source: sasmodels/sasmodels/models/broad_peak.py @ a5d0d00

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since a5d0d00 was a5d0d00, checked in by Paul Kienzle <pkienzle@…>, 9 years ago

doc fixups: add doc category to model def, convert equations to latex for barbell and bcc

  • Property mode set to 100644
File size: 3.2 KB
Line 
1r"""
2This model calculates an empirical functional form for SAS data characterized
3by a broad scattering peak. Many SAS spectra are characterized by a broad peak
4even though they are from amorphous soft materials. For example, soft systems
5that show a SAS peak include copolymers, polyelectrolytes, multiphase systems,
6layered structures, etc.
7
8The d-spacing corresponding to the broad peak is a characteristic distance
9between the scattering inhomogeneities (such as in lamellar, cylindrical, or
10spherical morphologies, or for bicontinuous structures).
11
12The returned value is scaled to units of |cm^-1|, absolute scale.
13
14Definition
15----------
16
17The scattering intensity *I(q)* is calculated as
18
19.. math:
20
21    I(q) = \frac{A}{Q^n} + \frac{C}{1 + (Q\xi}^m} + B
22
23Here the peak position is related to the d-spacing as *Q0* = 2|pi| / *d0*.
24
25For 2D data: The 2D scattering intensity is calculated in the same way as 1D,
26where the *q* vector is defined as
27
28.. math:
29
30    q = \sqrt{q_x^2 + q_y^2}
31
32
33.. image:: img/image175.jpg
34
35*Figure. 1D plot using the default values (w/200 data point).*
36
37REFERENCE
38---------
39
40None.
41
42*2013/09/09 - Description reviewed by King, S and Parker, P.*
43
44"""
45
46import numpy as np
47from numpy import pi, inf, sin, cos, sqrt, exp, log, fabs
48
49name = "broad_peak"
50title = "Broad Lorentzian type peak on top of a power law decay"
51description = """\
52      I(q) = scale_p/pow(q,exponent)+scale_l/
53      (1.0 + pow((fabs(q-q_peak)*length_l),exponent_l) )+ background
54
55      List of default parameters:
56      porod_scale = Porod term scaling
57      porod_exp = Porod exponent
58      lorentz_scale = Lorentzian term scaling
59      lorentz_length = Lorentzian screening length [A]
60      peak_pos = peak location [1/A]
61      lorentz_exp = Lorentzian exponent
62      background = Incoherent background"""
63category="shape-independent"
64
65parameters = [
66#   [ "name", "units", default, [lower, upper], "type",
67#     "description" ],
68
69    [ "porod_scale", "", 1.0e-05, [-inf,inf], "",
70      "Power law scale factor" ],
71    [ "porod_exp", "", 3.0, [-inf,inf], "",
72      "Exponent of power law" ],
73    [ "lorentz_scale", "", 10.0, [-inf,inf], "",
74      "Scale factor for broad Lorentzian peak" ],
75    [ "lorentz_length", "Ang",  50.0, [-inf, inf], "",
76      "Lorentzian screening length" ],
77    [ "peak_pos", "1/Ang",  0.1, [-inf, inf], "",
78      "Peak postion in q" ],
79    [ "lorentz_exp", "",  2.0, [-inf, inf], "",
80      "exponent of Lorentz function" ],
81    ]
82
83
84#def form_volume():
85#    return 1
86
87def Iq(q, porod_scale, porod_exp, lorentz_scale, lorentz_length, peak_pos, lorentz_exp):
88    inten = porod_scale/pow(q,porod_exp) + lorentz_scale/(1.0 \
89        + pow((fabs(q-peak_pos)*lorentz_length),lorentz_exp))
90    return inten 
91
92# FOR VECTORIZED VERSION, UNCOMMENT THE NEXT LINE
93Iq.vectorized = True
94
95def Iqxy(qx, qy, *args):
96    return Iq(sqrt(qx**2 + qy**2), *args)
97
98# FOR VECTORIZED VERSION, UNCOMMENT THE NEXT LINE
99Iqxy.vectorized = True
100
101
102demo = dict(
103    scale=1, background=0,
104    porod_scale=1.0e-05, porod_exp=3,
105    lorentz_scale=10,lorentz_length=50, peak_pos=0.1, lorentz_exp=2,
106    )
107oldname = "BroadPeakModel"
108oldpars = dict(porod_scale='scale_p', porod_exp='exponent_p', 
109        lorentz_scale='scale_l', lorentz_length='length_l', peak_pos='q_peak', 
110        lorentz_exp='exponent_l', scale=None)
Note: See TracBrowser for help on using the repository browser.