source: sasmodels/sasmodels/models/onion.py @ ec45c4f

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since ec45c4f was ec45c4f, checked in by Paul Kienzle <pkienzle@…>, 8 years ago

remove oldname/oldpars from new models

  • Property mode set to 100644
File size: 11.1 KB
Line 
1r"""
2This model provides the form factor, $P(q)$, for a multi-shell sphere where
3the scattering length density (SLD) of the each shell is described by an
4exponential, linear, or constant function. The form factor is normalized by
5the volume of the sphere where the SLD is not identical to the SLD of the
6solvent. We currently provide up to 9 shells with this model.
7
8NB: *radius* represents the core radius $r_0$ and
9*thickness[k]* represents the thickness of the shell, $r_{k+1} - r_k$.
10
11Definition
12----------
13
14The 1D scattering intensity is calculated in the following way
15
16.. math::
17
18    P(q) &= [f]^2 / V_\text{particle}
19
20where
21
22.. math::
23
24    f    &= f_\text{core}
25            + \left(\sum_{\text{shell}=1}^N f_\text{shell}\right)
26            + f_\text{solvent}
27
28
29The shells are spherically symmetric with particle density $\rho(r)$ and
30constant SLD within the core and solvent, so
31
32.. math::
33
34    f_\text{core}
35        &= 4\pi\int_0^{r_\text{core}} \rho_\text{core}
36            \frac{\sin(qr)}{qr}\, r^2\,\mathrm{d}r
37        &= 3\rho_\text{core} V(r_\text{core})
38            \frac{j_1(qr_\text{core})}{qr_\text{core}} \\
39    f_\text{shell}
40        &= 4\pi\int_{r_{\text{shell}-1}}^{r_\text{shell}}
41            \rho_\text{shell}(r)\frac{\sin(qr)}{qr}\,r^2\,\mathrm{d}r \\
42    f_\text{solvent}
43        &= 4\pi\int_{r_N}^\infty
44            \rho_\text{solvent}\frac{\sin(qr)}{qr}\,r^2\,\mathrm{d}r
45        &= -3\rho_\text{solvent}V(r_N)\frac{j_1(q r_N)}{q r_N}
46
47where the spherical bessel function $j_1$ is
48
49.. math::
50
51    j_1(x) = \frac{\sin(x)}{x^2} - \frac{\cos(x)}{x}
52
53and the volume is $V(r) = \frac{4\pi}{3}r^3$. The volume of the particle
54is determined by the radius of the outer shell, so $V_\text{particle} = V(r_N)$.
55
56Now lets consider the SLD of a shell defined by
57
58.. math::
59
60    \rho_\text{shell}(r) = \begin{cases}
61        B\exp\left(A(r-r_{\text{shell}-1})/\Delta t_\text{shell}\right)
62            + C & \mbox{for } A \neq 0 \\
63        \rho_\text{in} = \text{constant} & \mbox{for } A = 0
64    \end{cases}
65
66An example of a possible SLD profile is shown below where
67$\rho_\text{in}$ and $\Delta t_\text{shell}$ stand for the
68SLD of the inner side of the $k^\text{th}$ shell and the
69thickness of the $k^\text{th}$ shell in the equation above, respectively.
70
71For $A \gt 0$,
72
73.. math::
74
75    f_\text{shell} &= 4 \pi \int_{r_{\text{shell}-1}}^{r_\text{shell}}
76        \left[ B\exp
77            \left(A (r - r_{\text{shell}-1}) / \Delta t_\text{shell} \right) + C
78        \right] \frac{\sin(qr)}{qr}\,r^2\,\mathrm{d}r \\
79    &= 3BV(r_\text{shell}) e^A h(\alpha_\text{out},\beta_\text{out})
80        - 3BV(r_{\text{shell}-1}) h(\alpha_\text{in},\beta_\text{in})
81        + 3CV(r_{\text{shell}}) \frac{j_1(\beta_\text{out})}{\beta_\text{out}}
82        - 3CV(r_{\text{shell}-1}) \frac{j_1(\beta_\text{in})}{\beta_\text{in}}
83
84for
85
86.. math::
87    :nowrap:
88
89    \begin{align*}
90    B&=\frac{\rho_\text{out} - \rho_\text{in}}{e^A-1}
91         &C &= \frac{\rho_\text{in}e^A - \rho_\text{out}}{e^A-1} \\
92    \alpha_\text{in} &= A\frac{r_{\text{shell}-1}}{\Delta t_\text{shell}}
93         &\alpha_\text{out} &= A\frac{r_\text{shell}}{\Delta t_\text{shell}} \\
94    \beta_\text{in} &= qr_{\text{shell}-1}
95        &\beta_\text{out} &= qr_\text{shell}
96    \end{align*}
97
98where $h$ is
99
100 .. math::
101
102    h(x,y) = \frac{x \sin(y) - y\cos(y)}{(x^2+y^2)y}
103               - \frac{(x^2-y^2)\sin(y) - 2xy\cos(y)}{(x^2+y^2)^2y}
104
105
106For $A \sim 0$, e.g., $A = -0.0001$, this function converges to that of the
107linear SLD profile with
108$\rho_\text{shell}(r) \approx A(r-r_{\text{shell}-1})/\Delta t_\text{shell})+B$,
109so this case is equivalent to
110
111.. math::
112
113
114    f_\text{shell}
115    &=
116      3 V(r_\text{shell}) \frac{\Delta\rho_\text{shell}}{\Delta t_\text{shell}}
117        \left[\frac{
118                2 \cos(qr_\text{out})
119                    + qr_\text{out} \sin(qr_\text{out})
120            }{
121                (qr_\text{out})^4
122            }\right] \\
123     &{}
124      -3 V(r_\text{shell}) \frac{\Delta\rho_\text{shell}}{\Delta t_\text{shell}}
125        \left[\frac{
126                    2\cos(qr_\text{in})
127                +qr_\text{in}\sin(qr_\text{in})
128            }{
129                (qr_\text{in})^4
130            }\right] \\
131    &{}
132      +3\rho_\text{out}V(r_\text{shell}) \frac{j_1(qr_\text{out})}{qr_\text{out}}
133      -3\rho_\text{in}V(r_{\text{shell}-1}) \frac{j_1(qr_\text{in})}{qr_\text{in}}
134
135For $A = 0$, the exponential function has no dependence on the radius (so that
136$\rho_\text{out}$ is ignored this case) and becomes flat. We set the constant
137to $\rho_\text{in}$ for convenience, and thus the form factor contributed by
138the shells is
139
140.. math::
141
142    f_\text{shell} =
143        3\rho_\text{in}V(r_\text{shell})
144           \frac{j_1(qr_\text{out})}{qr_\text{out}}
145        - 3\rho_\text{in}V(r_{\text{shell}-1})
146            \frac{j_1(qr_\text{in})}{qr_\text{in}}
147
148.. figure:: img/onion_geometry.png
149
150    Example of an onion model profile.
151
152The 2D scattering intensity is the same as $P(q)$ above, regardless of the
153orientation of the $q$ vector which is defined as
154
155.. math::
156
157    q = \sqrt{q_x^2 + q_y^2}
158
159NB: The outer most radius is used as the effective radius for $S(q)$
160when $P(q) S(q)$ is applied.
161
162References
163----------
164
165L A Feigin and D I Svergun,
166*Structure Analysis by Small-Angle X-Ray and Neutron Scattering*,
167Plenum Press, New York, 1987.
168"""
169
170#
171# Give a polynomial $\rho(r) = Ar^3 + Br^2 + Cr + D$ for density,
172#
173# .. math::
174#
175#    f = 4 \pi \int_a^b \rho(r) \sin(qr)/(qr) \mathrm{d}r  = h(b) - h(a)
176#
177# where
178#
179# .. math::
180#
181#    h(r) = \frac{4 \pi}{q^6}\left[
182#        (q^3(4Ar^3 + 3Br^2 + 2Cr + D) - q(24Ar + 6B)) \sin(qr)
183#      - (q^4(Ar^4 + Br^3 + Cr^2 + Dr) - q^2(12Ar^2 + 6Br + 2C) + 24A) \cos(qr)
184#    \right]
185#
186# Use the monotonic spline to get the polynomial coefficients for each shell.
187#
188# Order 0
189#
190# .. math::
191#
192#    h(r) = \frac{4 \pi}{q^3} \left[
193#       - \cos(qr) (Ar) q
194#       + \sin(qr) (A)
195#    \right]
196#
197# Order 1
198#
199# .. math::
200#
201#   h(r) = \frac{4 \pi}{q^4} \left[
202#       - \cos(qr) ( Ar^2 + Br) q^2
203#       + \sin(qr) ( Ar   + B ) q
204#       + \cos(qr) (2A        )
205#   \right]
206#
207# Order 2
208#
209# .. math::
210#  h(r) = \frac{4 \pi}{q^5} \left[
211#        - \cos(qr) ( Ar^3 +  Br^2 + Cr) q^3
212#        + \sin(qr) (3Ar^2 + 2Br   + C ) q^2
213#        + \cos(qr) (6Ar   + 2B        ) q
214#        - \sin(qr) (6A                )
215#
216# Order 3
217#
218#    h(r) = \frac{4 \pi}{q^6}\left[
219#      - \cos(qr) (  Ar^4 +  Br^3 +  Cr^2 + Dr) q^4
220#      + \sin(qr) ( 4Ar^3 + 3Br^2 + 2Cr   + D ) q^3
221#      + \cos(qr) (12Ar^2 + 6Br   + 2C        ) q^2
222#      - \sin(qr) (24Ar   + 6B                ) q
223#      - \cos(qr) (24A                        )
224#    \right]
225#
226# Order p
227#
228#    h(r) = \frac{4 \pi}{q^{2}}
229#      \sum_{k=0}^p -\frac{d^k\cos(qr)}{dr^k} \frac{d^k r\rho(r)}{dr^k} (qr)^{-k}
230#
231# Given the equation
232#
233#    f = sum_(k=0)^(n-1) h_k(r_(k+1)) - h_k(r_k)
234#
235# we can rearrange the terms so that
236#
237#    f = sum_0^(n-1) h_k(r_(k+1)) - sum_0^(n-1) h_k(r_k)
238#      = sum_1^n h_(k-1)(r_k) - sum_0^(n-1) h_k(r_k)
239#      = h_(n-1)(r_n) - h_0(r_0) + sum_1^(n-1) [h_(k-1)(r_k) - h_k(r_k)]
240#      = h_(n-1)(r_n) - h_0(r_0) - sum_1^(n-1) h_(Delta k)(r_k)
241#
242# where
243#
244#    h_(Delta k)(r) = h(Delta rho_k, r)
245#
246# for
247#
248#    Delta rho_k = (A_k-A_(k-1)) r^p + (B_k-B_(k-1)) r^(p-1) + ...
249#
250# Using l'H\^opital's Rule 6 times on the order 3 polynomial,
251#
252#   lim_(q->0) h(r) = (140D r^3 + 180C r^4 + 144B r^5 + 120A r^6)/720
253#
254
255
256from __future__ import division
257
258import numpy as np
259from numpy import inf, nan
260from math import fabs, exp, expm1
261
262name = "onion"
263title = "Onion shell model with constant, linear or exponential density"
264
265description = """\
266Form factor of mutishells normalized by the volume. Here each shell is
267described by an exponential function;
268
269        I) For A_shell != 0,
270                f(r) = B*exp(A_shell*(r-r_in)/thick_shell)+C
271        where
272                B=(sld_out-sld_in)/(exp(A_shell)-1)
273                C=sld_in-B.
274        Note that in the above case, the function becomes a linear function
275        as A_shell --> 0+ or 0-.
276
277        II) For the exact point of A_shell == 0,
278                f(r) = sld_in ,i.e., it crosses over flat function
279        Note that the 'sld_out' becaomes NULL in this case.
280
281        background:background,
282        rad_core0: radius of sphere(core)
283        thick_shell#:the thickness of the shell#
284        sld_core0: the SLD of the sphere
285        sld_solv: the SLD of the solvent
286        sld_shell: the SLD of the shell#
287        A_shell#: the coefficient in the exponential function
288"""
289
290category = "shape:sphere"
291
292# TODO: n is a volume parameter that is not polydisperse
293
294#             ["name", "units", default, [lower, upper], "type","description"],
295parameters = [["core_sld", "1e-6/Ang^2", 1.0, [-inf, inf], "",
296               "Core scattering length density"],
297              ["core_radius", "Ang", 200., [0, inf], "volume",
298               "Radius of the core"],
299              ["solvent_sld", "1e-6/Ang^2", 6.4, [-inf, inf], "",
300               "Solvent scattering length density"],
301              ["n", "", 1, [0, 10], "volume",
302               "number of shells"],
303              ["in_sld[n]", "1e-6/Ang^2", 1.7, [-inf, inf], "",
304               "scattering length density at the inner radius of shell k"],
305              ["out_sld[n]", "1e-6/Ang^2", 2.0, [-inf, inf], "",
306               "scattering length density at the outer radius of shell k"],
307              ["thickness[n]", "Ang", 40., [0, inf], "volume",
308               "Thickness of shell k"],
309              ["A[n]", "", 1.0, [-inf, inf], "",
310               "Decay rate of shell k"],
311              ]
312
313#source = ["lib/sph_j1c.c", "onion.c"]
314
315def Iq(q, *args, **kw):
316    return q
317
318def Iqxy(qx, *args, **kw):
319    return qx
320
321
322def shape(core_sld, core_radius, solvent_sld, n, in_sld, out_sld, thickness, A):
323    """
324    SLD profile
325    """
326
327    total_radius = 1.25*(sum(thickness[:n]) + core_radius + 1)
328    dr = total_radius/400  # 400 points for a smooth plot
329
330    r = []
331    beta = []
332
333    # add in the core
334    r.append(0)
335    beta.append(core_sld)
336    r.append(core_radius)
337    beta.append(core_sld)
338
339    # add in the shells
340    for k in range(n):
341        # Left side of each shells
342        r0 = r[-1]
343        r.append(r0)
344        beta.append(in_sld[k])
345
346        if fabs(A[k]) < 1.0e-16:
347            # flat shell
348            r.append(r0 + thickness[k])
349            beta.append(out_sld[k])
350        else:
351            # exponential shell
352            # num_steps must be at least 1, so use floor()+1 rather than ceil
353            # to protect against a thickness0.
354            num_steps = np.floor(thickness[k]/dr) + 1
355            slope = (out_sld[k] - in_sld[k])/expm1(A[k])
356            const = (in_sld[k] - slope)
357            for rk in np.linspace(0, thickness[k], num_steps+1):
358                r.append(r0+rk)
359                beta.append(slope*exp(A[k]*rk/thickness[k]) + const)
360
361    # add in the solvent
362    r.append(r[-1])
363    beta.append(solvent_sld)
364    r.append(total_radius)
365    beta.append(solvent_sld)
366
367    return np.asarray(r), np.asarray(beta)
368
369def ER(core_radius, n, thickness):
370    return np.sum(thickness[:n[0]], axis=0) + core_radius
371
372def VR(core_radius, n, thickness):
373    return 1.0, 1.0
374
375demo = {
376    "solvent_sld": 2.2,
377    "core_sld": 1.0,
378    "core_radius": 100,
379    "n": 4,
380    "in_sld": [0.5, 1.5, 0.9, 2.0],
381    "out_sld": [nan, 0.9, 1.2, 1.6],
382    "thickness": [50, 75, 150, 75],
383    "A": [0, -1, 1e-4, 1],
384    # Could also specify them individually as
385    # "A[1]": 0, "A[2]": -1, "A[3]": 1e-4, "A[4]": 1,
386    }
Note: See TracBrowser for help on using the repository browser.