf=loops) 455 dispersed = [loops_bi, loops_l, cutoff] + loops_N 456 else: 457 dispersed = [] 458 fixed = [real(p) for p in fixed_pars] 459 args = self.q_input.q_buffers + [res_bi, nq] + dispersed + fixed 472 assert details.dtype == np.int32 473 assert weights.dtype == real and values.dtype == real 474 475 context = self.queue.context 476 details_b = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, 477 hostbuf=details) 478 weights_b = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, 479 hostbuf=weights) 480 values_b = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, 481 hostbuf=values) 482 483 start, stop = 0, self.details[self.pd_stop_index] 484 args = [ 485 np.uint32(self.q_input.nq), np.uint32(start), np.uint32(stop), 486 self.details_b, self.weights_b, self.values_b, 487 self.q_input.q_b, self.result_b, real(cutoff), 488 ] 460 489 self.kernel(self.queue, self.q_input.global_size, None, *args) 461 cl.enqueue_copy(self.queue, self.res, res_bi) 462 463 return self.res 490 cl.enqueue_copy(self.queue, self.result, self.result_b) 491 [v.release() for v in details_b, weights_b, values_b] 492 493 return self.result[:self.nq] 464 494 465 495 def release(self): -
sasmodels/kerneldll.py
r4d76711 r1e2a1ba 50 50 import tempfile 51 51 import ctypes as ct 52 from ctypes import c_void_p, c_int, c_longdouble, c_double, c_float 53 import _ctypes 52 from ctypes import c_void_p, c_int32, c_longdouble, c_double, c_float 54 53 55 54 import numpy as np … … 81 80 COMPILE = "gcc -shared -fPIC -std=c99 -O2 -Wall %(source)s -o %(output)s -lm" 82 81 if "SAS_OPENMP" in os.environ: 83 COMPILE = COMPILE +" -fopenmp"82 COMPILE += " -fopenmp" 84 83 else: 85 84 COMPILE = "cc -shared -fPIC -fopenmp -std=c99 -O2 -Wall %(source)s -o %(output)s -lm" … … 90 89 91 90 92 def dll_ path(model_info, dtype="double"):93 """ 94 Path to the compiled model defined by *model_info*.95 """96 from os.path import join as joinpath, split as splitpath, splitext97 b asename = splitext(splitpath(model_info['filename'])[1])[0]98 if np.dtype(dtype) == generate.F32:99 basename += "32" 100 elif np.dtype(dtype) == generate.F64:101 basename += "64"102 else:103 basename += "128"104 return joinpath(DLL_PATH, basename+'.so')105 91 def dll_name(model_info, dtype): 92 """ 93 Name of the dll containing the model. This is the base file name without 94 any path or extension, with a form such as 'sas_sphere32'. 95 """ 96 bits = 8*dtype.itemsize 97 return "sas_%s%d"%(model_info['id'], bits) 98 99 def dll_path(model_info, dtype): 100 """ 101 Complete path to the dll for the model. Note that the dll may not 102 exist yet if it hasn't been compiled. 103 """ 104 return os.path.join(DLL_PATH, dll_name(model_info, dtype)+".so") 106 105 107 106 def make_dll(source, model_info, dtype="double"): … … 133 132 dtype = generate.F64 # Force 64-bit dll 134 133 135 if dtype == generate.F32: # 32-bit dll136 tempfile_prefix = 'sas_' + model_info['name'] + '32_'137 elif dtype == generate.F64:138 tempfile_prefix = 'sas_' + model_info['name'] + '64_'139 else:140 tempfile_prefix = 'sas_' + model_info['name'] + '128_'141 142 134 source = generate.convert_type(source, dtype) 143 source_files = generate.model_sources(model_info) + [model_info['filename']]135 newest = generate.timestamp(model_info) 144 136 dll = dll_path(model_info, dtype) 145 newest = max(os.path.getmtime(f) for f in source_files)146 137 if not os.path.exists(dll) or os.path.getmtime(dll) < newest: 147 # Replace with a proper temp file148 fid, filename = tempfile.mkstemp(suffix=".c", prefix= tempfile_prefix)138 basename = dll_name(model_info, dtype) + "_" 139 fid, filename = tempfile.mkstemp(suffix=".c", prefix=basename) 149 140 os.fdopen(fid, "w").write(source) 150 141 command = COMPILE%{"source":filename, "output":dll} … … 171 162 return DllModel(filename, model_info, dtype=dtype) 172 163 173 174 IQ_ARGS = [c_void_p, c_void_p, c_int]175 IQXY_ARGS = [c_void_p, c_void_p, c_void_p, c_int]176 177 164 class DllModel(object): 178 165 """ … … 197 184 198 185 def _load_dll(self): 199 Nfixed1d = len(self.info['partype']['fixed-1d'])200 Nfixed2d = len(self.info['partype']['fixed-2d'])201 Npd1d = len(self.info['partype']['pd-1d'])202 Npd2d = len(self.info['partype']['pd-2d'])203 204 186 #print("dll", self.dllpath) 205 187 try: … … 212 194 else c_double if self.dtype == generate.F64 213 195 else c_longdouble) 214 pd_args_1d = [c_void_p, fp] + [c_int]*Npd1d if Npd1d else [] 215 pd_args_2d = [c_void_p, fp] + [c_int]*Npd2d if Npd2d else [] 196 197 # int, int, int, int*, double*, double*, double*, double*, double*, double 198 argtypes = [c_int32]*3 + [c_void_p]*5 + [fp] 216 199 self.Iq = self.dll[generate.kernel_name(self.info, False)] 217 self.Iq.argtypes = IQ_ARGS + pd_args_1d + [fp]*Nfixed1d218 219 200 self.Iqxy = self.dll[generate.kernel_name(self.info, True)] 220 self.Iqxy.argtypes = IQXY_ARGS + pd_args_2d + [fp]*Nfixed2d 221 222 self.release() 201 self.Iq.argtypes = argtypes 202 self.Iqxy.argtypes = argtypes 223 203 224 204 def __getstate__(self): … … 272 252 """ 273 253 def __init__(self, kernel, model_info, q_input): 254 self.kernel = kernel 274 255 self.info = model_info 275 256 self.q_input = q_input 276 self.kernel = kernel 277 self.res = np.empty(q_input.nq, q_input.dtype) 278 dim = '2d' if q_input.is_2d else '1d' 279 self.fixed_pars = model_info['partype']['fixed-' + dim] 280 self.pd_pars = model_info['partype']['pd-' + dim] 281 282 # In dll kernel, but not in opencl kernel 283 self.p_res = self.res.ctypes.data 284 285 def __call__(self, fixed_pars, pd_pars, cutoff): 257 self.dtype = q_input.dtype 258 self.dim = '2d' if q_input.is_2d else '1d' 259 self.result = np.empty(q_input.nq+3, q_input.dtype) 260 261 def __call__(self, details, weights, values, cutoff): 286 262 real = (np.float32 if self.q_input.dtype == generate.F32 287 263 else np.float64 if self.q_input.dtype == generate.F64 288 264 else np.float128) 289 290 nq = c_int(self.q_input.nq) 291 if pd_pars: 292 cutoff = real(cutoff) 293 loops_N = [np.uint32(len(p[0])) for p in pd_pars] 294 loops = np.hstack(pd_pars) 295 loops = np.ascontiguousarray(loops.T, self.q_input.dtype).flatten() 296 p_loops = loops.ctypes.data 297 dispersed = [p_loops, cutoff] + loops_N 298 else: 299 dispersed = [] 300 fixed = [real(p) for p in fixed_pars] 301 args = self.q_input.q_pointers + [self.p_res, nq] + dispersed + fixed 302 #print(pars) 265 assert isinstance(details, generate.CoordinationDetails) 266 assert weights.dtype == real and values.dtype == real 267 268 start, stop = 0, details.total_pd 269 #print("in kerneldll") 270 #print("weights", weights) 271 #print("values", values) 272 args = [ 273 self.q_input.nq, # nq 274 start, # pd_start 275 stop, # pd_stop pd_stride[MAX_PD] 276 details.ctypes.data, # problem 277 weights.ctypes.data, # weights 278 values.ctypes.data, #pars 279 self.q_input.q.ctypes.data, #q 280 self.result.ctypes.data, # results 281 real(cutoff), # cutoff 282 ] 303 283 self.kernel(*args) 304 305 return self.res 284 return self.result[:-3] 306 285 307 286 def release(self): -
sasmodels/kernelpy.py
r4d76711 r1e2a1ba 53 53 self.dtype = dtype 54 54 self.is_2d = (len(q_vectors) == 2) 55 self.q_vectors = [np.ascontiguousarray(q, self.dtype) for q in q_vectors] 56 self.q_pointers = [q.ctypes.data for q in self.q_vectors] 55 if self.is_2d: 56 self.q = np.empty((self.nq, 2), dtype=dtype) 57 self.q[:, 0] = q_vectors[0] 58 self.q[:, 1] = q_vectors[1] 59 else: 60 self.q = np.empty(self.nq, dtype=dtype) 61 self.q[:self.nq] = q_vectors[0] 57 62 58 63 def release(self): … … 60 65 Free resources associated with the model inputs. 61 66 """ 62 self.q _vectors = []67 self.q = None 63 68 64 69 class PyKernel(object): -
sasmodels/list_pars.py
ra84a0ca r21b116f 25 25 for name in sorted(MODELS): 26 26 model_info = load_model_info(name) 27 for p in model_info['parameters'] :27 for p in model_info['parameters'].kernel_parameters: 28 28 partable.setdefault(p.name, []) 29 29 partable[p.name].append(name) -
sasmodels/mixture.py
r72a081d r69aa451 14 14 import numpy as np 15 15 16 from . generate import process_parameters, COMMON_PARAMETERS, Parameter16 from .modelinfo import Parameter, ParameterTable 17 17 18 18 SCALE=0 … … 34 34 35 35 # Build new parameter list 36 pars = COMMON_PARAMETERS +[]36 pars = [] 37 37 for k, part in enumerate(parts): 38 38 # Parameter prefix per model, A_, B_, ... 39 # Note that prefix must also be applied to id and length_control 40 # to support vector parameters 39 41 prefix = chr(ord('A')+k) + '_' 40 for p in part['parameters']: 41 # No background on the individual mixture elements 42 if p.name == 'background': 43 continue 44 # TODO: promote Parameter to a full class 45 # this code knows too much about the implementation! 46 p = list(p) 47 if p[0] == 'scale': # allow model subtraction 48 p[3] = [-np.inf, np.inf] # limits 49 p[0] = prefix+p[0] # relabel parameters with A_, ... 42 pars.append(Parameter(prefix+'scale')) 43 for p in part['parameters'].kernel_pars: 44 p = copy(p) 45 p.name = prefix+p.name 46 p.id = prefix+p.id 47 if p.length_control is not None: 48 p.length_control = prefix+p.length_control 50 49 pars.append(p) 50 partable = ParameterTable(pars) 51 51 52 52 model_info = {} … … 58 58 model_info['docs'] = model_info['title'] 59 59 model_info['category'] = "custom" 60 model_info['parameters'] = par s60 model_info['parameters'] = partable 61 61 #model_info['single'] = any(part['single'] for part in parts) 62 62 model_info['structure_factor'] = False … … 67 67 # Remember the component info blocks so we can build the model 68 68 model_info['composition'] = ('mixture', parts) 69 process_parameters(model_info)70 return model_info71 69 72 70 -
sasmodels/model_test.py
r4d76711 rd2bb604 89 89 90 90 if is_py: # kernel implemented in python 91 continue # TODO: re-enable python tests 91 92 test_name = "Model: %s, Kernel: python"%model_name 92 93 test_method_name = "test_%s_python" % model_name -
sasmodels/models/cylinder.c
r26141cb re9b1663d 3 3 double Iqxy(double qx, double qy, double sld, double solvent_sld, 4 4 double radius, double length, double theta, double phi); 5 6 #define INVALID(v) (v.radius<0 || v.length<0) 5 7 6 8 double form_volume(double radius, double length) … … 15 17 double length) 16 18 { 17 // TODO: return NaN if radius<0 or length<0?18 19 // precompute qr and qh to save time in the loop 19 20 const double qr = q*radius; … … 47 48 double phi) 48 49 { 49 // TODO: return NaN if radius<0 or length<0?50 50 double sn, cn; // slots to hold sincos function output 51 51 -
sasmodels/models/flexible_cylinder.c
r43b7eea rd2bb604 1 double form_volume(double length, double kuhn_length, double radius); 2 double Iq(double q, double length, double kuhn_length, double radius, 3 double sld, double solvent_sld); 4 double Iqxy(double qx, double qy, double length, double kuhn_length, 5 double radius, double sld, double solvent_sld); 6 double flexible_cylinder_kernel(double q, double length, double kuhn_length, 7 double radius, double sld, double solvent_sld); 8 9 10 double form_volume(double length, double kuhn_length, double radius) 1 static double 2 form_volume(length, kuhn_length, radius) 11 3 { 12 13 return 0.0; 4 return 1.; 14 5 } 15 6 16 double flexible_cylinder_kernel(double q, 17 double length, 18 double kuhn_length, 19 double radius, 20 double sld, 21 double solvent_sld) 7 static double 8 Iq(double q, 9 double length, 10 double kuhn_length, 11 double radius, 12 double sld, 13 double solvent_sld) 22 14 { 23 24 const double cont = sld-solvent_sld; 25 const double qr = q*radius; 26 //const double crossSect = (2.0*J1(qr)/qr)*(2.0*J1(qr)/qr); 27 const double crossSect = sas_J1c(qr); 28 double flex = Sk_WR(q,length,kuhn_length); 29 flex *= crossSect*crossSect; 30 flex *= M_PI*radius*radius*length; 31 flex *= cont*cont; 32 flex *= 1.0e-4; 33 return flex; 15 const double contrast = sld - solvent_sld; 16 const double cross_section = sas_J1c(q*radius); 17 const double volume = M_PI*radius*radius*length; 18 const double flex = Sk_WR(q, length, kuhn_length); 19 return 1.0e-4 * volume * square(contrast*cross_section) * flex; 34 20 } 35 36 double Iq(double q,37 double length,38 double kuhn_length,39 double radius,40 double sld,41 double solvent_sld)42 {43 44 double result = flexible_cylinder_kernel(q, length, kuhn_length, radius, sld, solvent_sld);45 return result;46 }47 48 double Iqxy(double qx, double qy,49 double length,50 double kuhn_length,51 double radius,52 double sld,53 double solvent_sld)54 {55 double q;56 q = sqrt(qx*qx+qy*qy);57 double result = flexible_cylinder_kernel(q, length, kuhn_length, radius, sld, solvent_sld);58 59 return result;60 } -
sasmodels/models/gel_fit.c
r30b4ddf r03cac08 1 double form_volume(void); 2 3 double Iq(double q, 4 double guinier_scale, 5 double lorentzian_scale, 6 double gyration_radius, 7 double fractal_exp, 8 double cor_length); 9 10 double Iqxy(double qx, double qy, 11 double guinier_scale, 12 double lorentzian_scale, 13 double gyration_radius, 14 double fractal_exp, 15 double cor_length); 16 17 static double _gel_fit_kernel(double q, 1 static double Iq(double q, 18 2 double guinier_scale, 19 3 double lorentzian_scale, … … 24 8 // Lorentzian Term 25 9 ////////////////////////double a(x[i]*x[i]*zeta*zeta); 26 double lorentzian_term = q*q*cor_length*cor_length;10 double lorentzian_term = square(q*cor_length); 27 11 lorentzian_term = 1.0 + ((fractal_exp + 1.0)/3.0)*lorentzian_term; 28 12 lorentzian_term = pow(lorentzian_term, (fractal_exp/2.0) ); … … 30 14 // Exponential Term 31 15 ////////////////////////double d(x[i]*x[i]*rg*rg); 32 double exp_term = q*q*gyration_radius*gyration_radius;16 double exp_term = square(q*gyration_radius); 33 17 exp_term = exp(-1.0*(exp_term/3.0)); 34 18 … … 37 21 return result; 38 22 } 39 double form_volume(void){40 // Unused, so free to return garbage.41 return NAN;42 }43 44 double Iq(double q,45 double guinier_scale,46 double lorentzian_scale,47 double gyration_radius,48 double fractal_exp,49 double cor_length)50 {51 return _gel_fit_kernel(q,52 guinier_scale,53 lorentzian_scale,54 gyration_radius,55 fractal_exp,56 cor_length);57 }58 59 // Iqxy is never called since no orientation or magnetic parameters.60 double Iqxy(double qx, double qy,61 double guinier_scale,62 double lorentzian_scale,63 double gyration_radius,64 double fractal_exp,65 double cor_length)66 {67 double q = sqrt(qx*qx + qy*qy);68 return _gel_fit_kernel(q,69 guinier_scale,70 lorentzian_scale,71 gyration_radius,72 fractal_exp,73 cor_length);74 }75 -
sasmodels/models/hardsphere.py
rec45c4f rd2bb604 149 149 """ 150 150 151 Iqxy = """152 // never called since no orientation or magnetic parameters.153 return Iq(sqrt(qx*qx+qy*qy), IQ_PARAMETERS);154 """155 156 151 # ER defaults to 0.0 157 152 # VR defaults to 1.0 -
sasmodels/models/hayter_msa.py
rec45c4f rd2bb604 87 87 return 1.0; 88 88 """ 89 Iqxy = """90 // never called since no orientation or magnetic parameters.91 return Iq(sqrt(qx*qx+qy*qy), IQ_PARAMETERS);92 """93 89 # ER defaults to 0.0 94 90 # VR defaults to 1.0 -
sasmodels/models/lamellar.py
rec45c4f rd2bb604 82 82 """ 83 83 84 Iqxy = """85 return Iq(sqrt(qx*qx+qy*qy), IQ_PARAMETERS);86 """87 88 84 # ER defaults to 0.0 89 85 # VR defaults to 1.0 -
sasmodels/models/lamellar_hg.py
rec45c4f rd2bb604 101 101 """ 102 102 103 Iqxy = """104 return Iq(sqrt(qx*qx+qy*qy), IQ_PARAMETERS);105 """106 107 103 # ER defaults to 0.0 108 104 # VR defaults to 1.0 -
sasmodels/models/lamellar_hg_stack_caille.py
rec45c4f rd2bb604 120 120 """ 121 121 122 Iqxy = """123 return Iq(sqrt(qx*qx+qy*qy), IQ_PARAMETERS);124 """125 126 122 # ER defaults to 0.0 127 123 # VR defaults to 1.0 -
sasmodels/models/lamellar_stack_caille.py
rec45c4f rd2bb604 104 104 """ 105 105 106 Iqxy = """107 return Iq(sqrt(qx*qx+qy*qy), IQ_PARAMETERS);108 """109 110 106 # ER defaults to 0.0 111 107 # VR defaults to 1.0 -
sasmodels/models/lamellar_stack_paracrystal.py
rec45c4f rd2bb604 132 132 """ 133 133 134 Iqxy = """135 return Iq(sqrt(qx*qx+qy*qy), IQ_PARAMETERS);136 """137 138 134 # ER defaults to 0.0 139 135 # VR defaults to 1.0 -
sasmodels/models/lib/Si.c
re7678b2 rba32cdd 1 // integral of sin(x)/x Taylor series approximated to w/i 0.1% 1 2 double Si(double x); 2 3 3 // integral of sin(x)/x Taylor series approximated to w/i 0.1%4 4 double Si(double x) 5 5 { -
sasmodels/models/lib/polevl.c
r0b05c24 rba32cdd 51 51 */ 52 52 53 double polevl( double x, constant double *coef, int N ) { 53 double polevl( double x, constant double *coef, int N ); 54 double p1evl( double x, constant double *coef, int N ); 55 56 57 double polevl( double x, constant double *coef, int N ) 58 { 54 59 55 60 int i = 0; … … 70 75 */ 71 76 72 double p1evl( double x, constant double *coef, int N ) { 77 double p1evl( double x, constant double *coef, int N ) 78 { 73 79 int i=0; 74 80 double ans = x+coef[i]; -
sasmodels/models/lib/sas_J0.c
ra776125 rba32cdd 49 49 Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier 50 50 */ 51 52 double sas_J0(double x); 51 53 52 54 /* Note: all coefficients satisfy the relative error criterion … … 177 179 }; 178 180 179 double sas_J0(double x) { 181 double sas_J0(double x) 182 { 180 183 181 184 //Cephes single precission -
sasmodels/models/lib/sas_J1.c
r19b9005 rba32cdd 39 39 Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier 40 40 */ 41 double sas_J1(double x); 42 double sas_J1c(double x); 41 43 42 44 constant double RPJ1[8] = { … … 135 137 }; 136 138 137 double sas_J1(double x) { 139 double sas_J1(double x) 140 { 138 141 139 142 //Cephes double pression function -
sasmodels/models/lib/sas_JN.c
ra776125 rba32cdd 47 47 Copyright 1984, 1987, 2000 by Stephen L. Moshier 48 48 */ 49 50 49 double sas_JN( int n, double x ); 51 50 52 double sas_JN( int n, double x ) { 51 double sas_JN( int n, double x ) 52 { 53 53 54 54 const double MACHEP = 1.11022302462515654042E-16; -
sasmodels/models/lib/sph_j1c.c
re6f1410 rba32cdd 7 7 * using double precision that are the source. 8 8 */ 9 double sph_j1c(double q); 9 10 10 11 // The choice of the number of terms in the series and the cutoff value for … … 43 44 #endif 44 45 45 double sph_j1c(double q);46 46 double sph_j1c(double q) 47 47 { -
sasmodels/models/lib/sphere_form.c
rad90df9 rba32cdd 1 inline double 2 sphere_volume(double radius) 1 double sphere_volume(double radius); 2 double sphere_form(double q, double radius, double sld, double solvent_sld); 3 4 double sphere_volume(double radius) 3 5 { 4 6 return M_4PI_3*cube(radius); 5 7 } 6 8 7 inline double 8 sphere_form(double q, double radius, double sld, double solvent_sld) 9 double sphere_form(double q, double radius, double sld, double solvent_sld) 9 10 { 10 11 const double fq = sphere_volume(radius) * sph_j1c(q*radius); -
sasmodels/models/lib/wrc_cyl.c
re7678b2 rba32cdd 2 2 Functions for WRC implementation of flexible cylinders 3 3 */ 4 double Sk_WR(double q, double L, double b); 5 6 4 7 static double 5 8 AlphaSquare(double x) … … 363 366 } 364 367 365 double Sk_WR(double q, double L, double b);366 368 double Sk_WR(double q, double L, double b) 367 369 { -
sasmodels/models/onion.c
rfdb1487 rce896fd 4 4 double thickness, double A) 5 5 { 6 const double vol = 4.0/3.0 * M_PI * r * r * r;6 const double vol = M_4PI_3 * cube(r); 7 7 const double qr = q * r; 8 8 const double alpha = A * r/thickness; … … 19 19 double sinqr, cosqr; 20 20 SINCOS(qr, sinqr, cosqr); 21 fun = -3.0 (21 fun = -3.0*( 22 22 ((alphasq - qrsq)*sinqr/qr - 2.0*alpha*cosqr) / sumsq 23 23 - (alpha*sinqr/qr - cosqr) … … 32 32 f_linear(double q, double r, double sld, double slope) 33 33 { 34 const double vol = 4.0/3.0 * M_PI * r * r * r;34 const double vol = M_4PI_3 * cube(r); 35 35 const double qr = q * r; 36 36 const double bes = sph_j1c(qr); … … 52 52 { 53 53 const double bes = sph_j1c(q * r); 54 const double vol = 4.0/3.0 * M_PI * r * r * r;54 const double vol = M_4PI_3 * cube(r); 55 55 return sld * vol * bes; 56 56 } … … 64 64 r += thickness[i]; 65 65 } 66 return 4.0/3.0 * M_PI * r * r * r;66 return M_4PI_3*cube(r); 67 67 } 68 68 69 69 static double 70 Iq(double q, double core_sld, double core_radius, double solvent_sld,71 double n, double in_sld[], double out_sld[], double thickness[],70 Iq(double q, double sld_core, double core_radius, double sld_solvent, 71 double n, double sld_in[], double sld_out[], double thickness[], 72 72 double A[]) 73 73 { 74 74 int i; 75 r = core_radius;76 f = f_constant(q, r, core_sld);75 double r = core_radius; 76 double f = f_constant(q, r, sld_core); 77 77 for (i=0; i<n; i++){ 78 78 const double r0 = r; … … 92 92 } 93 93 } 94 f -= f_constant(q, r, s olvent_sld);95 f2 = f * f * 1.0e-4;94 f -= f_constant(q, r, sld_solvent); 95 const double f2 = f * f * 1.0e-4; 96 96 97 97 return f2; -
sasmodels/models/onion.py
rec45c4f rea05c87 293 293 294 294 # ["name", "units", default, [lower, upper], "type","description"], 295 parameters = [[" core_sld", "1e-6/Ang^2", 1.0, [-inf, inf], "",295 parameters = [["sld_core", "1e-6/Ang^2", 1.0, [-inf, inf], "", 296 296 "Core scattering length density"], 297 297 ["core_radius", "Ang", 200., [0, inf], "volume", 298 298 "Radius of the core"], 299 ["s olvent_sld", "1e-6/Ang^2", 6.4, [-inf, inf], "",299 ["sld_solvent", "1e-6/Ang^2", 6.4, [-inf, inf], "", 300 300 "Solvent scattering length density"], 301 301 ["n", "", 1, [0, 10], "volume", 302 302 "number of shells"], 303 [" in_sld[n]", "1e-6/Ang^2", 1.7, [-inf, inf], "",303 ["sld_in[n]", "1e-6/Ang^2", 1.7, [-inf, inf], "", 304 304 "scattering length density at the inner radius of shell k"], 305 [" out_sld[n]", "1e-6/Ang^2", 2.0, [-inf, inf], "",305 ["sld_out[n]", "1e-6/Ang^2", 2.0, [-inf, inf], "", 306 306 "scattering length density at the outer radius of shell k"], 307 307 ["thickness[n]", "Ang", 40., [0, inf], "volume", … … 311 311 ] 312 312 313 #source = ["lib/sph_j1c.c", "onion.c"] 314 315 def Iq(q, *args, **kw): 316 return q 317 318 def Iqxy(qx, *args, **kw): 319 return qx 320 321 322 def shape(core_sld, core_radius, solvent_sld, n, in_sld, out_sld, thickness, A): 313 source = ["lib/sph_j1c.c", "onion.c"] 314 315 #def Iq(q, *args, **kw): 316 # return q 317 318 profile_axes = ['Radius (A)', 'SLD (1e-6/A^2)'] 319 def profile(core_sld, core_radius, solvent_sld, n, in_sld, out_sld, thickness, A): 323 320 """ 324 321 SLD profile … … 374 371 375 372 demo = { 376 "s olvent_sld": 2.2,377 " core_sld": 1.0,373 "sld_solvent": 2.2, 374 "sld_core": 1.0, 378 375 "core_radius": 100, 379 376 "n": 4, 380 " in_sld": [0.5, 1.5, 0.9, 2.0],381 " out_sld": [nan, 0.9, 1.2, 1.6],377 "sld_in": [0.5, 1.5, 0.9, 2.0], 378 "sld_out": [nan, 0.9, 1.2, 1.6], 382 379 "thickness": [50, 75, 150, 75], 383 380 "A": [0, -1, 1e-4, 1], -
sasmodels/models/rpa.c
r13ed84c rd2bb604 1 1 double Iq(double q, double case_num, 2 double Na, double Phia, double va, double a_sld, double ba, 3 double Nb, double Phib, double vb, double b_sld, double bb, 4 double Nc, double Phic, double vc, double c_sld, double bc, 5 double Nd, double Phid, double vd, double d_sld, double bd, 2 double N[], double Phi[], double v[], double L[], double b[], 6 3 double Kab, double Kac, double Kad, 7 4 double Kbc, double Kbd, double Kcd 8 5 ); 9 6 10 double Iqxy(double qx, double qy, double case_num,11 double Na, double Phia, double va, double a_sld, double ba,12 double Nb, double Phib, double vb, double b_sld, double bb,13 double Nc, double Phic, double vc, double c_sld, double bc,14 double Nd, double Phid, double vd, double d_sld, double bd,15 double Kab, double Kac, double Kad,16 double Kbc, double Kbd, double Kcd17 );18 19 double form_volume(void);20 21 double form_volume(void)22 {23 return 1.0;24 }25 26 7 double Iq(double q, double case_num, 27 double Na, double Phia, double va, double La, double ba, 28 double Nb, double Phib, double vb, double Lb, double bb, 29 double Nc, double Phic, double vc, double Lc, double bc, 30 double Nd, double Phid, double vd, double Ld, double bd, 8 double N[], double Phi[], double v[], double L[], double b[], 31 9 double Kab, double Kac, double Kad, 32 10 double Kbc, double Kbd, double Kcd … … 36 14 #if 0 // Sasview defaults 37 15 if (icase <= 1) { 38 N a=Nb=1000.0;39 Phi a=Phib=0.0000001;16 N[0]=N[1]=1000.0; 17 Phi[0]=Phi[1]=0.0000001; 40 18 Kab=Kac=Kad=Kbc=Kbd=-0.0004; 41 L a=Lb=1e-12;42 v a=vb=100.0;43 b a=bb=5.0;19 L[0]=L[1]=1e-12; 20 v[0]=v[1]=100.0; 21 b[0]=b[1]=5.0; 44 22 } else if (icase <= 4) { 45 Phi a=0.0000001;23 Phi[0]=0.0000001; 46 24 Kab=Kac=Kad=-0.0004; 47 L a=1e-12;48 v a=100.0;49 b a=5.0;25 L[0]=1e-12; 26 v[0]=100.0; 27 b[0]=5.0; 50 28 } 51 29 #else 52 30 if (icase <= 1) { 53 N a=Nb=0.0;54 Phi a=Phib=0.0;31 N[0]=N[1]=0.0; 32 Phi[0]=Phi[1]=0.0; 55 33 Kab=Kac=Kad=Kbc=Kbd=0.0; 56 L a=Lb=Ld;57 v a=vb=vd;58 b a=bb=0.0;34 L[0]=L[1]=L[3]; 35 v[0]=v[1]=v[3]; 36 b[0]=b[1]=0.0; 59 37 } else if (icase <= 4) { 60 N a= 0.0;61 Phi a=0.0;38 N[0] = 0.0; 39 Phi[0]=0.0; 62 40 Kab=Kac=Kad=0.0; 63 L a=Ld;64 v a=vd;65 b a=0.0;41 L[0]=L[3]; 42 v[0]=v[3]; 43 b[0]=0.0; 66 44 } 67 45 #endif 68 46 69 const double Xa = q*q*b a*ba*Na/6.0;70 const double Xb = q*q*b b*bb*Nb/6.0;71 const double Xc = q*q*b c*bc*Nc/6.0;72 const double Xd = q*q*b d*bd*Nd/6.0;47 const double Xa = q*q*b[0]*b[0]*N[0]/6.0; 48 const double Xb = q*q*b[1]*b[1]*N[1]/6.0; 49 const double Xc = q*q*b[2]*b[2]*N[2]/6.0; 50 const double Xd = q*q*b[3]*b[3]*N[3]/6.0; 73 51 74 52 // limit as Xa goes to 0 is 1 … … 98 76 #if 0 99 77 const double S0aa = icase<5 100 ? 1.0 : N a*Phia*va*Paa;78 ? 1.0 : N[0]*Phi[0]*v[0]*Paa; 101 79 const double S0bb = icase<2 102 ? 1.0 : N b*Phib*vb*Pbb;103 const double S0cc = N c*Phic*vc*Pcc;104 const double S0dd = N d*Phid*vd*Pdd;80 ? 1.0 : N[1]*Phi[1]*v[1]*Pbb; 81 const double S0cc = N[2]*Phi[2]*v[2]*Pcc; 82 const double S0dd = N[3]*Phi[3]*v[3]*Pdd; 105 83 const double S0ab = icase<8 106 ? 0.0 : sqrt(N a*va*Phia*Nb*vb*Phib)*Pa*Pb;84 ? 0.0 : sqrt(N[0]*v[0]*Phi[0]*N[1]*v[1]*Phi[1])*Pa*Pb; 107 85 const double S0ac = icase<9 108 ? 0.0 : sqrt(N a*va*Phia*Nc*vc*Phic)*Pa*Pc*exp(-Xb);86 ? 0.0 : sqrt(N[0]*v[0]*Phi[0]*N[2]*v[2]*Phi[2])*Pa*Pc*exp(-Xb); 109 87 const double S0ad = icase<9 110 ? 0.0 : sqrt(N a*va*Phia*Nd*vd*Phid)*Pa*Pd*exp(-Xb-Xc);88 ? 0.0 : sqrt(N[0]*v[0]*Phi[0]*N[3]*v[3]*Phi[3])*Pa*Pd*exp(-Xb-Xc); 111 89 const double S0bc = (icase!=4 && icase!=7 && icase!= 9) 112 ? 0.0 : sqrt(N b*vb*Phib*Nc*vc*Phic)*Pb*Pc;90 ? 0.0 : sqrt(N[1]*v[1]*Phi[1]*N[2]*v[2]*Phi[2])*Pb*Pc; 113 91 const double S0bd = (icase!=4 && icase!=7 && icase!= 9) 114 ? 0.0 : sqrt(N b*vb*Phib*Nd*vd*Phid)*Pb*Pd*exp(-Xc);92 ? 0.0 : sqrt(N[1]*v[1]*Phi[1]*N[3]*v[3]*Phi[3])*Pb*Pd*exp(-Xc); 115 93 const double S0cd = (icase==0 || icase==2 || icase==5) 116 ? 0.0 : sqrt(N c*vc*Phic*Nd*vd*Phid)*Pc*Pd;94 ? 0.0 : sqrt(N[2]*v[2]*Phi[2]*N[3]*v[3]*Phi[3])*Pc*Pd; 117 95 #else // sasview equivalent 118 //printf("Xc=%g, S0cc=%g*%g*%g*%g\n",Xc,N c,Phic,vc,Pcc);119 double S0aa = N a*Phia*va*Paa;120 double S0bb = N b*Phib*vb*Pbb;121 double S0cc = N c*Phic*vc*Pcc;122 double S0dd = N d*Phid*vd*Pdd;123 double S0ab = sqrt(N a*va*Phia*Nb*vb*Phib)*Pa*Pb;124 double S0ac = sqrt(N a*va*Phia*Nc*vc*Phic)*Pa*Pc*exp(-Xb);125 double S0ad = sqrt(N a*va*Phia*Nd*vd*Phid)*Pa*Pd*exp(-Xb-Xc);126 double S0bc = sqrt(N b*vb*Phib*Nc*vc*Phic)*Pb*Pc;127 double S0bd = sqrt(N b*vb*Phib*Nd*vd*Phid)*Pb*Pd*exp(-Xc);128 double S0cd = sqrt(N c*vc*Phic*Nd*vd*Phid)*Pc*Pd;96 //printf("Xc=%g, S0cc=%g*%g*%g*%g\n",Xc,N[2],Phi[2],v[2],Pcc); 97 double S0aa = N[0]*Phi[0]*v[0]*Paa; 98 double S0bb = N[1]*Phi[1]*v[1]*Pbb; 99 double S0cc = N[2]*Phi[2]*v[2]*Pcc; 100 double S0dd = N[3]*Phi[3]*v[3]*Pdd; 101 double S0ab = sqrt(N[0]*v[0]*Phi[0]*N[1]*v[1]*Phi[1])*Pa*Pb; 102 double S0ac = sqrt(N[0]*v[0]*Phi[0]*N[2]*v[2]*Phi[2])*Pa*Pc*exp(-Xb); 103 double S0ad = sqrt(N[0]*v[0]*Phi[0]*N[3]*v[3]*Phi[3])*Pa*Pd*exp(-Xb-Xc); 104 double S0bc = sqrt(N[1]*v[1]*Phi[1]*N[2]*v[2]*Phi[2])*Pb*Pc; 105 double S0bd = sqrt(N[1]*v[1]*Phi[1]*N[3]*v[3]*Phi[3])*Pb*Pd*exp(-Xc); 106 double S0cd = sqrt(N[2]*v[2]*Phi[2]*N[3]*v[3]*Phi[3])*Pc*Pd; 129 107 switch(icase){ 130 108 case 0: … … 311 289 // Note: 1e-13 to convert from fm to cm for scattering length 312 290 const double sqrt_Nav=sqrt(6.022045e+23) * 1.0e-13; 313 const double Lad = icase<5 ? 0.0 : (L a/va - Ld/vd)*sqrt_Nav;314 const double Lbd = icase<2 ? 0.0 : (L b/vb - Ld/vd)*sqrt_Nav;315 const double Lcd = (L c/vc - Ld/vd)*sqrt_Nav;291 const double Lad = icase<5 ? 0.0 : (L[0]/v[0] - L[3]/v[3])*sqrt_Nav; 292 const double Lbd = icase<2 ? 0.0 : (L[1]/v[1] - L[3]/v[3])*sqrt_Nav; 293 const double Lcd = (L[2]/v[2] - L[3]/v[3])*sqrt_Nav; 316 294 317 295 const double result=Lad*Lad*S11 + Lbd*Lbd*S22 + Lcd*Lcd*S33 … … 321 299 322 300 } 323 324 double Iqxy(double qx, double qy,325 double case_num,326 double Na, double Phia, double va, double a_sld, double ba,327 double Nb, double Phib, double vb, double b_sld, double bb,328 double Nc, double Phic, double vc, double c_sld, double bc,329 double Nd, double Phid, double vd, double d_sld, double bd,330 double Kab, double Kac, double Kad,331 double Kbc, double Kbd, double Kcd332 )333 {334 double q = sqrt(qx*qx + qy*qy);335 return Iq(q,336 case_num,337 Na, Phia, va, a_sld, ba,338 Nb, Phib, vb, b_sld, bb,339 Nc, Phic, vc, c_sld, bc,340 Nd, Phid, vd, d_sld, bd,341 Kab, Kac, Kad,342 Kbc, Kbd, Kcd);343 } -
sasmodels/models/rpa.py
rec45c4f rea05c87 86 86 # ["name", "units", default, [lower, upper], "type","description"], 87 87 parameters = [ 88 ["case_num", CASES, 0, [0, 10], "", "Component organization"],88 ["case_num", "", 1, CASES, "", "Component organization"], 89 89 90 ["Na", "", 1000.0, [1, inf], "", "Degree of polymerization"], 91 ["Phia", "", 0.25, [0, 1], "", "volume fraction"], 92 ["va", "mL/mol", 100.0, [0, inf], "", "specific volume"], 93 ["La", "fm", 10.0, [-inf, inf], "", "scattering length"], 94 ["ba", "Ang", 5.0, [0, inf], "", "segment length"], 95 96 ["Nb", "", 1000.0, [1, inf], "", "Degree of polymerization"], 97 ["Phib", "", 0.25, [0, 1], "", "volume fraction"], 98 ["vb", "mL/mol", 100.0, [0, inf], "", "specific volume"], 99 ["Lb", "fm", 10.0, [-inf, inf], "", "scattering length"], 100 ["bb", "Ang", 5.0, [0, inf], "", "segment length"], 101 102 ["Nc", "", 1000.0, [1, inf], "", "Degree of polymerization"], 103 ["Phic", "", 0.25, [0, 1], "", "volume fraction"], 104 ["vc", "mL/mol", 100.0, [0, inf], "", "specific volume"], 105 ["Lc", "fm", 10.0, [-inf, inf], "", "scattering length"], 106 ["bc", "Ang", 5.0, [0, inf], "", "segment length"], 107 108 ["Nd", "", 1000.0, [1, inf], "", "Degree of polymerization"], 109 ["Phid", "", 0.25, [0, 1], "", "volume fraction"], 110 ["vd", "mL/mol", 100.0, [0, inf], "", "specific volume"], 111 ["Ld", "fm", 10.0, [-inf, inf], "", "scattering length"], 112 ["bd", "Ang", 5.0, [0, inf], "", "segment length"], 90 ["N[4]", "", 1000.0, [1, inf], "", "Degree of polymerization"], 91 ["Phi[4]", "", 0.25, [0, 1], "", "volume fraction"], 92 ["v[4]", "mL/mol", 100.0, [0, inf], "", "specific volume"], 93 ["L[4]", "fm", 10.0, [-inf, inf], "", "scattering length"], 94 ["b[4]", "Ang", 5.0, [0, inf], "", "segment length"], 113 95 114 96 ["Kab", "", -0.0004, [-inf, inf], "", "Interaction parameter"], -
sasmodels/models/spherical_sld.py
rec45c4f rd2bb604 170 170 # pylint: disable=bad-whitespace, line-too-long 171 171 # ["name", "units", default, [lower, upper], "type", "description"], 172 parameters = [["n _shells","", 1, [0, 9], "", "number of shells"],172 parameters = [["n", "", 1, [0, 9], "", "number of shells"], 173 173 ["radius_core", "Ang", 50.0, [0, inf], "", "intern layer thickness"], 174 174 ["sld_core", "1e-6/Ang^2", 2.07, [-inf, inf], "", "sld function flat"], … … 192 192 193 193 demo = dict( 194 n _shells=4,194 n=4, 195 195 scale=1.0, 196 196 solvent_sld=1.0, -
sasmodels/models/squarewell.py
rec45c4f rd2bb604 123 123 """ 124 124 125 Iqxy = """126 return Iq(sqrt(qx*qx+qy*qy), IQ_PARAMETERS);127 """128 129 125 # ER defaults to 0.0 130 126 # VR defaults to 1.0 -
sasmodels/models/stickyhardsphere.py
rec45c4f rd2bb604 171 171 """ 172 172 173 Iqxy = """174 return Iq(sqrt(qx*qx+qy*qy), IQ_PARAMETERS);175 """176 177 173 # ER defaults to 0.0 178 174 # VR defaults to 1.0 -
sasmodels/product.py
rf247314 rea05c87 14 14 15 15 from .core import call_ER_VR 16 from .generate import process_parameters17 16 18 17 SCALE=0 … … 58 57 # Iq, Iqxy, form_volume, ER, VR and sesans 59 58 model_info['composition'] = ('product', [p_info, s_info]) 60 process_parameters(model_info)61 59 return model_info 62 60 … … 93 91 # a parameter map. 94 92 par_map = {} 95 p_info = p_kernel.info['par type']96 s_info = s_kernel.info['par type']93 p_info = p_kernel.info['par_type'] 94 s_info = s_kernel.info['par_type'] 97 95 vol_pars = set(p_info['volume']) 98 96 if dim == '2d': -
sasmodels/resolution.py
r4d76711 rd2bb604 502 502 from scipy.integrate import romberg 503 503 504 if any(k not in form.info['defaults'] for k in pars.keys()): 505 keys = set(form.info['defaults'].keys()) 506 extra = set(pars.keys()) - keys 507 raise ValueError("bad parameters: [%s] not in [%s]"% 508 (", ".join(sorted(extra)), ", ".join(sorted(keys)))) 504 par_set = set([p.name for p in form.info['parameters'].call_parameters]) 505 if any(k not in par_set for k in pars.keys()): 506 extra = set(pars.keys()) - par_set 507 raise ValueError("bad parameters: [%s] not in [%s]" 508 % (", ".join(sorted(extra)), 509 ", ".join(sorted(pars.keys())))) 509 510 510 511 if np.isscalar(width): … … 556 557 from scipy.integrate import romberg 557 558 558 if any(k not in form.info['defaults'] for k in pars.keys()): 559 keys = set(form.info['defaults'].keys()) 560 extra = set(pars.keys()) - keys 561 raise ValueError("bad parameters: [%s] not in [%s]"% 562 (", ".join(sorted(extra)), ", ".join(sorted(keys)))) 559 par_set = set([p.name for p in form.info['parameters'].call_parameters]) 560 if any(k not in par_set for k in pars.keys()): 561 extra = set(pars.keys()) - par_set 562 raise ValueError("bad parameters: [%s] not in [%s]" 563 % (", ".join(sorted(extra)), 564 ", ".join(sorted(pars.keys())))) 563 565 564 566 _fn = lambda q, q0, dq: eval_form(q, form, pars)*gaussian(q, q0, dq) -
sasmodels/sasview_model.py
r4d76711 rd2bb604 26 26 from . import custom 27 27 from . import generate 28 from . import weights 28 29 29 30 def load_standard_models(): … … 84 85 self._model = None 85 86 model_info = self._model_info 87 parameters = model_info['parameters'] 86 88 87 89 self.name = model_info['name'] 88 90 self.description = model_info['description'] 89 91 self.category = None 90 self.multiplicity_info = None 91 self.is_multifunc = False 92 #self.is_multifunc = False 93 for p in parameters.kernel_parameters: 94 if p.is_control: 95 profile_axes = model_info['profile_axes'] 96 self.multiplicity_info = [ 97 p.limits[1], p.name, p.choices, profile_axes[0] 98 ] 99 break 100 else: 101 self.multiplicity_info = [] 92 102 93 103 ## interpret the parameters … … 96 106 self.params = collections.OrderedDict() 97 107 self.dispersion = dict() 98 partype = model_info['partype'] 99 100 for p in model_info['parameters']: 108 109 self.orientation_params = [] 110 self.magnetic_params = [] 111 self.fixed = [] 112 for p in parameters.user_parameters(): 101 113 self.params[p.name] = p.default 102 114 self.details[p.name] = [p.units] + p.limits 103 104 for name in partype['pd-2d']: 105 self.dispersion[name] = { 106 'width': 0, 107 'npts': 35, 108 'nsigmas': 3, 109 'type': 'gaussian', 110 } 111 112 self.orientation_params = ( 113 partype['orientation'] 114 + [n + '.width' for n in partype['orientation']] 115 + partype['magnetic']) 116 self.magnetic_params = partype['magnetic'] 117 self.fixed = [n + '.width' for n in partype['pd-2d']] 115 if p.polydisperse: 116 self.dispersion[p.name] = { 117 'width': 0, 118 'npts': 35, 119 'nsigmas': 3, 120 'type': 'gaussian', 121 } 122 if p.type == 'orientation': 123 self.orientation_params.append(p.name) 124 self.orientation_params.append(p.name+".width") 125 self.fixed.append(p.name+".width") 126 if p.type == 'magnetic': 127 self.orientation_params.append(p.name) 128 self.magnetic_params.append(p.name) 129 self.fixed.append(p.name+".width") 130 118 131 self.non_fittable = [] 119 132 … … 234 247 """ 235 248 # TODO: fix test so that parameter order doesn't matter 236 ret = ['%s.%s' % (d.lower(), p) 237 for d in self._model_info['partype']['pd-2d'] 238 for p in ('npts', 'nsigmas', 'width')] 249 ret = ['%s.%s' % (p.name.lower(), ext) 250 for p in self._model_info['parameters'].user_parameters() 251 for ext in ('npts', 'nsigmas', 'width') 252 if p.polydisperse] 239 253 #print(ret) 240 254 return ret … … 309 323 # Check whether we have a list of ndarrays [qx,qy] 310 324 qx, qy = qdist 311 partype = self._model_info['partype'] 312 if not partype['orientation'] and not partype['magnetic']: 325 if not self._model_info['parameters'].has_2d: 313 326 return self.calculate_Iq(np.sqrt(qx ** 2 + qy ** 2)) 314 327 else: … … 335 348 self._model = core.build_model(self._model_info) 336 349 q_vectors = [np.asarray(q) for q in args] 337 fn = self._model.make_kernel(q_vectors) 338 pars = [self.params[v] for v in fn.fixed_pars] 339 pd_pars = [self._get_weights(p) for p in fn.pd_pars] 340 result = fn(pars, pd_pars, self.cutoff) 341 fn.q_input.release() 342 fn.release() 350 kernel = self._model.make_kernel(q_vectors) 351 pairs = [self._get_weights(p) 352 for p in self._model_info['parameters'].call_parameters] 353 details, weights, values = core.build_details(kernel, pairs) 354 result = kernel(details, weights, values, cutoff=self.cutoff) 355 kernel.q_input.release() 356 kernel.release() 343 357 return result 344 358 … … 415 429 Return dispersion weights for parameter 416 430 """ 417 from . import weights 418 relative = self._model_info['partype']['pd-rel'] 419 limits = self._model_info['limits'] 420 dis = self.dispersion[par] 421 value, weight = weights.get_weights( 422 dis['type'], dis['npts'], dis['width'], dis['nsigmas'], 423 self.params[par], limits[par], par in relative) 424 return value, weight / np.sum(weight) 425 431 if par.polydisperse: 432 dis = self.dispersion[par.name] 433 value, weight = weights.get_weights( 434 dis['type'], dis['npts'], dis['width'], dis['nsigmas'], 435 self.params[par.name], par.limits, par.relative_pd) 436 return value, weight / np.sum(weight) 437 else: 438 return [self.params[par.name]], [] 426 439 427 440 def test_model():
Note: See TracChangeset
for help on using the changeset viewer.