Changeset 3c56da87 in sasmodels


Ignore:
Timestamp:
Mar 5, 2015 12:55:38 AM (10 years ago)
Author:
Paul Kienzle <pkienzle@…>
Branches:
master, core_shell_microgels, costrafo411, magnetic_model, release_v0.94, release_v0.95, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
Children:
3a45c2c
Parents:
b89f519
Message:

lint cleanup

Files:
2 added
30 edited

Legend:

Unmodified
Added
Removed
  • extra/pylint.rc

    r53d0e24 r3c56da87  
    2020# List of plugins (as comma separated values of python modules names) to load, 
    2121# usually to register additional checkers. 
    22 load-plugins= 
     22load-plugins=pylint_numpy,pylint_pyopencl 
    2323 
    2424# Use multiple processes to speed up Pylint. 
    25 jobs=4 
     25#jobs=4 
    2626 
    2727# Allow loading of arbitrary C extensions. Extensions are imported into the 
     
    5757 
    5858# Disable the message(s) with the given id(s). 
    59 disable=W0702,W0613,W0703,W0142 
     59# http://pylint-messages.wikidot.com/all-codes 
     60disable= 
     61    multiple-statements, 
     62    global-statement, 
     63    bare-except, 
     64    broad-except, 
     65    bad-whitespace, 
     66    bad-continuation, 
     67    too-many-statements, 
     68    too-many-branches, 
     69    too-many-locals, 
     70    too-many-instance-attributes, 
     71    too-many-arguments, 
     72    star-args, 
     73    unbalanced-tuple-unpacking, 
     74    locally-disabled, 
     75    old-style-class, 
    6076 
    6177[REPORTS] 
     
    98114 
    99115# Good variable names which should always be accepted, separated by a comma 
    100 good-names=i,j,k,ex,Run,_,x,y,z,qx,qy,qz,n,q,dx,dy,dz,id,Iq,dIq,Qx,Qy,Qz 
     116good-names=_, 
     117    input, 
     118    i,j,k,n,x,y,z, 
     119    q,qx,qy,qz, 
     120    dt,dx,dy,dz,id, 
     121    Iq,dIq,Qx,Qy,Qz, 
     122    p, 
     123    ER, call_ER, VR, call_VR, 
    101124 
    102125# Bad variable names which should always be refused, separated by a comma 
     
    111134 
    112135# Regular expression matching correct function names 
    113 function-rgx=[a-z_][a-z0-9_]{2,30}$ 
     136function-rgx=[a-z_][a-z0-9_]{2,30}([123]D)?$ 
    114137 
    115138# Naming hint for function names 
     
    172195# Regular expression which should only match function or class names that do 
    173196# not require a docstring. 
    174 no-docstring-rgx=__.*__ 
     197#no-docstring-rgx=__.*__ 
     198no-docstring-rgx=_.* 
    175199 
    176200# Minimum line length for functions/classes that require docstrings, shorter 
     
    181205 
    182206# Maximum number of characters on a single line. 
    183 max-line-length=100 
     207#max-line-length=100 
     208max-line-length=80 
    184209 
    185210# Regexp for a line that is allowed to be longer than the limit. 
    186 ignore-long-lines=^\s*(# )?<?https?://\S+>?$ 
     211#ignore-long-lines=^\s*(# )?<?https?://\S+>?$ 
     212# No comma in the last forty characters 
     213ignore-long-lines=([^-,+*/]{40},?|[^"]{40}")$ 
    187214 
    188215# Allow the body of an if to be on the same line as the test if there is no 
  • extra/run-pylint.py

    r6c2eb83 r3c56da87  
    44 
    55def main(): 
     6    envpath = os.environ.get('PYTHONPATH',None) 
     7    path = [envpath] if envpath else [] 
     8    path.append(abspath(dirname(__file__))) # so we can find the plugins 
     9    os.environ['PYTHONPATH'] = ':'.join(path) 
    610    root = abspath(joinpath(dirname(__file__), '..')) 
    711    os.chdir(root) 
    8     cmd = "pylint --rcfile extra/pylint.rc -f parseable sasmodels > pylint_violations.txt" 
     12    cmd = "pylint --rcfile extra/pylint.rc -f parseable sasmodels" 
    913    status = os.system(cmd) 
    1014    sys.exit(status) 
  • sasmodels/alignment.py

    rff7119b r3c56da87  
    3434    return view 
    3535 
    36 def align_data(v, dtype, alignment=128): 
     36def align_data(x, dtype, alignment=128): 
    3737    """ 
    3838    Return a copy of an array on the alignment boundary. 
    3939    """ 
    40     # if v is contiguous, aligned, and of the correct type then just return v 
    41     view = align_empty(v.shape, dtype, alignment=alignment) 
    42     view[:] = v 
     40    # if x is contiguous, aligned, and of the correct type then just return x 
     41    view = align_empty(x.shape, dtype, alignment=alignment) 
     42    view[:] = x 
    4343    return view 
    4444 
  • sasmodels/bumps_model.py

    rb89f519 r3c56da87  
    88# CRUFT python 2.6 
    99if not hasattr(datetime.timedelta, 'total_seconds'): 
    10     def delay(dt): return dt.days * 86400 + dt.seconds + 1e-6 * dt.microseconds 
     10    def delay(dt): 
     11        """Return number date-time delta as number seconds""" 
     12        return dt.days * 86400 + dt.seconds + 1e-6 * dt.microseconds 
    1113else: 
    12     def delay(dt): return dt.total_seconds() 
     14    def delay(dt): 
     15        """Return number date-time delta as number seconds""" 
     16        return dt.total_seconds() 
    1317 
    1418import numpy as np 
     
    141145    from sas.dataloader.manipulations import Boxcut 
    142146    if half == 'right': 
    143         data.mask += Boxcut(x_min=-np.inf, x_max=0.0, y_min=-np.inf, y_max=np.inf)(data) 
     147        data.mask += \ 
     148            Boxcut(x_min=-np.inf, x_max=0.0, y_min=-np.inf, y_max=np.inf)(data) 
    144149    if half == 'left': 
    145         data.mask += Boxcut(x_min=0.0, x_max=np.inf, y_min=-np.inf, y_max=np.inf)(data) 
    146  
    147  
    148 def set_top(data, max): 
    149     """ 
    150     Chop the top off the data, above *max*. 
     150        data.mask += \ 
     151            Boxcut(x_min=0.0, x_max=np.inf, y_min=-np.inf, y_max=np.inf)(data) 
     152 
     153 
     154def set_top(data, cutoff): 
     155    """ 
     156    Chop the top off the data, above *cutoff*. 
    151157    """ 
    152158    from sas.dataloader.manipulations import Boxcut 
    153     data.mask += Boxcut(x_min=-np.inf, x_max=np.inf, y_min=-np.inf, y_max=max)(data) 
    154  
    155  
    156 def plot_data(data, iq, vmin=None, vmax=None, view='log'): 
     159    data.mask += \ 
     160        Boxcut(x_min=-np.inf, x_max=np.inf, y_min=-np.inf, y_max=cutoff)(data) 
     161 
     162 
     163def plot_data(data, Iq, vmin=None, vmax=None, view='log'): 
    157164    """ 
    158165    Plot the target value for the data.  This could be the data itself, 
     
    161168    *scale* can be 'log' for log scale data, or 'linear'. 
    162169    """ 
    163     from numpy.ma import masked_array, masked 
     170    from numpy.ma import masked_array 
    164171    import matplotlib.pyplot as plt 
    165172    if hasattr(data, 'qx_data'): 
    166         iq = iq + 0 
    167         valid = np.isfinite(iq) 
     173        Iq = Iq + 0 
     174        valid = np.isfinite(Iq) 
    168175        if view == 'log': 
    169             valid[valid] = (iq[valid] > 0) 
    170             iq[valid] = np.log10(iq[valid]) 
     176            valid[valid] = (Iq[valid] > 0) 
     177            Iq[valid] = np.log10(Iq[valid]) 
    171178        elif view == 'q4': 
    172             iq[valid] = iq*(data.qx_data[valid]**2+data.qy_data[valid]**2)**2 
    173         iq[~valid | data.mask] = 0 
    174         #plottable = iq 
    175         plottable = masked_array(iq, ~valid | data.mask) 
     179            Iq[valid] = Iq*(data.qx_data[valid]**2+data.qy_data[valid]**2)**2 
     180        Iq[~valid | data.mask] = 0 
     181        #plottable = Iq 
     182        plottable = masked_array(Iq, ~valid | data.mask) 
    176183        xmin, xmax = min(data.qx_data), max(data.qx_data) 
    177184        ymin, ymax = min(data.qy_data), max(data.qy_data) 
    178185        try: 
    179             if vmin is None: vmin = iq[valid & ~data.mask].min() 
    180             if vmax is None: vmax = iq[valid & ~data.mask].max() 
     186            if vmin is None: vmin = Iq[valid & ~data.mask].min() 
     187            if vmax is None: vmax = Iq[valid & ~data.mask].max() 
    181188        except: 
    182189            vmin, vmax = 0, 1 
     
    186193    else: # 1D data 
    187194        if view == 'linear' or view == 'q4': 
    188             #idx = np.isfinite(iq) 
     195            #idx = np.isfinite(Iq) 
    189196            scale = data.x**4 if view == 'q4' else 1.0 
    190             plt.plot(data.x, scale*iq) #, '.') 
     197            plt.plot(data.x, scale*Iq) #, '.') 
    191198        else: 
    192199            # Find the values that are finite and positive 
    193             idx = np.isfinite(iq) 
    194             idx[idx] = iq[idx]>0 
    195             iq[~idx] = np.nan 
    196             plt.loglog(data.x, iq) 
     200            idx = np.isfinite(Iq) 
     201            idx[idx] = (Iq[idx] > 0) 
     202            Iq[~idx] = np.nan 
     203            plt.loglog(data.x, Iq) 
    197204 
    198205 
     
    220227    plt.plot(data.x, mresid, 'x') 
    221228 
     229# pylint: disable=unused-argument 
    222230def _plot_sesans(data, theory, view): 
    223231    import matplotlib.pyplot as plt 
     
    286294            q = sesans.make_q(data.sample.zacceptance, data.Rmax) 
    287295            self.index = slice(None, None) 
    288             self.iq = data.y 
    289             self.diq = data.dy 
     296            self.Iq = data.y 
     297            self.dIq = data.dy 
    290298            self._theory = np.zeros_like(q) 
    291299            q_vectors = [q] 
    292300        elif self.data_type == 'Iqxy': 
    293301            self.index = (data.mask == 0) & (~np.isnan(data.data)) 
    294             self.iq = data.data[self.index] 
    295             self.diq = data.err_data[self.index] 
     302            self.Iq = data.data[self.index] 
     303            self.dIq = data.err_data[self.index] 
    296304            self._theory = np.zeros_like(data.data) 
    297305            if not partype['orientation'] and not partype['magnetic']: 
     
    301309        elif self.data_type == 'Iq': 
    302310            self.index = (data.x >= data.qmin) & (data.x <= data.qmax) & ~np.isnan(data.y) 
    303             self.iq = data.y[self.index] 
    304             self.diq = data.dy[self.index] 
     311            self.Iq = data.y[self.index] 
     312            self.dIq = data.dy[self.index] 
    305313            self._theory = np.zeros_like(data.y) 
    306314            q_vectors = [data.x] 
     
    316324        pars = [] 
    317325        for p in model.info['parameters']: 
    318             name, default, limits, ptype = p[0], p[2], p[3], p[4] 
     326            name, default, limits = p[0], p[2], p[3] 
    319327            value = kw.pop(name, default) 
    320328            setattr(self, name, Parameter.default(value, name=name, limits=limits)) 
     
    335343        self._parameter_names = pars 
    336344        if kw: 
    337             raise TypeError("unexpected parameters: %s" % (", ".join(sorted(kw.keys())))) 
     345            raise TypeError("unexpected parameters: %s" 
     346                            % (", ".join(sorted(kw.keys())))) 
    338347        self.update() 
    339348 
     
    345354            Return the number of points 
    346355        """ 
    347         return len(self.iq) 
     356        return len(self.Iq) 
    348357 
    349358    def parameters(self): 
     
    365374            #self._theory[:] = self._fn.eval(pars, pd_pars) 
    366375            if self.data_type == 'sesans': 
    367                 P = sesans.hankel(self.data.x, self.data.lam * 1e-9, 
    368                                   self.data.sample.thickness / 10, self._fn_inputs[0], 
    369                                   self._theory) 
    370                 self._cache['theory'] = P 
     376                result = sesans.hankel(self.data.x, self.data.lam * 1e-9, 
     377                                       self.data.sample.thickness / 10, 
     378                                       self._fn_inputs[0], self._theory) 
     379                self._cache['theory'] = result 
    371380            else: 
    372381                self._cache['theory'] = self._theory 
     
    375384    def residuals(self): 
    376385        #if np.any(self.err ==0): print "zeros in err" 
    377         return (self.theory()[self.index] - self.iq) / self.diq 
     386        return (self.theory()[self.index] - self.Iq) / self.dIq 
    378387 
    379388    def nllf(self): 
    380         R = self.residuals() 
     389        delta = self.residuals() 
    381390        #if np.any(np.isnan(R)): print "NaN in residuals" 
    382         return 0.5 * np.sum(R ** 2) 
    383  
    384     def __call__(self): 
    385         return 2 * self.nllf() / self.dof 
     391        return 0.5 * np.sum(delta ** 2) 
     392 
     393    #def __call__(self): 
     394    #    return 2 * self.nllf() / self.dof 
    386395 
    387396    def plot(self, view='log'): 
     
    402411        print "noise", noise 
    403412        if noise is None: 
    404             noise = self.diq[self.index] 
     413            noise = self.dIq[self.index] 
    405414        else: 
    406415            noise = 0.01 * noise 
    407             self.diq[self.index] = noise 
     416            self.dIq[self.index] = noise 
    408417        y = self.theory() 
    409418        y += y * np.random.randn(*y.shape) * noise 
     
    428437        relative = self.model.info['partype']['pd-rel'] 
    429438        limits = self.model.info['limits'] 
    430         disperser, value, npts, width, nsigma = \ 
    431             [getattr(self, par + ext) for ext in ('_pd_type', '', '_pd_n', '_pd', '_pd_nsigma')] 
    432         v, w = weights.get_weights( 
     439        disperser, value, npts, width, nsigma = [ 
     440            getattr(self, par + ext) 
     441            for ext in ('_pd_type', '', '_pd_n', '_pd', '_pd_nsigma')] 
     442        value, weight = weights.get_weights( 
    433443            disperser, int(npts.value), width.value, nsigma.value, 
    434444            value.value, limits[par], par in relative) 
    435         return v, w / w.max() 
     445        return value, weight / np.sum(weight) 
    436446 
    437447    def __getstate__(self): 
     
    442452 
    443453    def __setstate__(self, state): 
     454        # pylint: disable=attribute-defined-outside-init 
    444455        self.__dict__ = state 
    445456 
  • sasmodels/convert.py

    r2a74b99 r3c56da87  
    3737    Convert model from old style parameter names to new style. 
    3838    """ 
     39    _,_ = name,pars # lint 
    3940    raise NotImplementedError 
    4041    # need to load all new models in order to determine old=>new 
  • sasmodels/core.py

    r9890053 r3c56da87  
    1212try: 
    1313    from .kernelcl import load_model as load_model_cl 
    14 except Exception,exc: 
     14except: 
     15    # pylint: disable=invalid-name 
    1516    load_model_cl = None 
    1617from .kerneldll import load_model as load_model_dll 
     
    3132    Return a computation kernel from the model definition and the q input. 
    3233    """ 
    33     input = model.make_input(q_vectors) 
    34     return model(input) 
     34    model_input = model.make_input(q_vectors) 
     35    return model(model_input) 
    3536 
    36 def get_weights(kernel, pars, name): 
     37def get_weights(info, pars, name): 
    3738    """ 
    3839    Generate the distribution for parameter *name* given the parameter values 
     
    4142    Searches for "name", "name_pd", "name_pd_type", "name_pd_n", "name_pd_sigma" 
    4243    """ 
    43     relative = name in kernel.info['partype']['pd-rel'] 
    44     limits = kernel.info['limits'] 
     44    relative = name in info['partype']['pd-rel'] 
     45    limits = info['limits'] 
    4546    disperser = pars.get(name+'_pd_type', 'gaussian') 
    46     value = pars.get(name, kernel.info['defaults'][name]) 
     47    value = pars.get(name, info['defaults'][name]) 
    4748    npts = pars.get(name+'_pd_n', 0) 
    4849    width = pars.get(name+'_pd', 0.0) 
    4950    nsigma = pars.get(name+'_pd_nsigma', 3.0) 
    50     v,w = weights.get_weights( 
     51    value,weight = weights.get_weights( 
    5152        disperser, npts, width, nsigma, 
    5253        value, limits[name], relative) 
    53     return v,w/np.sum(w) 
     54    return value,weight/np.sum(weight) 
    5455 
    5556def dispersion_mesh(pars): 
     
    6162    parameter set in the vector. 
    6263    """ 
    63     values, weights = zip(*pars) 
    64     if len(values) > 1: 
    65         values = [v.flatten() for v in np.meshgrid(*values)] 
    66         weights = np.vstack([v.flatten() for v in np.meshgrid(*weights)]) 
    67         weights = np.prod(weights, axis=0) 
    68     return values, weights 
     64    value, weight = zip(*pars) 
     65    if len(value) > 1: 
     66        value = [v.flatten() for v in np.meshgrid(*value)] 
     67        weight = np.vstack([v.flatten() for v in np.meshgrid(*weight)]) 
     68        weight = np.prod(weight, axis=0) 
     69    return value, weight 
    6970 
    7071def call_kernel(kernel, pars, cutoff=1e-5): 
    7172    fixed_pars = [pars.get(name, kernel.info['defaults'][name]) 
    7273                  for name in kernel.fixed_pars] 
    73     pd_pars = [get_weights(kernel, pars, name) for name in kernel.pd_pars] 
     74    pd_pars = [get_weights(kernel.info, pars, name) for name in kernel.pd_pars] 
    7475    return kernel(fixed_pars, pd_pars, cutoff=cutoff) 
    7576 
    76 def call_ER(kernel, pars): 
    77     ER = kernel.info.get('ER', None) 
     77def call_ER(info, pars): 
     78    ER = info.get('ER', None) 
    7879    if ER is None: 
    7980        return 1.0 
    8081    else: 
    81         vol_pars = [get_weights(kernel, pars, name) 
    82                     for name in kernel.info['partype']['volume']] 
    83         values, weights = dispersion_mesh(vol_pars) 
    84         fv = ER(*values) 
     82        vol_pars = [get_weights(info, pars, name) 
     83                    for name in info['partype']['volume']] 
     84        value, weight = dispersion_mesh(vol_pars) 
     85        individual_radii = ER(*value) 
    8586        #print values[0].shape, weights.shape, fv.shape 
    86         return np.sum(weights*fv) / np.sum(weights) 
     87        return np.sum(weight*individual_radii) / np.sum(weight) 
    8788 
    88 def call_VR(kernel, pars): 
    89     VR = kernel.info.get('VR', None) 
     89def call_VR(info, pars): 
     90    VR = info.get('VR', None) 
    9091    if VR is None: 
    9192        return 1.0 
    9293    else: 
    93         vol_pars = [get_weights(kernel, pars, name) 
    94                     for name in kernel.info['partype']['volume']] 
    95         values, weights = dispersion_mesh(vol_pars) 
    96         whole,part = VR(*values) 
    97         return np.sum(weights*part)/np.sum(weights*whole) 
     94        vol_pars = [get_weights(info, pars, name) 
     95                    for name in info['partype']['volume']] 
     96        value, weight = dispersion_mesh(vol_pars) 
     97        whole,part = VR(*value) 
     98        return np.sum(weight*part)/np.sum(weight*whole) 
    9899 
  • sasmodels/generate.py

    r33e91b1 r3c56da87  
    566566 
    567567def demo_time(): 
     568    from .models import cylinder 
    568569    import datetime 
    569     from .models import cylinder 
    570570    tic = datetime.datetime.now() 
    571     toc = lambda: (datetime.datetime.now() - tic).total_seconds() 
    572571    make(cylinder) 
    573     print "time:", toc() 
     572    toc = (datetime.datetime.now() - tic).total_seconds() 
     573    print "time:", toc 
    574574 
    575575def main(): 
  • sasmodels/kernelcl.py

    rc85db69 r3c56da87  
    3030try: 
    3131    import pyopencl as cl 
    32     context = cl.create_some_context(interactive=False) 
    33     del context 
     32    # Ask OpenCL for the default context so that we know that one exists 
     33    cl.create_some_context(interactive=False) 
    3434except Exception, exc: 
    3535    warnings.warn(str(exc)) 
     
    160160 
    161161        if not self.context: 
    162             self.context = self._find_context() 
     162            self.context = _get_default_context() 
    163163 
    164164        # Byte boundary for data alignment 
     
    178178            warnings.warn("the environment variable 'PYOPENCL_CTX' might not be set correctly") 
    179179 
    180     def _find_context(self): 
    181         default = None 
    182         for platform in cl.get_platforms(): 
    183             for device in platform.get_devices(): 
    184                 if device.type == cl.device_type.GPU: 
    185                     return cl.Context([device]) 
    186                 if default is None: 
    187                     default = device 
    188  
    189         if not default: 
    190             raise RuntimeError("OpenCL device not found") 
    191  
    192         return cl.Context([default]) 
    193  
    194180    def compile_program(self, name, source, dtype): 
    195181        if name not in self.compiled: 
     
    203189            del self.compiled[name] 
    204190 
     191def _get_default_context(): 
     192    default = None 
     193    for platform in cl.get_platforms(): 
     194        for device in platform.get_devices(): 
     195            if device.type == cl.device_type.GPU: 
     196                return cl.Context([device]) 
     197            if default is None: 
     198                default = device 
     199 
     200    if not default: 
     201        raise RuntimeError("OpenCL device not found") 
     202 
     203    return cl.Context([default]) 
     204 
    205205 
    206206class GpuModel(object): 
     
    234234            raise TypeError("data and kernel have different types") 
    235235        if self.program is None: 
    236             self.program = environment().compile_program(self.info['name'], self.source, self.dtype) 
     236            compiler = environment().compile_program 
     237            self.program = compiler(self.info['name'], self.source, self.dtype) 
    237238        kernel_name = generate.kernel_name(self.info, input_value.is_2D) 
    238239        kernel = getattr(self.program, kernel_name) 
     
    303304    *info* is the module information 
    304305 
    305     *input* is the DllInput q vectors at which the kernel should be 
     306    *q_input* is the DllInput q vectors at which the kernel should be 
    306307    evaluated. 
    307308 
     
    314315    Call :meth:`release` when done with the kernel instance. 
    315316    """ 
    316     def __init__(self, kernel, info, input): 
    317         self.input = input 
     317    def __init__(self, kernel, info, q_input): 
     318        self.q_input = q_input 
    318319        self.kernel = kernel 
    319320        self.info = info 
    320         self.res = np.empty(input.nq, input.dtype) 
    321         dim = '2d' if input.is_2D else '1d' 
     321        self.res = np.empty(q_input.nq, q_input.dtype) 
     322        dim = '2d' if q_input.is_2D else '1d' 
    322323        self.fixed_pars = info['partype']['fixed-' + dim] 
    323324        self.pd_pars = info['partype']['pd-' + dim] 
     
    327328        env = environment() 
    328329        self.loops_b = [cl.Buffer(env.context, mf.READ_WRITE, 
    329                                   2 * MAX_LOOPS * input.dtype.itemsize) 
     330                                  2 * MAX_LOOPS * q_input.dtype.itemsize) 
    330331                        for _ in env.queues] 
    331332        self.res_b = [cl.Buffer(env.context, mf.READ_WRITE, 
    332                                 input.global_size[0] * input.dtype.itemsize) 
     333                                q_input.global_size[0] * q_input.dtype.itemsize) 
    333334                      for _ in env.queues] 
    334335 
    335336 
    336337    def __call__(self, fixed_pars, pd_pars, cutoff=1e-5): 
    337         real = np.float32 if self.input.dtype == generate.F32 else np.float64 
     338        real = np.float32 if self.q_input.dtype == generate.F32 else np.float64 
    338339 
    339340        device_num = 0 
    340341        queuei = environment().queues[device_num] 
    341342        res_bi = self.res_b[device_num] 
    342         nq = np.uint32(self.input.nq) 
     343        nq = np.uint32(self.q_input.nq) 
    343344        if pd_pars: 
    344345            cutoff = real(cutoff) 
    345346            loops_N = [np.uint32(len(p[0])) for p in pd_pars] 
    346             loops = np.hstack(pd_pars) if pd_pars else np.empty(0, dtype=self.input.dtype) 
    347             loops = np.ascontiguousarray(loops.T, self.input.dtype).flatten() 
     347            loops = np.hstack(pd_pars) \ 
     348                if pd_pars else np.empty(0, dtype=self.q_input.dtype) 
     349            loops = np.ascontiguousarray(loops.T, self.q_input.dtype).flatten() 
    348350            #print "loops",Nloops, loops 
    349351 
     
    357359            loops_l = cl.LocalMemory(len(loops.data)) 
    358360            #ctx = environment().context 
    359             #loops_bi = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=loops) 
     361            #loops_bi = cl.Buffer(ctx, mf.READ_ONLY|mf.COPY_HOST_PTR, hostbuf=loops) 
    360362            dispersed = [loops_bi, loops_l, cutoff] + loops_N 
    361363        else: 
    362364            dispersed = [] 
    363365        fixed = [real(p) for p in fixed_pars] 
    364         args = self.input.q_buffers + [res_bi, nq] + dispersed + fixed 
    365         self.kernel(queuei, self.input.global_size, None, *args) 
     366        args = self.q_input.q_buffers + [res_bi, nq] + dispersed + fixed 
     367        self.kernel(queuei, self.q_input.global_size, None, *args) 
    366368        cl.enqueue_copy(queuei, self.res, res_bi) 
    367369 
  • sasmodels/kerneldll.py

    rf734e7d r3c56da87  
    1919    COMPILE = "gcc -shared -fPIC -std=c99 -O2 -Wall %(source)s -o %(output)s -lm" 
    2020elif os.name == 'nt': 
    21     # make sure vcvarsall.bat is called first in order to set compiler, headers, lib paths, etc. 
     21    # call vcvarsall.bat before compiling to set path, headers, libs, etc. 
    2222    if "VCINSTALLDIR" in os.environ: 
    2323        # MSVC compiler is available, so use it. 
     
    2525        # TODO: maybe don't use randomized name for the c file 
    2626        COMPILE = "cl /nologo /Ox /MD /W3 /GS- /DNDEBUG /Tp%(source)s /openmp /link /DLL /INCREMENTAL:NO /MANIFEST /OUT:%(output)s" 
    27         # Can't find VCOMP90.DLL (don't know why), so remove openmp support from windows compiler build 
     27        # Can't find VCOMP90.DLL (don't know why), so remove openmp support 
     28        # from windows compiler build 
    2829        #COMPILE = "cl /nologo /Ox /MD /W3 /GS- /DNDEBUG /Tp%(source)s /link /DLL /INCREMENTAL:NO /MANIFEST /OUT:%(output)s" 
    2930    else: 
     
    123124        self.__dict__ = state 
    124125 
    125     def __call__(self, input): 
     126    def __call__(self, q_input): 
    126127        if self.dll is None: self._load_dll() 
    127         kernel = self.Iqxy if input.is_2D else self.Iq 
    128         return DllKernel(kernel, self.info, input) 
     128        kernel = self.Iqxy if q_input.is_2D else self.Iq 
     129        return DllKernel(kernel, self.info, q_input) 
    129130 
     131    # pylint: disable=no-self-use 
    130132    def make_input(self, q_vectors): 
    131133        """ 
     
    150152    *info* is the module information 
    151153 
    152     *input* is the DllInput q vectors at which the kernel should be 
     154    *q_input* is the DllInput q vectors at which the kernel should be 
    153155    evaluated. 
    154156 
     
    161163    Call :meth:`release` when done with the kernel instance. 
    162164    """ 
    163     def __init__(self, kernel, info, input): 
     165    def __init__(self, kernel, info, q_input): 
    164166        self.info = info 
    165         self.input = input 
     167        self.q_input = q_input 
    166168        self.kernel = kernel 
    167         self.res = np.empty(input.nq, input.dtype) 
    168         dim = '2d' if input.is_2D else '1d' 
     169        self.res = np.empty(q_input.nq, q_input.dtype) 
     170        dim = '2d' if q_input.is_2D else '1d' 
    169171        self.fixed_pars = info['partype']['fixed-'+dim] 
    170172        self.pd_pars = info['partype']['pd-'+dim] 
     
    174176 
    175177    def __call__(self, fixed_pars, pd_pars, cutoff): 
    176         real = np.float32 if self.input.dtype == F32 else np.float64 
     178        real = np.float32 if self.q_input.dtype == F32 else np.float64 
    177179 
    178         nq = c_int(self.input.nq) 
     180        nq = c_int(self.q_input.nq) 
    179181        if pd_pars: 
    180182            cutoff = real(cutoff) 
    181183            loops_N = [np.uint32(len(p[0])) for p in pd_pars] 
    182184            loops = np.hstack(pd_pars) 
    183             loops = np.ascontiguousarray(loops.T, self.input.dtype).flatten() 
     185            loops = np.ascontiguousarray(loops.T, self.q_input.dtype).flatten() 
    184186            p_loops = loops.ctypes.data 
    185187            dispersed = [p_loops, cutoff] + loops_N 
     
    187189            dispersed = [] 
    188190        fixed = [real(p) for p in fixed_pars] 
    189         args = self.input.q_pointers + [self.p_res, nq] + dispersed + fixed 
     191        args = self.q_input.q_pointers + [self.p_res, nq] + dispersed + fixed 
    190192        #print pars 
    191193        self.kernel(*args) 
  • sasmodels/kernelpy.py

    rc85db69 r3c56da87  
    77    def __init__(self, info): 
    88        self.info = info 
    9     def __call__(self, input_value): 
    10         kernel = self.info['Iqxy'] if input_value.is_2D else self.info['Iq'] 
    11         return PyKernel(kernel, self.info, input_value) 
     9 
     10    def __call__(self, q_input): 
     11        kernel = self.info['Iqxy'] if q_input.is_2D else self.info['Iq'] 
     12        return PyKernel(kernel, self.info, q_input) 
     13 
     14    # pylint: disable=no-self-use 
    1215    def make_input(self, q_vectors): 
    1316        return PyInput(q_vectors, dtype=F64) 
     17 
    1418    def release(self): 
    1519        pass 
     
    5256    *info* is the module information 
    5357 
    54     *input* is the DllInput q vectors at which the kernel should be 
     58    *q_input* is the DllInput q vectors at which the kernel should be 
    5559    evaluated. 
    5660 
     
    6367    Call :meth:`release` when done with the kernel instance. 
    6468    """ 
    65     def __init__(self, kernel, info, input): 
     69    def __init__(self, kernel, info, q_input): 
    6670        self.info = info 
    67         self.input = input 
    68         self.res = np.empty(input.nq, input.dtype) 
    69         dim = '2d' if input.is_2D else '1d' 
     71        self.q_input = q_input 
     72        self.res = np.empty(q_input.nq, q_input.dtype) 
     73        dim = '2d' if q_input.is_2D else '1d' 
    7074        # Loop over q unless user promises that the kernel is vectorized by 
    7175        # taggining it with vectorized=True 
     
    7377            if dim == '2d': 
    7478                def vector_kernel(qx, qy, *args): 
    75                     return np.array([kernel(qxi, qyi, *args) for qxi, qyi in zip(qx, qy)]) 
     79                    return np.array([kernel(qxi, qyi, *args) 
     80                                     for qxi, qyi in zip(qx, qy)]) 
    7681            else: 
    7782                def vector_kernel(q, *args): 
    78                     return np.array([kernel(qi, *args) for qi in q]) 
     83                    return np.array([kernel(qi, *args) 
     84                                     for qi in q]) 
    7985            self.kernel = vector_kernel 
    8086        else: 
     
    8692        # First two fixed pars are scale and background 
    8793        pars = [p[0] for p in info['parameters'][2:]] 
    88         offset = len(self.input.q_vectors) 
    89         self.args = self.input.q_vectors + [None] * len(pars) 
    90         self.fixed_index = np.array([pars.index(p) + offset for p in fixed_pars[2:]]) 
    91         self.pd_index = np.array([pars.index(p) + offset for p in pd_pars]) 
    92         self.vol_index = np.array([pars.index(p) + offset for p in vol_pars]) 
     94        offset = len(self.q_input.q_vectors) 
     95        self.args = self.q_input.q_vectors + [None] * len(pars) 
     96        self.fixed_index = np.array([pars.index(p) + offset 
     97                                     for p in fixed_pars[2:]]) 
     98        self.pd_index = np.array([pars.index(p) + offset 
     99                                  for p in pd_pars]) 
     100        self.vol_index = np.array([pars.index(p) + offset 
     101                                   for p in vol_pars]) 
    93102        try: self.theta_index = pars.index('theta') + offset 
    94103        except ValueError: self.theta_index = -1 
     
    113122 
    114123    def release(self): 
    115         self.input = None 
     124        self.q_input = None 
    116125 
    117126def _loops(form, form_volume, cutoff, scale, background, 
     
    194203            args[pd_index[0]] = fast_value[fast_index] 
    195204            weight[0] = fast_weight[fast_index] 
    196         # This computes the weight, and if it is sufficient, calls the scattering 
    197         # function and adds it to the total.  If there is a volume normalization, 
    198         # it will also be added here. 
     205        # This computes the weight, and if it is sufficient, calls the 
     206        # scattering function and adds it to the total.  If there is a volume 
     207        # normalization, it will also be added here. 
    199208        # Note: make sure this is consistent with the code in PY_LOOP_BODY!! 
    200209        # Note: can precompute w1*w2*...*wn 
     
    204213            positive = (I >= 0.0) 
    205214 
    206             # Note: can precompute spherical correction if theta_index is not the fast index 
    207             # Correction factor for spherical integration p(theta) I(q) sin(theta) dtheta 
    208             #spherical_correction = abs(sin(pi*args[theta_index])) if theta_index>=0 else 1.0 
    209             spherical_correction = abs(cos(pi * args[theta_index])) * pi / 2 if theta_index >= 0 else 1.0 
     215            # Note: can precompute spherical correction if theta_index is not 
     216            # the fast index. Correction factor for spherical integration 
     217            #spherical_correction = abs(cos(pi*args[phi_index])) if phi_index>=0 else 1.0 
     218            spherical_correction = (abs(cos(pi * args[theta_index])) * pi / 2 
     219                                    if theta_index >= 0 else 1.0) 
    210220            #spherical_correction = 1.0 
    211221            ret += w * I * spherical_correction * positive 
     
    213223 
    214224            # Volume normalization. 
    215             # If there are "volume" polydispersity parameters, then these will be used 
    216             # to call the form_volume function from the user supplied kernel, and accumulate 
    217             # a normalized weight. 
    218             # Note: can precompute volume norm if the fast index is not a volume index 
     225            # If there are "volume" polydispersity parameters, then these 
     226            # will be used to call the form_volume function from the user 
     227            # supplied kernel, and accumulate a normalized weight. 
     228            # Note: can precompute volume norm if fast index is not a volume 
    219229            if form_volume: 
    220230                vol_args = [args[index] for index in vol_index] 
  • sasmodels/model_test.py

    rd6adfbe r3c56da87  
    55Usage:: 
    66 
    7      python -m sasmodels.model_test [opencl|dll|opencl_and_dll] model1 model2 ... 
    8  
    9      if model1 is 'all', then all except the remaining models will be tested 
     7    python -m sasmodels.model_test [opencl|dll|opencl_and_dll] model1 model2 ... 
     8 
     9    if model1 is 'all', then all except the remaining models will be tested 
    1010 
    1111Each model is tested using the default parameters at q=0.1, (qx,qy)=(0.1,0.1), 
     
    6060    Example:: 
    6161        >>> D = {} 
    62         >>> try:  
     62        >>> try: 
    6363        ...    print D['hello'] 
    64         ... except Exception,exc:  
     64        ... except Exception,exc: 
    6565        ...    annotate_exception(exc, "while accessing 'D'") 
    6666        ...    raise 
     
    7878        except: 
    7979            exc.args = (" ".join((str(exc),msg)),) 
    80      
    81 def suite(loaders, models): 
     80 
     81def make_suite(loaders, models): 
    8282 
    8383    ModelTestCase = _hide_model_case_from_nosetests() 
     
    100100            ] 
    101101        tests = smoke_tests + getattr(model_definition, 'tests', []) 
    102          
     102 
    103103        if tests: # in case there are no smoke tests... 
    104104            #print '------' 
     
    143143                model = self.loader(self.definition) 
    144144                for test in self.tests: 
    145                     pars, Q, I = test 
    146  
    147                     if not isinstance(I, list): 
    148                         I = [I] 
    149                     if not isinstance(Q, list): 
    150                         Q = [Q] 
    151  
    152                     self.assertEqual(len(I), len(Q)) 
    153  
    154                     if Q[0] == 'ER': 
    155                         Iq = [call_ER(kernel, pars)] 
    156                     elif Q[0] == 'VR': 
    157                         Iq = [call_VR(kernel, pars)] 
    158                     elif isinstance(Q[0], tuple): 
    159                         Qx,Qy = zip(*Q) 
    160                         Q_vectors = [np.array(Qx), np.array(Qy)] 
    161                         kernel = make_kernel(model, Q_vectors) 
    162                         Iq = call_kernel(kernel, pars) 
    163                     else: 
    164                         Q_vectors = [np.array(Q)] 
    165                         kernel = make_kernel(model, Q_vectors) 
    166                         Iq = call_kernel(kernel, pars) 
    167  
    168                     self.assertGreater(len(Iq), 0) 
    169                     self.assertEqual(len(I), len(Iq)) 
    170  
    171                     for q, i, iq in zip(Q, I, Iq): 
    172                         if i is None: 
    173                             # smoke test --- make sure it runs and produces a value 
    174                             self.assertTrue(np.isfinite(iq), 'q:%s; not finite; actual:%s' % (q, iq)) 
    175                         else: 
    176                             err = abs(i - iq) 
    177                             nrm = abs(i) 
    178                             self.assertLess(err * 10**5, nrm, 'q:%s; expected:%s; actual:%s' % (q, i, iq)) 
     145                    self._run_one_test(model, test) 
    179146 
    180147            except Exception,exc: 
     
    182149                raise 
    183150 
     151        def _run_one_test(self, model, test): 
     152            pars, x, y = test 
     153 
     154            if not isinstance(y, list): 
     155                y = [y] 
     156            if not isinstance(x, list): 
     157                x = [x] 
     158 
     159            self.assertEqual(len(y), len(x)) 
     160 
     161            if x[0] == 'ER': 
     162                actual = [call_ER(model.info, pars)] 
     163            elif x[0] == 'VR': 
     164                actual = [call_VR(model.info, pars)] 
     165            elif isinstance(x[0], tuple): 
     166                Qx,Qy = zip(*x) 
     167                q_vectors = [np.array(Qx), np.array(Qy)] 
     168                kernel = make_kernel(model, q_vectors) 
     169                actual = call_kernel(kernel, pars) 
     170            else: 
     171                q_vectors = [np.array(x)] 
     172                kernel = make_kernel(model, q_vectors) 
     173                actual = call_kernel(kernel, pars) 
     174 
     175            self.assertGreater(len(actual), 0) 
     176            self.assertEqual(len(y), len(actual)) 
     177 
     178            for xi, yi, actual_yi in zip(x, y, actual): 
     179                if yi is None: 
     180                    # smoke test --- make sure it runs and produces a value 
     181                    self.assertTrue(np.isfinite(actual_yi), 
     182                        'invalid f(%s): %s' % (xi, actual_yi)) 
     183                else: 
     184                    err = abs(yi - actual_yi) 
     185                    nrm = abs(yi) 
     186                    self.assertLess(err * 10**5, nrm, 
     187                        'f(%s); expected:%s; actual:%s' % (xi, yi, actual_yi)) 
     188 
    184189    return ModelTestCase 
    185190 
     
    187192# let nosetests sniff out the tests 
    188193def model_tests(): 
    189     tests = suite(['opencl','dll'],['all']) 
     194    tests = make_suite(['opencl','dll'],['all']) 
    190195    for test_i in tests: 
    191196        yield test_i.runTest 
     
    218223    #run_tests(loaders, models) 
    219224    runner = unittest.TextTestRunner() 
    220     result = runner.run(suite(loaders, models)) 
     225    result = runner.run(make_suite(loaders, models)) 
    221226    return 1 if result.failures or result.errors else 0 
    222227 
  • sasmodels/models/barbell.py

    r9890053 r3c56da87  
    44r""" 
    55 
    6 Calculates the scattering from a barbell-shaped cylinder (This model simply becomes the DumBellModel when the length of 
    7 the cylinder, *L*, is set to zero). That is, a sphereocylinder with spherical end caps that have a radius larger than 
    8 that of the cylinder and the center of the end cap radius lies outside of the cylinder. All dimensions of the BarBell 
    9 are considered to be monodisperse. See the diagram for the details of the geometry and restrictions on parameter values. 
     6Calculates the scattering from a barbell-shaped cylinder (This model simply 
     7becomes the DumBellModel when the length of the cylinder, *L*, is set to zero). 
     8That is, a sphereocylinder with spherical end caps that have a radius larger 
     9than that of the cylinder and the center of the end cap radius lies outside 
     10of the cylinder. All dimensions of the BarBell are considered to be 
     11monodisperse. See the diagram for the details of the geometry and restrictions 
     12on parameter values. 
    1013 
    1114Definition 
     
    1821.. image:: img/barbell_geometry.jpg 
    1922 
    20 where *r* is the radius of the cylinder. All other parameters are as defined in the diagram. 
     23where *r* is the radius of the cylinder. All other parameters are as defined 
     24in the diagram. 
    2125 
    2226Since the end cap radius 
    23 *R* >= *r* and by definition for this geometry *h* < 0, *h* is then defined by *r* and *R* as 
     27*R* >= *r* and by definition for this geometry *h* < 0, *h* is then 
     28defined by *r* and *R* as 
    2429 
    2530*h* = -1 \* sqrt(*R*\ :sup:`2` - *r*\ :sup:`2`) 
     
    4651             \over QR\sin\theta \left(1-t^2\right)^{1/2}} 
    4752 
    48 The < > brackets denote an average of the structure over all orientations. <*A* :sup:`2`\ *(q)*> is then the form 
    49 factor, *P(q)*. The scale factor is equivalent to the volume fraction of cylinders, each of volume, *V*. Contrast is 
    50 the difference of scattering length densities of the cylinder and the surrounding solvent. 
     53The < > brackets denote an average of the structure over all orientations. 
     54<*A* :sup:`2`\ *(q)*> is then the form factor, *P(q)*. The scale factor is 
     55equivalent to the volume fraction of cylinders, each of volume, *V*. Contrast 
     56is the difference of scattering length densities of the cylinder and the 
     57surrounding solvent. 
    5158 
    5259The volume of the barbell is 
     
    6976        \left( 4R^3 6R^2h - 2h^3 + 3r^2L \right)^{-1} 
    7077 
    71 **The requirement that** *R* >= *r* **is not enforced in the model!** It is up to you to restrict this during analysis. 
     78**The requirement that** *R* >= *r* **is not enforced in the model!** It is 
     79up to you to restrict this during analysis. 
    7280 
    7381This example dataset is produced by running the Macro PlotBarbell(), 
     
    7987*Figure. 1D plot using the default values (w/256 data point).* 
    8088 
    81 For 2D data: The 2D scattering intensity is calculated similar to the 2D cylinder model. For example, for 
    82 |theta| = 45 deg and |phi| = 0 deg with default values for other parameters 
     89For 2D data: The 2D scattering intensity is calculated similar to the 2D 
     90cylinder model. For example, for |theta| = 45 deg and |phi| = 0 deg with 
     91default values for other parameters 
    8392 
    8493.. image:: img/barbell_2d.jpg 
     
    102111 
    103112""" 
    104 from numpy import pi, inf 
     113from numpy import inf 
    105114 
    106115name = "barbell" 
  • sasmodels/models/bcc.py

    r9890053 r3c56da87  
    8080.. image:: img/bcc_1d.jpg 
    8181 
    82 *Figure. 1D plot in the linear scale using the default values (w/200 data point).* 
     82*Figure. 1D plot in the linear scale using the default values 
     83(w/200 data point).* 
    8384 
    8485The 2D (Anisotropic model) is based on the reference below where $I(q)$ is 
     
    103104""" 
    104105 
    105 from numpy import pi, inf 
     106from numpy import inf 
    106107 
    107108name = "bcc_paracrystal" 
     
    120121    [ "radius", "Ang",  40, [0, inf], "volume","Particle radius" ], 
    121122    [ "sld", "1e-6/Ang^2", 4, [-inf,inf], "", "Particle scattering length density" ], 
    122     [ "solvent_sld", "1e-6/Ang^2", 1, [-inf,inf], "","Solvent scattering length density" ], 
     123    [ "solvent_sld", "1e-6/Ang^2", 1, [-inf,inf], "", "Solvent scattering length density" ], 
    123124    [ "theta", "degrees", 60, [-inf, inf], "orientation","In plane angle" ], 
    124125    [ "phi", "degrees", 60, [-inf, inf], "orientation","Out of plane angle" ], 
  • sasmodels/models/broad_peak.py

    ra5d0d00 r3c56da87  
    66layered structures, etc. 
    77 
    8 The d-spacing corresponding to the broad peak is a characteristic distance  
    9 between the scattering inhomogeneities (such as in lamellar, cylindrical, or  
     8The d-spacing corresponding to the broad peak is a characteristic distance 
     9between the scattering inhomogeneities (such as in lamellar, cylindrical, or 
    1010spherical morphologies, or for bicontinuous structures). 
    1111 
     
    4444""" 
    4545 
    46 import numpy as np 
    47 from numpy import pi, inf, sin, cos, sqrt, exp, log, fabs 
     46from numpy import inf, sqrt 
    4847 
    4948name = "broad_peak" 
     
    8281 
    8382 
    84 #def form_volume(): 
    85 #    return 1 
    86  
    8783def Iq(q, porod_scale, porod_exp, lorentz_scale, lorentz_length, peak_pos, lorentz_exp): 
    88     inten = porod_scale/pow(q,porod_exp) + lorentz_scale/(1.0 \ 
    89         + pow((fabs(q-peak_pos)*lorentz_length),lorentz_exp)) 
    90     return inten   
    91  
    92 # FOR VECTORIZED VERSION, UNCOMMENT THE NEXT LINE 
    93 Iq.vectorized = True 
     84    inten = (porod_scale/q**porod_exp + lorentz_scale 
     85        / (1.0 + (abs(q-peak_pos)*lorentz_length)**lorentz_exp)) 
     86    return inten 
     87Iq.vectorized = True  # Iq accepts an array of Q values 
    9488 
    9589def Iqxy(qx, qy, *args): 
    9690    return Iq(sqrt(qx**2 + qy**2), *args) 
    97  
    98 # FOR VECTORIZED VERSION, UNCOMMENT THE NEXT LINE 
    99 Iqxy.vectorized = True 
     91Iqxy.vectorized = True # Iqxy accepts an array of Qx, Qy values 
    10092 
    10193 
     
    10597    lorentz_scale=10,lorentz_length=50, peak_pos=0.1, lorentz_exp=2, 
    10698    ) 
     99 
    107100oldname = "BroadPeakModel" 
    108 oldpars = dict(porod_scale='scale_p', porod_exp='exponent_p',  
    109         lorentz_scale='scale_l', lorentz_length='length_l', peak_pos='q_peak',  
     101oldpars = dict(porod_scale='scale_p', porod_exp='exponent_p', 
     102        lorentz_scale='scale_l', lorentz_length='length_l', peak_pos='q_peak', 
    110103        lorentz_exp='exponent_l', scale=None) 
  • sasmodels/models/ellipsoid.py

    ra5d0d00 r3c56da87  
    116116""" 
    117117 
    118 from numpy import pi, inf 
     118from numpy import inf 
    119119 
    120120name = "ellipsoid" 
  • sasmodels/models/fcc.py

    r9890053 r3c56da87  
    33#note - calculation requires double precision 
    44r""" 
    5 Calculates the scattering from a **face-centered cubic lattice** with paracrystalline distortion. Thermal vibrations 
    6 are considered to be negligible, and the size of the paracrystal is infinitely large. Paracrystalline distortion is 
    7 assumed to be isotropic and characterized by a Gaussian distribution. 
     5Calculates the scattering from a **face-centered cubic lattice** with 
     6paracrystalline distortion. Thermal vibrations are considered to be 
     7negligible, and the size of the paracrystal is infinitely large. 
     8Paracrystalline distortion is assumed to be isotropic and characterized by 
     9a Gaussian distribution. 
    810 
    911The returned value is scaled to units of |cm^-1|\ |sr^-1|, absolute scale. 
     
    1618.. image:: img/image158.jpg 
    1719 
    18 where *scale* is the volume fraction of spheres, *Vp* is the volume of the primary particle, *V(lattice)* is a volume 
    19 correction for the crystal structure, *P(q)* is the form factor of the sphere (normalized), and *Z(q)* is the 
    20 paracrystalline structure factor for a face-centered cubic structure. 
     20where *scale* is the volume fraction of spheres, *Vp* is the volume of 
     21the primary particle, *V(lattice)* is a volume correction for the crystal 
     22structure, *P(q)* is the form factor of the sphere (normalized), and *Z(q)* 
     23is the paracrystalline structure factor for a face-centered cubic structure. 
    2124 
    22 Equation (1) of the 1990 reference is used to calculate *Z(q)*, using equations (23)-(25) from the 1987 paper for 
    23 *Z1*\ , *Z2*\ , and *Z3*\ . 
     25Equation (1) of the 1990 reference is used to calculate *Z(q)*, using 
     26equations (23)-(25) from the 1987 paper for *Z1*\ , *Z2*\ , and *Z3*\ . 
    2427 
    25 The lattice correction (the occupied volume of the lattice) for a face-centered cubic structure of particles of radius 
    26 *R* and nearest neighbor separation *D* is 
     28The lattice correction (the occupied volume of the lattice) for a 
     29face-centered cubic structure of particles of radius *R* and nearest 
     30neighbor separation *D* is 
    2731 
    2832.. image:: img/image159.jpg 
    2933 
    30 The distortion factor (one standard deviation) of the paracrystal is included in the calculation of *Z(q)* 
     34The distortion factor (one standard deviation) of the paracrystal is 
     35included in the calculation of *Z(q)* 
    3136 
    3237.. image:: img/image160.jpg 
     
    4247.. image:: img/image162.jpg 
    4348 
    44 where for a face-centered cubic lattice *h*\ , *k*\ , *l* all odd or all even are allowed and reflections where 
    45 *h*\ , *k*\ , *l* are mixed odd/even are forbidden. Thus the peak positions correspond to (just the first 5) 
     49where for a face-centered cubic lattice *h*\ , *k*\ , *l* all odd or all 
     50even are allowed and reflections where *h*\ , *k*\ , *l* are mixed odd/even 
     51are forbidden. Thus the peak positions correspond to (just the first 5) 
    4652 
    4753.. image:: img/image163.jpg 
    4854 
    49 **NB: The calculation of** *Z(q)* **is a double numerical integral that must be carried out with a high density of** 
    50 **points to properly capture the sharp peaks of the paracrystalline scattering.** So be warned that the calculation is 
    51 SLOW. Go get some coffee. Fitting of any experimental data must be resolution smeared for any meaningful fit. This 
    52 makes a triple integral. Very, very slow. Go get lunch! 
     55**NB: The calculation of** *Z(q)* **is a double numerical integral that 
     56must be carried out with a high density of** **points to properly capture 
     57the sharp peaks of the paracrystalline scattering.** So be warned that the 
     58calculation is SLOW. Go get some coffee. Fitting of any experimental data 
     59must be resolution smeared for any meaningful fit. This makes a triple 
     60integral. Very, very slow. Go get lunch! 
    5361 
    54 This example dataset is produced using 200 data points, *qmin* = 0.01 |Ang^-1|, *qmax* = 0.1 |Ang^-1| and the above 
    55 default values. 
     62This example dataset is produced using 200 data points, *qmin* = 0.01 |Ang^-1|, 
     63*qmax* = 0.1 |Ang^-1| and the above default values. 
    5664 
    5765.. image:: img/image164.jpg 
     
    5967*Figure. 1D plot in the linear scale using the default values (w/200 data point).* 
    6068 
    61 The 2D (Anisotropic model) is based on the reference below where *I(q)* is approximated for 1d scattering. Thus the 
    62 scattering pattern for 2D may not be accurate. Note that we are not responsible for any incorrectness of the 2D model 
    63 computation. 
     69The 2D (Anisotropic model) is based on the reference below where *I(q)* is 
     70approximated for 1d scattering. Thus the scattering pattern for 2D may not 
     71be accurate. Note that we are not responsible for any incorrectness of the 
     722D model computation. 
    6473 
    6574.. image:: img/image165.gif 
     
    7887""" 
    7988 
    80 from numpy import pi, inf 
     89from numpy import inf 
    8190 
    8291name = "fcc_paracrystal" 
     
    118127# names and the target sasview model name. 
    119128oldname='FCCrystalModel' 
    120 oldpars=dict(sld='sldSph', 
    121              solvent_sld='sldSolv') 
     129oldpars=dict(sld='sldSph', solvent_sld='sldSolv') 
  • sasmodels/models/gaussian_peak.py

    ra5d0d00 r3c56da87  
    2121""" 
    2222 
    23 from numpy import pi, inf 
     23from numpy import inf 
    2424 
    2525name = "gaussian_peak" 
  • sasmodels/models/hardsphere.py

    ra5d0d00 r3c56da87  
    3232""" 
    3333 
    34 from numpy import pi, inf 
     34from numpy import inf 
    3535 
    3636name = "hardsphere" 
  • sasmodels/models/lamellar.py

    rbfb195e r3c56da87  
    4747""" 
    4848 
    49 from numpy import pi, inf 
     49from numpy import inf 
    5050 
    5151name = "lamellar" 
  • sasmodels/models/lamellarCaille.py

    rbfb195e r3c56da87  
    7070also in J. Phys. Chem. B, 105, (2001) 11081-11088 
    7171""" 
    72 from numpy import pi, inf 
     72from numpy import inf 
    7373 
    7474name = "lamellarPS" 
  • sasmodels/models/lamellarCailleHG.py

    r12c810f r3c56da87  
    7474also in J. Phys. Chem. B, 105, (2001) 11081-11088 
    7575""" 
    76 from numpy import pi, inf 
     76from numpy import inf 
    7777 
    7878name = "lamellarCailleHG" 
  • sasmodels/models/lamellarFFHG.py

    rbfb195e r3c56da87  
    11# Note: model title and parameter table are inserted automatically 
    22r""" 
    3 This model provides the scattering intensity, *I(q)*, for a lyotropic lamellar phase where a random distribution in 
    4 solution are assumed. The SLD of the head region is taken to be different from the SLD of the tail region. 
     3This model provides the scattering intensity, *I(q)*, for a lyotropic lamellar 
     4phase where a random distribution in solution are assumed. The SLD of the head 
     5region is taken to be different from the SLD of the tail region. 
    56 
    67*2.1.31.1. Definition* 
     
    1617.. image:: img/lamellarFFHG_.jpg 
    1718 
    18 where |delta|\ T = tail length (or *tail_length*), |delta|\ H = head thickness (or *h_thickness*), 
    19 |drho|\ H = SLD(headgroup) - SLD(solvent), and |drho|\ T = SLD(tail) - SLD(solvent). 
     19where |delta|\ T = tail length (or *tail_length*), |delta|\ H = head thickness 
     20(or *h_thickness*), |drho|\ H = SLD(headgroup) - SLD(solvent), 
     21and |drho|\ T = SLD(tail) - SLD(solvent). 
    2022 
    21 The 2D scattering intensity is calculated in the same way as 1D, where the *q* vector is defined as 
     23The 2D scattering intensity is calculated in the same way as 1D, where 
     24the *q* vector is defined as 
    2225 
    2326.. math:: 
     
    2528    Q = \sqrt{Q_x^2 + Q_y^2} 
    2629 
    27 The returned value is in units of |cm^-1|, on absolute scale. In the parameters, *sld_tail* = SLD of the tail group, 
    28 and *sld_head* = SLD of the head group. 
    29  
    30 ==============  ========  ============= 
    31 Parameter name  Units     Default value 
    32 ==============  ========  ============= 
    33 background      |cm^-1|   0.0 
    34 head_sld        |Ang^-2|  3e-06 
    35 scale            None      1 
    36 solvent_sld     |Ang^-2|  6e-06 
    37 head_length     |Ang|     10 
    38 tail_length     |Ang|     15 
    39 sld (tail)      |Ang^-2|  0 
    40 ==============  ========  ============= 
     30The returned value is in units of |cm^-1|, on absolute scale. In the 
     31parameters, *sld_tail* = SLD of the tail group, and *sld_head* = SLD 
     32of the head group. 
    4133 
    4234.. image:: img/lamellarFFHG_138.jpg 
     
    4436*Figure. 1D plot using the default values (w/1000 data point).* 
    4537 
    46 Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research 
    47 (Kline, 2006). 
     38Our model uses the form factor calculations implemented in a C library 
     39provided by the NIST Center for Neutron Research (Kline, 2006). 
    4840 
    4941REFERENCE 
     
    5648""" 
    5749 
    58 from numpy import pi, inf 
     50from numpy import inf 
    5951 
    6052name = "lamellar_FFHG" 
     
    9688Iq = """ 
    9789    const double qsq = q*q; 
    98         const double drh = head_sld - solvent_sld; 
    99         const double drt = sld  - solvent_sld;          //correction 13FEB06 by L.Porcar 
    100         const double qT = q*tail_length; 
    101         double Pq, inten; 
    102         Pq = drh*(sin(q*(head_length+tail_length))-sin(qT)) + drt*sin(qT); 
    103         Pq *= Pq; 
    104         Pq *= 4.0/(qsq); 
    105          
    106         inten = 2.0e-4*M_PI*Pq/qsq;      
    107          
    108         return inten /= 2.0*(head_length+tail_length);  //normalize by the bilayer thickness     
    109                  
     90    const double drh = head_sld - solvent_sld; 
     91    const double drt = sld - solvent_sld;    //correction 13FEB06 by L.Porcar 
     92    const double qT = q*tail_length; 
     93    double Pq, inten; 
     94    Pq = drh*(sin(q*(head_length+tail_length))-sin(qT)) + drt*sin(qT); 
     95    Pq *= Pq; 
     96    Pq *= 4.0/(qsq); 
     97 
     98    inten = 2.0e-4*M_PI*Pq/qsq; 
     99 
     100    // normalize by the bilayer thickness 
     101    inten /= 2.0*(head_length+tail_length); 
     102 
     103    return inten; 
    110104    """ 
    111          
     105 
    112106Iqxy = """ 
    113107    return Iq(sqrt(qx*qx+qy*qy), IQ_PARAMETERS); 
     
    118112 
    119113demo = dict( 
    120         scale=1, background=0, 
    121                 tail_length=15,head_length=10, 
    122         sld=0.4, head_sld=3.0, solvent_sld=6.0, 
    123                 tail_length_pd= 0.2, tail_length_pd_n=40, 
    124                 head_length_pd= 0.01, head_length_pd_n=40, 
    125           ) 
     114    scale=1, background=0, 
     115    tail_length=15,head_length=10, 
     116    sld=0.4, head_sld=3.0, solvent_sld=6.0, 
     117    tail_length_pd= 0.2, tail_length_pd_n=40, 
     118    head_length_pd= 0.01, head_length_pd_n=40, 
     119    ) 
     120 
    126121oldname = 'LamellarFFHGModel' 
    127 oldpars = dict(head_length='h_thickness', sld='sld_tail', head_sld='sld_head', solvent_sld='sld_solvent') 
     122oldpars = dict(head_length='h_thickness', sld='sld_tail', 
     123               head_sld='sld_head', solvent_sld='sld_solvent') 
    128124 
  • sasmodels/models/lamellarPC.py

    ra5d0d00 r3c56da87  
    11# Note: model title and parameter table are inserted automatically 
    22r""" 
    3 This model calculates the scattering from a stack of repeating lamellar structures. The stacks of lamellae (infinite 
    4 in lateral dimension) are treated as a paracrystal to account for the repeating spacing. The repeat distance is further 
    5 characterized by a Gaussian polydispersity. **This model can be used for large multilamellar vesicles.** 
     3This model calculates the scattering from a stack of repeating lamellar 
     4structures. The stacks of lamellae (infinite in lateral dimension) are 
     5treated as a paracrystal to account for the repeating spacing. The repeat 
     6distance is further characterized by a Gaussian polydispersity. **This model 
     7can be used for large multilamellar vesicles.** 
    68 
    79*2.1.33.1. Definition* 
     
    1113.. image:: img/image145.jpg 
    1214 
    13 The form factor of the bilayer is approximated as the cross section of an infinite, planar bilayer of thickness *t* 
     15The form factor of the bilayer is approximated as the cross section of an 
     16infinite, planar bilayer of thickness *t* 
    1417 
    1518.. image:: img/image146.jpg 
    1619 
    17 Here, the scale factor is used instead of the mass per area of the bilayer (*G*). The scale factor is the volume 
    18 fraction of the material in the bilayer, *not* the total excluded volume of the paracrystal. *Z*\ :sub:`N`\ *(q)* 
    19 describes the interference effects for aggregates consisting of more than one bilayer. The equations used are (3-5) 
     20Here, the scale factor is used instead of the mass per area of the 
     21bilayer (*G*). The scale factor is the volume fraction of the material in 
     22the bilayer, *not* the total excluded volume of the paracrystal. 
     23*Z*\ :sub:`N`\ *(q)* describes the interference effects for aggregates 
     24consisting of more than one bilayer. The equations used are (3-5) 
    2025from the Bergstrom reference below. 
    2126 
    22 Non-integer numbers of stacks are calculated as a linear combination of the lower and higher values 
     27Non-integer numbers of stacks are calculated as a linear combination of 
     28the lower and higher values 
    2329 
    2430.. image:: img/image147.jpg 
    2531 
    26 The 2D scattering intensity is the same as 1D, regardless of the orientation of the *q* vector which is defined as 
     32The 2D scattering intensity is the same as 1D, regardless of the orientation 
     33of the *q* vector which is defined as 
    2734 
    2835.. math:: 
     
    3037    Q = \sqrt{Q_x^2 + Q_y^2} 
    3138 
    32 The parameters of the model are *Nlayers* = no. of layers, and *pd_spacing* = polydispersity of spacing. 
     39The parameters of the model are *Nlayers* = no. of layers, and 
     40*pd_spacing* = polydispersity of spacing. 
    3341 
    3442==============  ========  ============= 
     
    4957*Figure. 1D plot using the default values above (w/20000 data point).* 
    5058 
    51 Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron Research 
    52 (Kline, 2006). 
     59Our model uses the form factor calculations implemented in a C library 
     60provided by the NIST Center for Neutron Research (Kline, 2006). 
    5361 
    5462REFERENCE 
    5563 
    56 M Bergstrom, J S Pedersen, P Schurtenberger, S U Egelhaaf, *J. Phys. Chem. B*, 103 (1999) 9888-9897 
     64M Bergstrom, J S Pedersen, P Schurtenberger, S U Egelhaaf, 
     65*J. Phys. Chem. B*, 103 (1999) 9888-9897 
    5766 
    5867""" 
    5968 
    60 from numpy import pi, inf 
     69from numpy import inf 
    6170 
    6271name = "lamellarPC" 
     
    9099    ] 
    91100 
    92          
     101 
    93102source = [ "lamellarPC_kernel.c"] 
    94103 
     
    105114 
    106115demo = dict( 
    107         scale=1, background=0, 
    108                 thickness=33,Nlayers=20,spacing=250,spacing_polydisp=0.2, 
    109         sld=1.0, solvent_sld=6.34, 
    110                 thickness_pd= 0.2, thickness_pd_n=40 
    111          ) 
     116    scale=1, background=0, 
     117    thickness=33, Nlayers=20, spacing=250, spacing_polydisp=0.2, 
     118    sld=1.0, solvent_sld=6.34, 
     119    thickness_pd= 0.2, thickness_pd_n=40 
     120    ) 
     121 
    112122oldname = 'LamellarPCrystalModel' 
    113 oldpars = dict(spacing_polydisp='pd_spacing', sld='sld_layer',solvent_sld='sld_solvent') 
     123oldpars = dict( 
     124    spacing_polydisp='pd_spacing', sld='sld_layer', 
     125    solvent_sld='sld_solvent' 
     126    ) 
    114127 
    115128 
  • sasmodels/models/sphere.py

    ra5d0d00 r3c56da87  
    5858""" 
    5959 
    60 from numpy import pi, inf 
     60from numpy import inf 
    6161 
    6262name = "sphere" 
  • sasmodels/models/spherepy.py

    ra5d0d00 r3c56da87  
    5959 
    6060import numpy as np 
    61 from numpy import pi, inf, sin, cos, sqrt, exp, log 
     61from numpy import pi, inf, sin, cos, sqrt, log 
    6262 
    6363name = "sphere" 
  • sasmodels/models/stickyhardsphere.py

    r1353f60 r3c56da87  
    11# Note: model title and parameter table are inserted automatically 
    2 r"""This calculates the interparticle structure factor for a hard sphere fluid with 
    3 a narrow attractive well. A perturbative solution of the Percus-Yevick closure is used. 
    4 The strength of the attractive well is described in terms of "stickiness" 
    5 as defined below. The returned value is a dimensionless structure factor, *S(q)*. 
     2r""" 
     3This calculates the interparticle structure factor for a hard sphere fluid 
     4with a narrow attractive well. A perturbative solution of the Percus-Yevick 
     5closure is used. The strength of the attractive well is described in terms 
     6of "stickiness" as defined below. The returned value is a dimensionless 
     7structure factor, *S(q)*. 
    68 
    7 The perturb (perturbation parameter), |epsilon|, should be held between 0.01 and 0.1. 
    8 It is best to hold the perturbation parameter fixed and let the "stickiness" vary to 
    9 adjust the interaction strength. The stickiness, |tau|, is defined in the equation 
    10 below and is a function of both the perturbation parameter and the interaction strength. 
    11 |tau| and |epsilon| are defined in terms of the hard sphere diameter (|sigma| = 2\*\ *R*\ ), 
    12 the width of the square well, |bigdelta| (same units as *R*), and the depth of the well, 
    13 *Uo*, in units of kT. From the definition, it is clear that smaller |tau| means stronger 
    14 attraction. 
     9The perturb (perturbation parameter), |epsilon|, should be held between 0.01 
     10and 0.1. It is best to hold the perturbation parameter fixed and let 
     11the "stickiness" vary to adjust the interaction strength. The stickiness, 
     12|tau|, is defined in the equation below and is a function of both the 
     13perturbation parameter and the interaction strength. |tau| and |epsilon| 
     14are defined in terms of the hard sphere diameter (|sigma| = 2\*\ *R*\ ), the 
     15width of the square well, |bigdelta| (same units as *R*), and the depth of 
     16the well, *Uo*, in units of kT. From the definition, it is clear that 
     17smaller |tau| means stronger attraction. 
    1518 
    1619.. image:: img/stickyhardsphere_228.PNG 
     
    2023.. image:: img/stickyhardsphere_229.PNG 
    2124 
    22 The Percus-Yevick (PY) closure was used for this calculation, and is an adequate closure 
    23 for an attractive interparticle potential. This solution has been compared to Monte Carlo 
    24 simulations for a square well fluid, with good agreement. 
     25The Percus-Yevick (PY) closure was used for this calculation, and is an 
     26adequate closure for an attractive interparticle potential. This solution 
     27has been compared to Monte Carlo simulations for a square well fluid, with 
     28good agreement. 
    2529 
    26 The true particle volume fraction, |phi|, is not equal to *h*, which appears in most of 
    27 the reference. The two are related in equation (24) of the reference. The reference also 
    28 describes the relationship between this perturbation solution and the original sticky hard 
    29 sphere (or adhesive sphere) model by Baxter. 
     30The true particle volume fraction, |phi|, is not equal to *h*, which appears 
     31in most of the reference. The two are related in equation (24) of the 
     32reference. The reference also describes the relationship between this 
     33perturbation solution and the original sticky hard sphere (or adhesive 
     34sphere) model by Baxter. 
    3035 
    31 NB: The calculation can go haywire for certain combinations of the input parameters, 
    32 producing unphysical solutions - in this case errors are reported to the command window and 
    33 the *S(q)* is set to -1 (so it will disappear on a log-log plot). Use tight bounds to keep 
    34 the parameters to values that you know are physical (test them) and keep nudging them until 
     36NB: The calculation can go haywire for certain combinations of the input 
     37parameters, producing unphysical solutions - in this case errors are 
     38reported to the command window and the *S(q)* is set to -1 (so it will 
     39disappear on a log-log plot). Use tight bounds to keep the parameters to 
     40values that you know are physical (test them) and keep nudging them until 
    3541the optimization does not hit the constraints. 
    3642 
    37 In sasview the effective radius will be calculated from the parameters used in the 
    38 form factor P(Q) that this S(Q) is combined with. 
     43In sasview the effective radius will be calculated from the parameters 
     44used in the form factor P(Q) that this S(Q) is combined with. 
    3945 
    40 For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where 
    41 the *q* vector is defined as 
     46For 2D data: The 2D scattering intensity is calculated in the same way 
     47as 1D, where the *q* vector is defined as 
    4248 
    4349.. math:: 
     
    99105 
    100106Iq = """ 
    101         double onemineps,eta; 
    102         double sig,aa,etam1,etam1sq,qa,qb,qc,radic; 
    103         double lam,lam2,test,mu,alpha,beta; 
    104         double kk,k2,k3,ds,dc,aq1,aq2,aq3,aq,bq1,bq2,bq3,bq,sq; 
     107    double onemineps,eta; 
     108    double sig,aa,etam1,etam1sq,qa,qb,qc,radic; 
     109    double lam,lam2,test,mu,alpha,beta; 
     110    double kk,k2,k3,ds,dc,aq1,aq2,aq3,aq,bq1,bq2,bq3,bq,sq; 
    105111 
    106         onemineps = 1.0-perturb; 
    107         eta = volfraction/onemineps/onemineps/onemineps; 
     112    onemineps = 1.0-perturb; 
     113    eta = volfraction/onemineps/onemineps/onemineps; 
    108114 
    109         sig = 2.0 * effect_radius; 
    110         aa = sig/onemineps; 
    111         etam1 = 1.0 - eta; 
    112         etam1sq=etam1*etam1; 
    113         //C 
    114         //C  SOLVE QUADRATIC FOR LAMBDA 
    115         //C 
    116         qa = eta/12.0; 
    117         qb = -1.0*(stickiness + eta/etam1); 
    118         qc = (1.0 + eta/2.0)/etam1sq; 
    119         radic = qb*qb - 4.0*qa*qc; 
    120         if(radic<0) { 
    121                 //if(x>0.01 && x<0.015) 
    122                 //      Print "Lambda unphysical - both roots imaginary" 
    123                 //endif 
    124                 return(-1.0); 
    125         } 
    126         //C   KEEP THE SMALLER ROOT, THE LARGER ONE IS UNPHYSICAL 
    127         lam = (-1.0*qb-sqrt(radic))/(2.0*qa); 
    128         lam2 = (-1.0*qb+sqrt(radic))/(2.0*qa); 
    129         if(lam2<lam) { 
    130                 lam = lam2; 
    131         } 
    132         test = 1.0 + 2.0*eta; 
    133         mu = lam*eta*etam1; 
    134         if(mu>test) { 
    135                 //if(x>0.01 && x<0.015) 
    136                 // Print "Lambda unphysical mu>test" 
    137                 //endif 
    138                 return(-1.0); 
    139         } 
    140         alpha = (1.0 + 2.0*eta - mu)/etam1sq; 
    141         beta = (mu - 3.0*eta)/(2.0*etam1sq); 
    142         //C 
    143         //C   CALCULATE THE STRUCTURE FACTOR 
    144         //C 
    145         kk = q*aa; 
    146         k2 = kk*kk; 
    147         k3 = kk*k2; 
    148         SINCOS(kk,ds,dc); 
    149         //ds = sin(kk); 
    150         //dc = cos(kk); 
    151         aq1 = ((ds - kk*dc)*alpha)/k3; 
    152         aq2 = (beta*(1.0-dc))/k2; 
    153         aq3 = (lam*ds)/(12.0*kk); 
    154         aq = 1.0 + 12.0*eta*(aq1+aq2-aq3); 
    155         // 
    156         bq1 = alpha*(0.5/kk - ds/k2 + (1.0 - dc)/k3); 
    157         bq2 = beta*(1.0/kk - ds/k2); 
    158         bq3 = (lam/12.0)*((1.0 - dc)/kk); 
    159         bq = 12.0*eta*(bq1+bq2-bq3); 
    160         // 
    161         sq = 1.0/(aq*aq +bq*bq); 
     115    sig = 2.0 * effect_radius; 
     116    aa = sig/onemineps; 
     117    etam1 = 1.0 - eta; 
     118    etam1sq=etam1*etam1; 
     119    //C 
     120    //C  SOLVE QUADRATIC FOR LAMBDA 
     121    //C 
     122    qa = eta/12.0; 
     123    qb = -1.0*(stickiness + eta/etam1); 
     124    qc = (1.0 + eta/2.0)/etam1sq; 
     125    radic = qb*qb - 4.0*qa*qc; 
     126    if(radic<0) { 
     127        //if(x>0.01 && x<0.015) 
     128        //      Print "Lambda unphysical - both roots imaginary" 
     129        //endif 
     130        return(-1.0); 
     131    } 
     132    //C   KEEP THE SMALLER ROOT, THE LARGER ONE IS UNPHYSICAL 
     133    lam = (-1.0*qb-sqrt(radic))/(2.0*qa); 
     134    lam2 = (-1.0*qb+sqrt(radic))/(2.0*qa); 
     135    if(lam2<lam) { 
     136        lam = lam2; 
     137    } 
     138    test = 1.0 + 2.0*eta; 
     139    mu = lam*eta*etam1; 
     140    if(mu>test) { 
     141        //if(x>0.01 && x<0.015) 
     142        // Print "Lambda unphysical mu>test" 
     143        //endif 
     144        return(-1.0); 
     145    } 
     146    alpha = (1.0 + 2.0*eta - mu)/etam1sq; 
     147    beta = (mu - 3.0*eta)/(2.0*etam1sq); 
     148    //C 
     149    //C   CALCULATE THE STRUCTURE FACTOR 
     150    //C 
     151    kk = q*aa; 
     152    k2 = kk*kk; 
     153    k3 = kk*k2; 
     154    SINCOS(kk,ds,dc); 
     155    //ds = sin(kk); 
     156    //dc = cos(kk); 
     157    aq1 = ((ds - kk*dc)*alpha)/k3; 
     158    aq2 = (beta*(1.0-dc))/k2; 
     159    aq3 = (lam*ds)/(12.0*kk); 
     160    aq = 1.0 + 12.0*eta*(aq1+aq2-aq3); 
     161    // 
     162    bq1 = alpha*(0.5/kk - ds/k2 + (1.0 - dc)/k3); 
     163    bq2 = beta*(1.0/kk - ds/k2); 
     164    bq3 = (lam/12.0)*((1.0 - dc)/kk); 
     165    bq = 12.0*eta*(bq1+bq2-bq3); 
     166    // 
     167    sq = 1.0/(aq*aq +bq*bq); 
    162168 
    163         return(sq); 
     169    return(sq); 
    164170""" 
    165171 
     
    176182            stickiness=0.2, effect_radius_pd=0.1, effect_radius_pd_n=40) 
    177183 
    178  
    179  
  • sasmodels/models/triaxial_ellipsoid.py

    ra5d0d00 r3c56da87  
    9090""" 
    9191 
    92 from numpy import pi, inf 
     92from numpy import inf 
    9393 
    9494name = "triaxial_ellipsoid" 
  • sasmodels/sasview_model.py

    rde0c4ba r3c56da87  
    6969        self.dispersion = dict() 
    7070        partype = model.info['partype'] 
    71         for name, units, default, limits, ptype, description in model.info['parameters']: 
     71        for name, units, default, limits, _, _ in model.info['parameters']: 
    7272            self.params[name] = default 
    7373            self.details[name] = [units] + limits 
     
    120120 
    121121 
     122    # pylint: disable=no-self-use 
    122123    def getProfile(self): 
    123124        """ 
     
    213214        """ 
    214215        if isinstance(x, (list, tuple)): 
     216            # pylint: disable=unpacking-non-sequence 
    215217            q, phi = x 
    216218            return self.calculate_Iq([q * math.cos(phi)], 
     
    263265 
    264266 
    265         :param qdist: ndarray of scalar q-values or list [qx,qy] where qx,qy are 1D ndarrays 
     267        :param qdist: ndarray of scalar q-values or list [qx,qy] 
     268        where qx,qy are 1D ndarrays 
    266269        """ 
    267270        if isinstance(qdist, (list, tuple)): 
     
    279282 
    280283        else: 
    281             raise TypeError("evalDistribution expects q or [qx, qy], not %r" % type(qdist)) 
     284            raise TypeError("evalDistribution expects q or [qx, qy], not %r" 
     285                            % type(qdist)) 
    282286 
    283287    def calculate_Iq(self, *args): 
     
    382386        limits = self._model.info['limits'] 
    383387        dis = self.dispersion[par] 
    384         v, w = weights.get_weights( 
     388        value, weight = weights.get_weights( 
    385389            dis['type'], dis['npts'], dis['width'], dis['nsigmas'], 
    386390            self.params[par], limits[par], par in relative) 
    387         return v, w / w.max() 
    388  
     391        return value, weight / np.sum(weight) 
     392 
  • sasmodels/sesans.py

    rc97724e r3c56da87  
    2222# TODO: dead code; for now the call to the hankel transform happens in BumpsModel 
    2323class SesansCalculator: 
    24     def __init__(self, sans_kernel, q_zmax, Rmax, SElength, wavelength, thickness): 
    25         self._set_kernel(sans_kernel, q_zmax, Rmax) 
     24    def __init__(self, kernel, q_zmax, Rmax, SElength, wavelength, thickness): 
     25        self._set_kernel(kernel, q_zmax, Rmax) 
    2626        self.SElength = SElength 
    2727        self.wavelength = wavelength 
    2828        self.thickness = thickness 
    2929 
    30     def _set_kernel(self, sans_kernel, q_zmax, Rmax): 
    31         input = sans_kernel.make_input([make_q(q_zmax, Rmax)]) 
    32         self.sans_calculator = sans_kernel(input) 
     30    def _set_kernel(self, kernel, q_zmax, Rmax): 
     31        kernel_input = kernel.make_input([make_q(q_zmax, Rmax)]) 
     32        self.sans_calculator = kernel(kernel_input) 
    3333 
    3434    def __call__(self, pars, pd_pars, cutoff=1e-5): 
  • sasmodels/weights.py

    r5d4777d r3c56da87  
    2626        return pars 
    2727 
     28    # pylint: disable=no-self-use 
    2829    def set_weights(self, values, weights): 
    2930        raise RuntimeError("set_weights is only available for ArrayDispersion") 
Note: See TracChangeset for help on using the changeset viewer.