Changeset 36a2418 in sasmodels


Ignore:
Timestamp:
Mar 6, 2019 3:16:13 PM (6 years ago)
Author:
Paul Kienzle <pkienzle@…>
Branches:
master, core_shell_microgels, magnetic_model, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
Children:
da3638f
Parents:
fa26e78 (diff), e5bbe64 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
Message:

Merge branch 'beta_approx' into ticket-1015-gpu-mem-error

Files:
13 edited
6 moved

Legend:

Unmodified
Added
Removed
  • README.rst

    re30d645 r2a64722  
    1010is available. 
    1111 
    12 Example 
     12Install 
    1313------- 
     14 
     15The easiest way to use sasmodels is from `SasView <http://www.sasview.org/>`_. 
     16 
     17You can also install sasmodels as a standalone package in python. Use 
     18`miniconda <https://docs.conda.io/en/latest/miniconda.html>`_ 
     19or `anaconda <https://www.anaconda.com/>`_ 
     20to create a python environment with the sasmodels dependencies:: 
     21 
     22    $ conda create -n sasmodels -c conda-forge numpy scipy matplotlib pyopencl 
     23 
     24The option ``-n sasmodels`` names the environment sasmodels, and the option 
     25``-c conda-forge`` selects the conda-forge package channel because pyopencl 
     26is not part of the base anaconda distribution. 
     27 
     28Activate the environment and install sasmodels:: 
     29 
     30    $ conda activate sasmodels 
     31    (sasmodels) $ pip install sasmodels 
     32 
     33Install `bumps <https://github.com/bumps/bumps>`_ if you want to use it to fit 
     34your data:: 
     35 
     36    (sasmodels) $ pip install bumps 
     37 
     38Usage 
     39----- 
     40 
     41Check that the works:: 
     42 
     43    (sasmodels) $ python -m sasmodels.compare cylinder 
     44 
     45To show the orientation explorer:: 
     46 
     47    (sasmodels) $ python -m sasmodels.jitter 
     48 
     49Documentation is available online as part of the SasView 
     50`fitting perspective <http://www.sasview.org/docs/index.html>`_ 
     51as well as separate pages for 
     52`individual models <http://www.sasview.org/docs/user/sasgui/perspectives/fitting/models/index.html>`_. 
     53Programming details for sasmodels are available in the 
     54`developer documentation <http://www.sasview.org/docs/dev/dev.html>`_. 
     55 
     56 
     57Fitting Example 
     58--------------- 
    1459 
    1560The example directory contains a radial+tangential data set for an oriented 
    1661rod-like shape. 
    1762 
    18 The data is loaded by sas.dataloader from the sasview package, so sasview 
    19 is needed to run the example. 
     63To load the example data, you will need the SAS data loader from the sasview 
     64package. This is not yet available on PyPI, so you will need a copy of the 
     65SasView source code to run it.  Create a directory somewhere to hold the 
     66sasview and sasmodels source code, which we will refer to as $SOURCE. 
    2067 
    21 To run the example, you need sasview, sasmodels and bumps.  Assuming these 
    22 repositories are installed side by side, change to the sasmodels/example 
    23 directory and enter:: 
     68Use the following to install sasview, and the sasmodels examples:: 
    2469 
    25     PYTHONPATH=..:../../sasview/src ../../bumps/run.py fit.py \ 
    26         cylinder --preview 
     70    (sasmodels) $ cd $SOURCE 
     71    (sasmodels) $ conda install git 
     72    (sasmodels) $ git clone https://github.com/sasview/sasview.git 
     73    (sasmodels) $ git clone https://github.com/sasview/sasmodels.git 
    2774 
    28 See bumps documentation for instructions on running the fit.  With the 
    29 python packages installed, e.g., into a virtual environment, then the 
    30 python path need not be set, and the command would be:: 
     75Set the path to the sasview source on your python path within the sasmodels 
     76environment.  On Windows, this will be:: 
    3177 
    32     bumps fit.py cylinder --preview 
     78    (sasmodels)> set PYTHONPATH="$SOURCE\sasview\src" 
     79    (sasmodels)> cd $SOURCE/sasmodels/example 
     80    (sasmodels)> python -m bumps.cli fit.py cylinder --preview 
     81 
     82On Mac/Linux with the standard shell this will be:: 
     83 
     84    (sasmodels) $ export PYTHONPATH="$SOURCE/sasview/src" 
     85    (sasmodels) $ cd $SOURCE/sasmodels/example 
     86    (sasmodels) $ bumps fit.py cylinder --preview 
    3387 
    3488The fit.py model accepts up to two arguments.  The first argument is the 
     
    3892both radial and tangential simultaneously, use the word "both". 
    3993 
    40 Notes 
    41 ----- 
    42  
    43 cylinder.c + cylinder.py is the cylinder model with renamed variables and 
    44 sld scaled by 1e6 so the numbers are nicer.  The model name is "cylinder" 
    45  
    46 lamellar.py is an example of a single file model with embedded C code. 
     94See `bumps documentation <https://bumps.readthedocs.io/>`_ for detailed 
     95instructions on running the fit. 
    4796 
    4897|TravisStatus|_ 
  • explore/beta/sasfit_compare.py

    r2a12351b r119073a  
    505505    } 
    506506 
    507     Q, IQ = load_sasfit(data_file('richard_test.txt')) 
    508     Q, IQSD = load_sasfit(data_file('richard_test2.txt')) 
    509     Q, IQBD = load_sasfit(data_file('richard_test3.txt')) 
     507    Q, IQ = load_sasfit(data_file('sasfit_sphere_schulz_IQD.txt')) 
     508    Q, IQSD = load_sasfit(data_file('sasfit_sphere_schulz_IQSD.txt')) 
     509    Q, IQBD = load_sasfit(data_file('sasfit_sphere_schulz_IQBD.txt')) 
    510510    target = Theory(Q=Q, F1=None, F2=None, P=IQ, S=None, I=IQSD, Seff=None, Ibeta=IQBD) 
    511511    actual = sphere_r(Q, norm="sasfit", **pars) 
     
    526526    } 
    527527 
    528     Q, IQ = load_sasfit(data_file('richard_test4.txt')) 
    529     Q, IQSD = load_sasfit(data_file('richard_test5.txt')) 
    530     Q, IQBD = load_sasfit(data_file('richard_test6.txt')) 
     528    Q, IQ = load_sasfit(data_file('sasfit_ellipsoid_shulz_IQD.txt')) 
     529    Q, IQSD = load_sasfit(data_file('sasfit_ellipsoid_shulz_IQSD.txt')) 
     530    Q, IQBD = load_sasfit(data_file('sasfit_ellipsoid_shulz_IQBD.txt')) 
    531531    target = Theory(Q=Q, F1=None, F2=None, P=IQ, S=None, I=IQSD, Seff=None, Ibeta=IQBD) 
    532532    actual = ellipsoid_pe(Q, norm="sasfit", **pars) 
  • explore/precision.py

    raa8c6e0 rcd28947  
    207207    return model_info 
    208208 
    209 # Hack to allow second parameter A in two parameter functions 
     209# Hack to allow second parameter A in the gammainc and gammaincc functions. 
     210# Create a 2-D variant of the precision test if we need to handle other two 
     211# parameter functions. 
    210212A = 1 
    211213def parse_extra_pars(): 
     214    """ 
     215    Parse the command line looking for the second parameter "A=..." for the 
     216    gammainc/gammaincc functions. 
     217    """ 
    212218    global A 
    213219 
     
    333339) 
    334340add_function( 
     341    # Note: "a" is given as A=... on the command line via parse_extra_pars 
    335342    name="gammainc(x)", 
    336343    mp_function=lambda x, a=A: mp.gammainc(a, a=0, b=x)/mp.gamma(a), 
     
    339346) 
    340347add_function( 
     348    # Note: "a" is given as A=... on the command line via parse_extra_pars 
    341349    name="gammaincc(x)", 
    342350    mp_function=lambda x, a=A: mp.gammainc(a, a=x, b=mp.inf)/mp.gamma(a), 
  • sasmodels/generate.py

    r39a06c9 rcd28947  
    703703    """ 
    704704    for code in source: 
    705         m = _FQ_PATTERN.search(code) 
    706         if m is not None: 
     705        if _FQ_PATTERN.search(code) is not None: 
    707706            return True 
    708707    return False 
     
    712711    # type: (List[str]) -> bool 
    713712    """ 
    714     Return True if C source defines "void Fq(". 
     713    Return True if C source defines "double shell_volume(". 
    715714    """ 
    716715    for code in source: 
    717         m = _SHELL_VOLUME_PATTERN.search(code) 
    718         if m is not None: 
     716        if _SHELL_VOLUME_PATTERN.search(code) is not None: 
    719717            return True 
    720718    return False 
  • sasmodels/kernel.py

    r3199b17 r36a2418  
    135135        nout = 2 if self.info.have_Fq and self.dim == '1d' else 1 
    136136        total_weight = self.result[nout*self.q_input.nq + 0] 
     137        # Note: total_weight = sum(weight > cutoff), with cutoff >= 0, so it 
     138        # is okay to test directly against zero.  If weight is zero then I(q), 
     139        # etc. must also be zero. 
    137140        if total_weight == 0.: 
    138141            total_weight = 1. 
  • sasmodels/models/pearl_necklace.c

    r4453136 r9b5fd42  
    4040    const double si = sas_sinx_x(q*A_s); 
    4141    const double omsi = 1.0 - si; 
    42     const double pow_si = pow(si, num_pearls); 
     42    const double pow_si = pown(si, num_pearls); 
    4343 
    4444    // form factor for num_pearls 
  • sasmodels/sasview_model.py

    r5024a56 r3a1afed  
    695695            return self._calculate_Iq(qx, qy) 
    696696 
    697     def _calculate_Iq(self, qx, qy=None, Fq=False, effective_radius_type=1): 
     697    def _calculate_Iq(self, qx, qy=None): 
    698698        if self._model is None: 
    699699            self._model = core.build_model(self._model_info) 
     
    715715        #print("values", values) 
    716716        #print("is_mag", is_magnetic) 
    717         if Fq: 
    718             result = calculator.Fq(call_details, values, cutoff=self.cutoff, 
    719                                    magnetic=is_magnetic, 
    720                                    effective_radius_type=effective_radius_type) 
    721717        result = calculator(call_details, values, cutoff=self.cutoff, 
    722718                            magnetic=is_magnetic) 
     
    736732        Calculate the effective radius for P(q)*S(q) 
    737733 
     734        *mode* is the R_eff type, which defaults to 1 to match the ER 
     735        calculation for sasview models from version 3.x. 
     736 
    738737        :return: the value of the effective radius 
    739738        """ 
    740         Fq = self._calculate_Iq([0.1], True, mode) 
    741         return Fq[2] 
     739        # ER and VR are only needed for old multiplication models, based on 
     740        # sas.sascalc.fit.MultiplicationModel.  Fail for now.  If we want to 
     741        # continue supporting them then add some test cases so that the code 
     742        # is exercised.  We can access ER/VR using the kernel Fq function by 
     743        # extending _calculate_Iq so that it calls: 
     744        #    if er_mode > 0: 
     745        #        res = calculator.Fq(call_details, values, cutoff=self.cutoff, 
     746        #                            magnetic=False, effective_radius_type=mode) 
     747        #        R_eff, form_shell_ratio = res[2], res[4] 
     748        #        return R_eff, form_shell_ratio 
     749        # Then use the following in calculate_ER: 
     750        #    ER, VR = self._calculate_Iq(q=[0.1], er_mode=mode) 
     751        #    return ER 
     752        # Similarly, for calculate_VR: 
     753        #    ER, VR = self._calculate_Iq(q=[0.1], er_mode=1) 
     754        #    return VR 
     755        # Obviously a combined calculate_ER_VR method would be better, but 
     756        # we only need them to support very old models, so ignore the 2x 
     757        # performance hit. 
     758        raise NotImplementedError("ER function is no longer available.") 
    742759 
    743760    def calculate_VR(self): 
     
    748765        :return: the value of the form:shell volume ratio 
    749766        """ 
    750         Fq = self._calculate_Iq([0.1], True, mode) 
    751         return Fq[4] 
     767        # See comments in calculate_ER. 
     768        raise NotImplementedError("VR function is no longer available.") 
    752769 
    753770    def set_dispersion(self, parameter, dispersion): 
  • sasmodels/kernelcl.py

    rf872fd1 r3199b17  
    6161 
    6262 
    63 # Attempt to setup opencl. This may fail if the pyopencl package is not 
     63# Attempt to setup OpenCL. This may fail if the pyopencl package is not 
    6464# installed or if it is installed but there are no devices available. 
    6565try: 
     
    6767    from pyopencl import mem_flags as mf 
    6868    from pyopencl.characterize import get_fast_inaccurate_build_options 
    69     # Ask OpenCL for the default context so that we know that one exists 
     69    # Ask OpenCL for the default context so that we know that one exists. 
    7070    cl.create_some_context(interactive=False) 
    7171    HAVE_OPENCL = True 
     
    8888# pylint: enable=unused-import 
    8989 
    90 # CRUFT: pyopencl < 2017.1  (as of June 2016 needs quotes around include path) 
     90 
     91# CRUFT: pyopencl < 2017.1 (as of June 2016 needs quotes around include path). 
    9192def quote_path(v): 
    9293    """ 
     
    99100    return '"'+v+'"' if v and ' ' in v and not v[0] in "\"'-" else v 
    100101 
     102 
    101103def fix_pyopencl_include(): 
    102104    """ 
     
    105107    import pyopencl as cl 
    106108    if hasattr(cl, '_DEFAULT_INCLUDE_OPTIONS'): 
    107         cl._DEFAULT_INCLUDE_OPTIONS = [quote_path(v) for v in cl._DEFAULT_INCLUDE_OPTIONS] 
     109        cl._DEFAULT_INCLUDE_OPTIONS = [ 
     110            quote_path(v) for v in cl._DEFAULT_INCLUDE_OPTIONS 
     111            ] 
     112 
    108113 
    109114if HAVE_OPENCL: 
     
    118123MAX_LOOPS = 2048 
    119124 
    120  
    121125# Pragmas for enable OpenCL features.  Be sure to protect them so that they 
    122126# still compile even if OpenCL is not present. 
     
    133137""" 
    134138 
     139 
    135140def use_opencl(): 
    136141    sas_opencl = os.environ.get("SAS_OPENCL", "OpenCL").lower() 
    137142    return HAVE_OPENCL and sas_opencl != "none" and not sas_opencl.startswith("cuda") 
    138143 
     144 
    139145ENV = None 
    140146def reset_environment(): 
     
    144150    global ENV 
    145151    ENV = GpuEnvironment() if use_opencl() else None 
     152 
    146153 
    147154def environment(): 
     
    161168    return ENV 
    162169 
     170 
    163171def has_type(device, dtype): 
    164172    # type: (cl.Device, np.dtype) -> bool 
     
    171179        return "cl_khr_fp64" in device.extensions 
    172180    else: 
    173         # Not supporting F16 type since it isn't accurate enough 
     181        # Not supporting F16 type since it isn't accurate enough. 
    174182        return False 
     183 
    175184 
    176185def get_warp(kernel, queue): 
     
    182191        cl.kernel_work_group_info.PREFERRED_WORK_GROUP_SIZE_MULTIPLE, 
    183192        queue.device) 
     193 
    184194 
    185195def compile_model(context, source, dtype, fast=False): 
     
    203213        source_list.insert(0, _F64_PRAGMA) 
    204214 
    205     # Note: USE_SINCOS makes the intel cpu slower under opencl 
     215    # Note: USE_SINCOS makes the Intel CPU slower under OpenCL. 
    206216    if context.devices[0].type == cl.device_type.GPU: 
    207217        source_list.insert(0, "#define USE_SINCOS\n") 
     
    210220    source = "\n".join(source_list) 
    211221    program = cl.Program(context, source).build(options=options) 
     222 
    212223    #print("done with "+program) 
    213224    return program 
    214225 
    215226 
    216 # for now, this returns one device in the context 
    217 # TODO: create a context that contains all devices on all platforms 
     227# For now, this returns one device in the context. 
     228# TODO: Create a context that contains all devices on all platforms. 
    218229class GpuEnvironment(object): 
    219230    """ 
    220     GPU context, with possibly many devices, and one queue per device. 
    221  
    222     Because the environment can be reset during a live program (e.g., if the 
    223     user changes the active GPU device in the GUI), everything associated 
    224     with the device context must be cached in the environment and recreated 
    225     if the environment changes.  The *cache* attribute is a simple dictionary 
    226     which holds keys and references to objects, such as compiled kernels and 
    227     allocated buffers.  The running program should check in the cache for 
    228     long lived objects and create them if they are not there.  The program 
    229     should not hold onto cached objects, but instead only keep them active 
    230     for the duration of a function call.  When the environment is destroyed 
    231     then the *release* method for each active cache item is called before 
    232     the environment is freed.  This means that each cl buffer should be 
    233     in its own cache entry. 
     231    GPU context for OpenCL, with possibly many devices and one queue per device. 
    234232    """ 
    235233    def __init__(self): 
    236234        # type: () -> None 
    237         # find gpu context 
     235        # Find gpu context. 
    238236        context_list = _create_some_context() 
    239237 
     
    249247                self.context[dtype] = None 
    250248 
    251         # Build a queue for each context 
     249        # Build a queue for each context. 
    252250        self.queue = {} 
    253251        context = self.context[F32] 
     
    259257            self.queue[F64] = cl.CommandQueue(context, context.devices[0]) 
    260258 
    261         # Byte boundary for data alignment 
     259        ## Byte boundary for data alignment. 
    262260        #self.data_boundary = max(context.devices[0].min_data_type_align_size 
    263261        #                         for context in self.context.values()) 
    264262 
    265         # Cache for compiled programs, and for items in context 
     263        # Cache for compiled programs, and for items in context. 
    266264        self.compiled = {} 
    267         self.cache = {} 
    268265 
    269266    def has_type(self, dtype): 
     
    280277        """ 
    281278        # Note: PyOpenCL caches based on md5 hash of source, options and device 
    282         # so we don't really need to cache things for ourselves.  I'll do so 
    283         # anyway just to save some data munging time. 
     279        # but I'll do so as well just to save some data munging time. 
    284280        tag = generate.tag_source(source) 
    285281        key = "%s-%s-%s%s"%(name, dtype, tag, ("-fast" if fast else "")) 
    286         # Check timestamp on program 
     282        # Check timestamp on program. 
    287283        program, program_timestamp = self.compiled.get(key, (None, np.inf)) 
    288284        if program_timestamp < timestamp: 
     
    297293        return program 
    298294 
    299     def free_buffer(self, key): 
    300         if key in self.cache: 
    301             self.cache[key].release() 
    302             del self.cache[key] 
    303  
    304     def __del__(self): 
    305         for v in self.cache.values(): 
    306             release = getattr(v, 'release', lambda: None) 
    307             release() 
    308         self.cache = {} 
    309  
    310 _CURRENT_ID = 0 
    311 def unique_id(): 
    312     global _CURRENT_ID 
    313     _CURRENT_ID += 1 
    314     return _CURRENT_ID 
    315295 
    316296def _create_some_context(): 
     
    325305    which one (and not a CUDA device, or no GPU). 
    326306    """ 
    327     # Assume we do not get here if SAS_OPENCL is None or CUDA 
     307    # Assume we do not get here if SAS_OPENCL is None or CUDA. 
    328308    sas_opencl = os.environ.get('SAS_OPENCL', 'opencl') 
    329309    if sas_opencl.lower() != 'opencl': 
    330         # Setting PYOPENCL_CTX as a SAS_OPENCL to create cl context 
     310        # Setting PYOPENCL_CTX as a SAS_OPENCL to create cl context. 
    331311        os.environ["PYOPENCL_CTX"] = sas_opencl 
    332312 
     
    336316        except Exception as exc: 
    337317            warnings.warn(str(exc)) 
    338             warnings.warn("pyopencl.create_some_context() failed") 
    339             warnings.warn("the environment variable 'SAS_OPENCL' or 'PYOPENCL_CTX' might not be set correctly") 
     318            warnings.warn("pyopencl.create_some_context() failed.  The " 
     319                "environment variable 'SAS_OPENCL' or 'PYOPENCL_CTX' might " 
     320                "not be set correctly") 
    340321 
    341322    return _get_default_context() 
     323 
    342324 
    343325def _get_default_context(): 
     
    352334    # is running may increase throughput. 
    353335    # 
    354     # Macbook pro, base install: 
     336    # MacBook Pro, base install: 
    355337    #     {'Apple': [Intel CPU, NVIDIA GPU]} 
    356     # Macbook pro, base install: 
     338    # MacBook Pro, base install: 
    357339    #     {'Apple': [Intel CPU, Intel GPU]} 
    358     # 2 x nvidia 295 with Intel and NVIDIA opencl drivers installed 
     340    # 2 x NVIDIA 295 with Intel and NVIDIA opencl drivers install: 
    359341    #     {'Intel': [CPU], 'NVIDIA': [GPU, GPU, GPU, GPU]} 
    360342    gpu, cpu = None, None 
     
    379361            else: 
    380362                # System has cl.device_type.ACCELERATOR or cl.device_type.CUSTOM 
    381                 # Intel Phi for example registers as an accelerator 
     363                # Intel Phi for example registers as an accelerator. 
    382364                # Since the user installed a custom device on their system 
    383365                # and went through the pain of sorting out OpenCL drivers for 
     
    386368                gpu = device 
    387369 
    388     # order the devices by gpu then by cpu; when searching for an available 
     370    # Order the devices by gpu then by cpu; when searching for an available 
    389371    # device by data type they will be checked in this order, which means 
    390372    # that if the gpu supports double then the cpu will never be used (though 
     
    413395    that the compiler is allowed to take shortcuts. 
    414396    """ 
     397    info = None  # type: ModelInfo 
     398    source = ""  # type: str 
     399    dtype = None  # type: np.dtype 
     400    fast = False  # type: bool 
     401    _program = None  # type: cl.Program 
     402    _kernels = None  # type: Dict[str, cl.Kernel] 
     403 
    415404    def __init__(self, source, model_info, dtype=generate.F32, fast=False): 
    416405        # type: (Dict[str,str], ModelInfo, np.dtype, bool) -> None 
     
    419408        self.dtype = dtype 
    420409        self.fast = fast 
    421         self.timestamp = generate.ocl_timestamp(self.info) 
    422         self._cache_key = unique_id() 
    423410 
    424411    def __getstate__(self): 
     
    429416        # type: (Tuple[ModelInfo, str, np.dtype, bool]) -> None 
    430417        self.info, self.source, self.dtype, self.fast = state 
     418        self._program = self._kernels = None 
    431419 
    432420    def make_kernel(self, q_vectors): 
     
    434422        return GpuKernel(self, q_vectors) 
    435423 
    436     @property 
    437     def Iq(self): 
    438         return self._fetch_kernel('Iq') 
    439  
    440     def fetch_kernel(self, name): 
     424    def get_function(self, name): 
    441425        # type: (str) -> cl.Kernel 
    442426        """ 
     
    444428        does not already exist. 
    445429        """ 
    446         gpu = environment() 
    447         key = self._cache_key 
    448         if key not in gpu.cache: 
    449             program = gpu.compile_program( 
    450                 self.info.name, 
    451                 self.source['opencl'], 
    452                 self.dtype, 
    453                 self.fast, 
    454                 self.timestamp) 
    455             variants = ['Iq', 'Iqxy', 'Imagnetic'] 
    456             names = [generate.kernel_name(self.info, k) for k in variants] 
    457             kernels = [getattr(program, k) for k in names] 
    458             data = dict((k, v) for k, v in zip(variants, kernels)) 
    459             # keep a handle to program so GC doesn't collect 
    460             data['program'] = program 
    461             gpu.cache[key] = data 
    462         else: 
    463             data = gpu.cache[key] 
    464         return data[name] 
    465  
    466 # TODO: check that we don't need a destructor for buffers which go out of scope 
     430        if self._program is None: 
     431            self._prepare_program() 
     432        return self._kernels[name] 
     433 
     434    def _prepare_program(self): 
     435        # type: (str) -> None 
     436        env = environment() 
     437        timestamp = generate.ocl_timestamp(self.info) 
     438        program = env.compile_program( 
     439            self.info.name, 
     440            self.source['opencl'], 
     441            self.dtype, 
     442            self.fast, 
     443            timestamp) 
     444        variants = ['Iq', 'Iqxy', 'Imagnetic'] 
     445        names = [generate.kernel_name(self.info, k) for k in variants] 
     446        functions = [getattr(program, k) for k in names] 
     447        self._kernels = {k: v for k, v in zip(variants, functions)} 
     448        # Keep a handle to program so GC doesn't collect. 
     449        self._program = program 
     450 
     451 
     452# TODO: Check that we don't need a destructor for buffers which go out of scope. 
    467453class GpuInput(object): 
    468454    """ 
     
    486472    def __init__(self, q_vectors, dtype=generate.F32): 
    487473        # type: (List[np.ndarray], np.dtype) -> None 
    488         # TODO: do we ever need double precision q? 
     474        # TODO: Do we ever need double precision q? 
    489475        self.nq = q_vectors[0].size 
    490476        self.dtype = np.dtype(dtype) 
    491477        self.is_2d = (len(q_vectors) == 2) 
    492         # TODO: stretch input based on get_warp() 
    493         # not doing it now since warp depends on kernel, which is not known 
     478        # TODO: Stretch input based on get_warp(). 
     479        # Not doing it now since warp depends on kernel, which is not known 
    494480        # at this point, so instead using 32, which is good on the set of 
    495481        # architectures tested so far. 
     
    504490            self.q[:self.nq] = q_vectors[0] 
    505491        self.global_size = [self.q.shape[0]] 
    506         self._cache_key = unique_id() 
    507  
    508     @property 
    509     def q_b(self): 
    510         """Lazy creation of q buffer so it can survive context reset""" 
     492        #print("creating inputs of size", self.global_size) 
     493 
     494        # Transfer input value to GPU. 
    511495        env = environment() 
    512         key = self._cache_key 
    513         if key not in env.cache: 
    514             context = env.context[self.dtype] 
    515             #print("creating inputs of size", self.global_size) 
    516             buffer = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, 
    517                                hostbuf=self.q) 
    518             env.cache[key] = buffer 
    519         return env.cache[key] 
     496        context = env.context[self.dtype] 
     497        self.q_b = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, 
     498                             hostbuf=self.q) 
    520499 
    521500    def release(self): 
    522501        # type: () -> None 
    523502        """ 
    524         Free the buffer associated with the q value 
    525         """ 
    526         environment().free_buffer(id(self)) 
     503        Free the buffer associated with the q value. 
     504        """ 
     505        if self.q_b is not None: 
     506            self.q_b.release() 
     507            self.q_b = None 
    527508 
    528509    def __del__(self): 
     
    530511        self.release() 
    531512 
     513 
    532514class GpuKernel(Kernel): 
    533515    """ 
     
    536518    *model* is the GpuModel object to call 
    537519 
    538     The following attributes are defined: 
    539  
    540     *info* is the module information 
    541  
    542     *dtype* is the kernel precision 
    543  
    544     *dim* is '1d' or '2d' 
    545  
    546     *result* is a vector to contain the results of the call 
    547  
    548     The resulting call method takes the *pars*, a list of values for 
    549     the fixed parameters to the kernel, and *pd_pars*, a list of (value,weight) 
    550     vectors for the polydisperse parameters.  *cutoff* determines the 
    551     integration limits: any points with combined weight less than *cutoff* 
    552     will not be calculated. 
     520    The kernel is derived from :class:`Kernel`, providing the 
     521    :meth:`call_kernel` method to evaluate the kernel for a given set of 
     522    parameters.  Because of the need to move the q values to the GPU before 
     523    evaluation, the kernel is instantiated for a particular set of q vectors, 
     524    and can be called many times without transfering q each time. 
    553525 
    554526    Call :meth:`release` when done with the kernel instance. 
    555527    """ 
     528    #: SAS model information structure. 
     529    info = None  # type: ModelInfo 
     530    #: Kernel precision. 
     531    dtype = None  # type: np.dtype 
     532    #: Kernel dimensions (1d or 2d). 
     533    dim = ""  # type: str 
     534    #: Calculation results, updated after each call to :meth:`_call_kernel`. 
     535    result = None  # type: np.ndarray 
     536 
    556537    def __init__(self, model, q_vectors): 
    557         # type: (cl.Kernel, np.dtype, ModelInfo, List[np.ndarray]) -> None 
     538        # type: (GpuModel, List[np.ndarray]) -> None 
    558539        dtype = model.dtype 
    559540        self.q_input = GpuInput(q_vectors, dtype) 
    560541        self._model = model 
    561         # F16 isn't sufficient, so don't support it 
    562         self._as_dtype = np.float64 if dtype == generate.F64 else np.float32 
    563         self._cache_key = unique_id() 
    564  
    565         # attributes accessed from the outside 
     542 
     543        # Attributes accessed from the outside. 
    566544        self.dim = '2d' if self.q_input.is_2d else '1d' 
    567545        self.info = model.info 
    568         self.dtype = model.dtype 
    569  
    570         # holding place for the returned value 
     546        self.dtype = dtype 
     547 
     548        # Converter to translate input to target type. 
     549        self._as_dtype = np.float64 if dtype == generate.F64 else np.float32 
     550 
     551        # Holding place for the returned value. 
    571552        nout = 2 if self.info.have_Fq and self.dim == '1d' else 1 
    572         extra_q = 4  # total weight, form volume, shell volume and R_eff 
    573         self.result = np.empty(self.q_input.nq*nout+extra_q, dtype) 
    574  
    575     @property 
    576     def _result_b(self): 
    577         """Lazy creation of result buffer so it can survive context reset""" 
     553        extra_q = 4  # Total weight, form volume, shell volume and R_eff. 
     554        self.result = np.empty(self.q_input.nq*nout + extra_q, dtype) 
     555 
     556        # Allocate result value on GPU. 
    578557        env = environment() 
    579         key = self._cache_key 
    580         if key not in env.cache: 
    581             context = env.context[self.dtype] 
    582             width = ((self.result.size+31)//32)*32 * self.dtype.itemsize 
    583             buffer = cl.Buffer(context, mf.READ_WRITE, width) 
    584             env.cache[key] = buffer 
    585         return env.cache[key] 
    586  
    587     def _call_kernel(self, call_details, values, cutoff, magnetic, effective_radius_type): 
    588         # type: (CallDetails, np.ndarray, np.ndarray, float, bool) -> np.ndarray 
     558        context = env.context[self.dtype] 
     559        width = ((self.result.size+31)//32)*32 * self.dtype.itemsize 
     560        self._result_b = cl.Buffer(context, mf.READ_WRITE, width) 
     561 
     562    def _call_kernel(self, call_details, values, cutoff, magnetic, 
     563                     effective_radius_type): 
     564        # type: (CallDetails, np.ndarray, float, bool, int) -> np.ndarray 
    589565        env = environment() 
    590566        queue = env.queue[self._model.dtype] 
    591567        context = queue.context 
    592568 
    593         # Arrange data transfer to/from card 
    594         q_b = self.q_input.q_b 
    595         result_b = self._result_b 
     569        # Arrange data transfer to card. 
    596570        details_b = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, 
    597571                              hostbuf=call_details.buffer) 
     
    599573                             hostbuf=values) 
    600574 
     575        # Setup kernel function and arguments. 
    601576        name = 'Iq' if self.dim == '1d' else 'Imagnetic' if magnetic else 'Iqxy' 
    602         kernel = self._model.fetch_kernel(name) 
     577        kernel = self._model.get_function(name) 
    603578        kernel_args = [ 
    604             np.uint32(self.q_input.nq), None, None, 
    605             details_b, values_b, q_b, result_b, 
    606             self._as_dtype(cutoff), 
    607             np.uint32(effective_radius_type), 
     579            np.uint32(self.q_input.nq),  # Number of inputs. 
     580            None,  # Placeholder for pd_start. 
     581            None,  # Placeholder for pd_stop. 
     582            details_b,  # Problem definition. 
     583            values_b,  # Parameter values. 
     584            self.q_input.q_b,  # Q values. 
     585            self._result_b,   # Result storage. 
     586            self._as_dtype(cutoff),  # Probability cutoff. 
     587            np.uint32(effective_radius_type),  # R_eff mode. 
    608588        ] 
     589 
     590        # Call kernel and retrieve results. 
    609591        #print("Calling OpenCL") 
    610592        #call_details.show(values) 
    611         #Call kernel and retrieve results 
    612593        wait_for = None 
    613594        last_nap = time.clock() 
     
    620601                               *kernel_args, wait_for=wait_for)] 
    621602            if stop < call_details.num_eval: 
    622                 # Allow other processes to run 
     603                # Allow other processes to run. 
    623604                wait_for[0].wait() 
    624605                current_time = time.clock() 
     
    626607                    time.sleep(0.001) 
    627608                    last_nap = current_time 
    628         cl.enqueue_copy(queue, self.result, result_b, wait_for=wait_for) 
     609        cl.enqueue_copy(queue, self.result, self._result_b, wait_for=wait_for) 
    629610        #print("result", self.result) 
    630611 
    631         # Free buffers 
    632         for v in (details_b, values_b): 
    633             if v is not None: 
    634                 v.release() 
     612        # Free buffers. 
     613        details_b.release() 
     614        values_b.release() 
    635615 
    636616    def release(self): 
     
    639619        Release resources associated with the kernel. 
    640620        """ 
    641         environment().free_buffer(id(self)) 
    642621        self.q_input.release() 
     622        if self._result_b is not None: 
     623            self._result_b.release() 
     624            self._result_b = None 
    643625 
    644626    def __del__(self): 
  • sasmodels/kernelcuda.py

    rf872fd1 rfa26e78  
    6363import time 
    6464import re 
     65import atexit 
    6566 
    6667import numpy as np  # type: ignore 
    6768 
    6869 
    69 # Attempt to setup cuda. This may fail if the pycuda package is not 
     70# Attempt to setup CUDA. This may fail if the pycuda package is not 
    7071# installed or if it is installed but there are no devices available. 
    7172try: 
     
    107108MAX_LOOPS = 2048 
    108109 
     110 
    109111def use_cuda(): 
    110     env = os.environ.get("SAS_OPENCL", "").lower() 
    111     return HAVE_CUDA and (env == "" or env.startswith("cuda")) 
     112    sas_opencl = os.environ.get("SAS_OPENCL", "CUDA").lower() 
     113    return HAVE_CUDA and sas_opencl.startswith("cuda") 
     114 
    112115 
    113116ENV = None 
     
    121124        ENV.release() 
    122125    ENV = GpuEnvironment() if use_cuda() else None 
     126 
    123127 
    124128def environment(): 
     
    138142    return ENV 
    139143 
     144 
     145# PyTest is not freeing ENV, so make sure it gets freed. 
     146atexit.register(lambda: ENV.release() if ENV is not None else None) 
     147 
     148 
    140149def has_type(dtype): 
    141150    # type: (np.dtype) -> bool 
     
    143152    Return true if device supports the requested precision. 
    144153    """ 
    145     # Assume the nvidia card supports 32-bit and 64-bit floats. 
    146     # TODO: check if pycuda support F16 
     154    # Assume the NVIDIA card supports 32-bit and 64-bit floats. 
     155    # TODO: Check if pycuda support F16. 
    147156    return dtype in (generate.F32, generate.F64) 
    148157 
    149158 
    150159FUNCTION_PATTERN = re.compile(r"""^ 
    151   (?P<space>\s*)                   # initial space 
    152   (?P<qualifiers>^(?:\s*\b\w+\b\s*)+) # one or more qualifiers before function 
    153   (?P<function>\s*\b\w+\b\s*[(])      # function name plus open parens 
     160  (?P<space>\s*)                       # Initial space. 
     161  (?P<qualifiers>^(?:\s*\b\w+\b\s*)+)  # One or more qualifiers before function. 
     162  (?P<function>\s*\b\w+\b\s*[(])       # Function name plus open parens. 
    154163  """, re.VERBOSE|re.MULTILINE) 
    155164 
     
    158167  """, re.VERBOSE|re.MULTILINE) 
    159168 
     169 
    160170def _add_device_tag(match): 
    161171    # type: (None) -> str 
    162     # Note: should be re.Match, but that isn't a simple type 
     172    # Note: Should be re.Match, but that isn't a simple type. 
    163173    """ 
    164174    replace qualifiers with __device__ qualifiers if needed 
     
    173183        return "".join((space, "__device__ ", qualifiers, function)) 
    174184 
     185 
    175186def mark_device_functions(source): 
    176187    # type: (str) -> str 
     
    179190    """ 
    180191    return FUNCTION_PATTERN.sub(_add_device_tag, source) 
     192 
    181193 
    182194def show_device_functions(source): 
     
    188200        print(match.group('qualifiers').replace('\n',r'\n'), match.group('function'), '(') 
    189201    return source 
     202 
    190203 
    191204def compile_model(source, dtype, fast=False): 
     
    212225    #options = ['--verbose', '-E'] 
    213226    options = ['--use_fast_math'] if fast else None 
    214     program = SourceModule(source, no_extern_c=True, options=options) # include_dirs=[...] 
     227    program = SourceModule(source, no_extern_c=True, options=options) #, include_dirs=[...]) 
    215228 
    216229    #print("done with "+program) 
     
    218231 
    219232 
    220 # for now, this returns one device in the context 
    221 # TODO: create a context that contains all devices on all platforms 
     233# For now, this returns one device in the context. 
     234# TODO: Create a context that contains all devices on all platforms. 
    222235class GpuEnvironment(object): 
    223236    """ 
    224     GPU context, with possibly many devices, and one queue per device. 
     237    GPU context for CUDA. 
    225238    """ 
    226239    context = None # type: cuda.Context 
    227240    def __init__(self, devnum=None): 
    228241        # type: (int) -> None 
    229         # Byte boundary for data alignment 
    230         #self.data_boundary = max(d.min_data_type_align_size 
    231         #                         for d in self.context.devices) 
    232         self.compiled = {} 
    233242        env = os.environ.get("SAS_OPENCL", "").lower() 
    234243        if devnum is None and env.startswith("cuda:"): 
    235244            devnum = int(env[5:]) 
     245 
    236246        # Set the global context to the particular device number if one is 
    237247        # given, otherwise use the default context.  Perhaps this will be set 
     
    242252            self.context = make_default_context() 
    243253 
     254        ## Byte boundary for data alignment. 
     255        #self.data_boundary = max(d.min_data_type_align_size 
     256        #                         for d in self.context.devices) 
     257 
     258        # Cache for compiled programs, and for items in context. 
     259        self.compiled = {} 
     260 
    244261    def release(self): 
    245262        if self.context is not None: 
     
    262279        Compile the program for the device in the given context. 
    263280        """ 
    264         # Note: PyOpenCL caches based on md5 hash of source, options and device 
    265         # so we don't really need to cache things for ourselves.  I'll do so 
    266         # anyway just to save some data munging time. 
     281        # Note: PyCuda (probably) caches but I'll do so as well just to 
     282        # save some data munging time. 
    267283        tag = generate.tag_source(source) 
    268284        key = "%s-%s-%s%s"%(name, dtype, tag, ("-fast" if fast else "")) 
    269         # Check timestamp on program 
     285        # Check timestamp on program. 
    270286        program, program_timestamp = self.compiled.get(key, (None, np.inf)) 
    271287        if program_timestamp < timestamp: 
     
    277293        return program 
    278294 
     295 
    279296class GpuModel(KernelModel): 
    280297    """ 
     
    292309    that the compiler is allowed to take shortcuts. 
    293310    """ 
    294     info = None # type: ModelInfo 
    295     source = "" # type: str 
    296     dtype = None # type: np.dtype 
    297     fast = False # type: bool 
    298     program = None # type: SourceModule 
    299     _kernels = None # type: List[cuda.Function] 
     311    info = None  # type: ModelInfo 
     312    source = ""  # type: str 
     313    dtype = None  # type: np.dtype 
     314    fast = False  # type: bool 
     315    _program = None # type: SourceModule 
     316    _kernels = None  # type: Dict[str, cuda.Function] 
    300317 
    301318    def __init__(self, source, model_info, dtype=generate.F32, fast=False): 
     
    305322        self.dtype = dtype 
    306323        self.fast = fast 
    307         self.program = None # delay program creation 
    308         self._kernels = None 
    309324 
    310325    def __getstate__(self): 
     
    315330        # type: (Tuple[ModelInfo, str, np.dtype, bool]) -> None 
    316331        self.info, self.source, self.dtype, self.fast = state 
    317         self.program = None 
     332        self._program = self._kernels = None 
    318333 
    319334    def make_kernel(self, q_vectors): 
    320335        # type: (List[np.ndarray]) -> "GpuKernel" 
    321         if self.program is None: 
    322             compile_program = environment().compile_program 
    323             timestamp = generate.ocl_timestamp(self.info) 
    324             self.program = compile_program( 
    325                 self.info.name, 
    326                 self.source['opencl'], 
    327                 self.dtype, 
    328                 self.fast, 
    329                 timestamp) 
    330             variants = ['Iq', 'Iqxy', 'Imagnetic'] 
    331             names = [generate.kernel_name(self.info, k) for k in variants] 
    332             kernels = [self.program.get_function(k) for k in names] 
    333             self._kernels = dict((k, v) for k, v in zip(variants, kernels)) 
    334         is_2d = len(q_vectors) == 2 
    335         if is_2d: 
    336             kernel = [self._kernels['Iqxy'], self._kernels['Imagnetic']] 
    337         else: 
    338             kernel = [self._kernels['Iq']]*2 
    339         return GpuKernel(kernel, self.dtype, self.info, q_vectors) 
    340  
    341     def release(self): 
    342         # type: () -> None 
    343         """ 
    344         Free the resources associated with the model. 
    345         """ 
    346         if self.program is not None: 
    347             self.program = None 
    348  
    349     def __del__(self): 
    350         # type: () -> None 
    351         self.release() 
    352  
    353 # TODO: check that we don't need a destructor for buffers which go out of scope 
     336        return GpuKernel(self, q_vectors) 
     337 
     338    def get_function(self, name): 
     339        # type: (str) -> cuda.Function 
     340        """ 
     341        Fetch the kernel from the environment by name, compiling it if it 
     342        does not already exist. 
     343        """ 
     344        if self._program is None: 
     345            self._prepare_program() 
     346        return self._kernels[name] 
     347 
     348    def _prepare_program(self): 
     349        # type: (str) -> None 
     350        env = environment() 
     351        timestamp = generate.ocl_timestamp(self.info) 
     352        program = env.compile_program( 
     353            self.info.name, 
     354            self.source['opencl'], 
     355            self.dtype, 
     356            self.fast, 
     357            timestamp) 
     358        variants = ['Iq', 'Iqxy', 'Imagnetic'] 
     359        names = [generate.kernel_name(self.info, k) for k in variants] 
     360        functions = [program.get_function(k) for k in names] 
     361        self._kernels = {k: v for k, v in zip(variants, functions)} 
     362        # Keep a handle to program so GC doesn't collect. 
     363        self._program = program 
     364 
     365 
     366# TODO: Check that we don't need a destructor for buffers which go out of scope. 
    354367class GpuInput(object): 
    355368    """ 
     
    373386    def __init__(self, q_vectors, dtype=generate.F32): 
    374387        # type: (List[np.ndarray], np.dtype) -> None 
    375         # TODO: do we ever need double precision q? 
     388        # TODO: Do we ever need double precision q? 
    376389        self.nq = q_vectors[0].size 
    377390        self.dtype = np.dtype(dtype) 
    378391        self.is_2d = (len(q_vectors) == 2) 
    379         # TODO: stretch input based on get_warp() 
    380         # not doing it now since warp depends on kernel, which is not known 
     392        # TODO: Stretch input based on get_warp(). 
     393        # Not doing it now since warp depends on kernel, which is not known 
    381394        # at this point, so instead using 32, which is good on the set of 
    382395        # architectures tested so far. 
    383396        if self.is_2d: 
    384             # Note: 16 rather than 15 because result is 1 longer than input. 
    385             width = ((self.nq+16)//16)*16 
     397            width = ((self.nq+15)//16)*16 
    386398            self.q = np.empty((width, 2), dtype=dtype) 
    387399            self.q[:self.nq, 0] = q_vectors[0] 
    388400            self.q[:self.nq, 1] = q_vectors[1] 
    389401        else: 
    390             # Note: 32 rather than 31 because result is 1 longer than input. 
    391             width = ((self.nq+32)//32)*32 
     402            width = ((self.nq+31)//32)*32 
    392403            self.q = np.empty(width, dtype=dtype) 
    393404            self.q[:self.nq] = q_vectors[0] 
    394405        self.global_size = [self.q.shape[0]] 
    395406        #print("creating inputs of size", self.global_size) 
     407 
     408        # Transfer input value to GPU. 
    396409        self.q_b = cuda.to_device(self.q) 
    397410 
     
    399412        # type: () -> None 
    400413        """ 
    401         Free the memory. 
     414        Free the buffer associated with the q value. 
    402415        """ 
    403416        if self.q_b is not None: 
     
    409422        self.release() 
    410423 
     424 
    411425class GpuKernel(Kernel): 
    412426    """ 
    413427    Callable SAS kernel. 
    414428 
    415     *kernel* is the GpuKernel object to call 
    416  
    417     *model_info* is the module information 
    418  
    419     *q_vectors* is the q vectors at which the kernel should be evaluated 
    420  
    421     *dtype* is the kernel precision 
    422  
    423     The resulting call method takes the *pars*, a list of values for 
    424     the fixed parameters to the kernel, and *pd_pars*, a list of (value,weight) 
    425     vectors for the polydisperse parameters.  *cutoff* determines the 
    426     integration limits: any points with combined weight less than *cutoff* 
    427     will not be calculated. 
     429    *model* is the GpuModel object to call 
     430 
     431    The kernel is derived from :class:`Kernel`, providing the 
     432    :meth:`call_kernel` method to evaluate the kernel for a given set of 
     433    parameters.  Because of the need to move the q values to the GPU before 
     434    evaluation, the kernel is instantiated for a particular set of q vectors, 
     435    and can be called many times without transfering q each time. 
    428436 
    429437    Call :meth:`release` when done with the kernel instance. 
    430438    """ 
    431     def __init__(self, kernel, dtype, model_info, q_vectors): 
    432         # type: (cl.Kernel, np.dtype, ModelInfo, List[np.ndarray]) -> None 
     439    #: SAS model information structure. 
     440    info = None  # type: ModelInfo 
     441    #: Kernel precision. 
     442    dtype = None  # type: np.dtype 
     443    #: Kernel dimensions (1d or 2d). 
     444    dim = ""  # type: str 
     445    #: Calculation results, updated after each call to :meth:`_call_kernel`. 
     446    result = None  # type: np.ndarray 
     447 
     448    def __init__(self, model, q_vectors): 
     449        # type: (GpuModel, List[np.ndarray]) -> None 
     450        dtype = model.dtype 
    433451        self.q_input = GpuInput(q_vectors, dtype) 
    434         self.kernel = kernel 
    435         # F16 isn't sufficient, so don't support it 
     452        self._model = model 
     453 
     454        # Attributes accessed from the outside. 
     455        self.dim = '2d' if self.q_input.is_2d else '1d' 
     456        self.info = model.info 
     457        self.dtype = dtype 
     458 
     459        # Converter to translate input to target type. 
    436460        self._as_dtype = np.float64 if dtype == generate.F64 else np.float32 
    437461 
    438         # attributes accessed from the outside 
    439         self.dim = '2d' if self.q_input.is_2d else '1d' 
    440         self.info = model_info 
    441         self.dtype = dtype 
    442  
    443         # holding place for the returned value 
     462        # Holding place for the returned value. 
    444463        nout = 2 if self.info.have_Fq and self.dim == '1d' else 1 
    445         extra_q = 4  # total weight, form volume, shell volume and R_eff 
    446         self.result = np.empty(self.q_input.nq*nout+extra_q, dtype) 
    447  
    448         # Inputs and outputs for each kernel call 
    449         # Note: res may be shorter than res_b if global_size != nq 
     464        extra_q = 4  # Total weight, form volume, shell volume and R_eff. 
     465        self.result = np.empty(self.q_input.nq*nout + extra_q, dtype) 
     466 
     467        # Allocate result value on GPU. 
    450468        width = ((self.result.size+31)//32)*32 * self.dtype.itemsize 
    451         self.result_b = cuda.mem_alloc(width) 
    452         self._need_release = [self.result_b] 
    453  
    454     def _call_kernel(self, call_details, values, cutoff, magnetic, effective_radius_type): 
    455         # type: (CallDetails, np.ndarray, np.ndarray, float, bool) -> np.ndarray 
    456         # Arrange data transfer to card 
     469        self._result_b = cuda.mem_alloc(width) 
     470 
     471    def _call_kernel(self, call_details, values, cutoff, magnetic, 
     472                     effective_radius_type): 
     473        # type: (CallDetails, np.ndarray, float, bool, int) -> np.ndarray 
     474 
     475        # Arrange data transfer to card. 
    457476        details_b = cuda.to_device(call_details.buffer) 
    458477        values_b = cuda.to_device(values) 
    459478 
    460         kernel = self.kernel[1 if magnetic else 0] 
    461         args = [ 
    462             np.uint32(self.q_input.nq), None, None, 
    463             details_b, values_b, self.q_input.q_b, self.result_b, 
    464             self._as_dtype(cutoff), 
    465             np.uint32(effective_radius_type), 
     479        # Setup kernel function and arguments. 
     480        name = 'Iq' if self.dim == '1d' else 'Imagnetic' if magnetic else 'Iqxy' 
     481        kernel = self._model.get_function(name) 
     482        kernel_args = [ 
     483            np.uint32(self.q_input.nq),  # Number of inputs. 
     484            None,  # Placeholder for pd_start. 
     485            None,  # Placeholder for pd_stop. 
     486            details_b,  # Problem definition. 
     487            values_b,  # Parameter values. 
     488            self.q_input.q_b,  # Q values. 
     489            self._result_b,   # Result storage. 
     490            self._as_dtype(cutoff),  # Probability cutoff. 
     491            np.uint32(effective_radius_type),  # R_eff mode. 
    466492        ] 
    467493        grid = partition(self.q_input.nq) 
    468         #print("Calling OpenCL") 
     494 
     495        # Call kernel and retrieve results. 
     496        #print("Calling CUDA") 
    469497        #call_details.show(values) 
    470         # Call kernel and retrieve results 
    471498        last_nap = time.clock() 
    472499        step = 100000000//self.q_input.nq + 1 
     
    475502            stop = min(start + step, call_details.num_eval) 
    476503            #print("queuing",start,stop) 
    477             args[1:3] = [np.int32(start), np.int32(stop)] 
    478             kernel(*args, **grid) 
     504            kernel_args[1:3] = [np.int32(start), np.int32(stop)] 
     505            kernel(*kernel_args, **grid) 
    479506            if stop < call_details.num_eval: 
    480507                sync() 
    481                 # Allow other processes to run 
     508                # Allow other processes to run. 
    482509                current_time = time.clock() 
    483510                if current_time - last_nap > 0.5: 
     
    485512                    last_nap = current_time 
    486513        sync() 
    487         cuda.memcpy_dtoh(self.result, self.result_b) 
     514        cuda.memcpy_dtoh(self.result, self._result_b) 
    488515        #print("result", self.result) 
    489516 
     
    496523        Release resources associated with the kernel. 
    497524        """ 
    498         for p in self._need_release: 
    499             p.free() 
    500         self._need_release = [] 
     525        self.q_input.release() 
     526        if self._result_b is not None: 
     527            self._result_b.free() 
     528            self._result_b = None 
    501529 
    502530    def __del__(self): 
     
    512540    Note: Maybe context.synchronize() is sufficient. 
    513541    """ 
    514     #return # The following works in C++; don't know what pycuda is doing 
    515     # Create an event with which to synchronize 
     542    # Create an event with which to synchronize. 
    516543    done = cuda.Event() 
    517544 
     
    519546    done.record() 
    520547 
    521     #line added to not hog resources 
     548    # Make sure we don't hog resource while waiting to sync. 
    522549    while not done.query(): 
    523550        time.sleep(0.01) 
     
    525552    # Block until the GPU executes the kernel. 
    526553    done.synchronize() 
     554 
    527555    # Clean up the event; I don't think they can be reused. 
    528556    del done 
  • sasmodels/kerneldll.py

    re44432d r3199b17  
    100100# pylint: enable=unused-import 
    101101 
    102 # Compiler output is a byte stream that needs to be decode in python 3 
     102# Compiler output is a byte stream that needs to be decode in python 3. 
    103103decode = (lambda s: s) if sys.version_info[0] < 3 else (lambda s: s.decode('utf8')) 
    104104 
     
    115115        COMPILER = "tinycc" 
    116116    elif "VCINSTALLDIR" in os.environ: 
    117         # If vcvarsall.bat has been called, then VCINSTALLDIR is in the environment 
    118         # and we can use the MSVC compiler.  Otherwise, if tinycc is available 
    119         # the use it.  Otherwise, hope that mingw is available. 
     117        # If vcvarsall.bat has been called, then VCINSTALLDIR is in the 
     118        # environment and we can use the MSVC compiler.  Otherwise, if 
     119        # tinycc is available then use it.  Otherwise, hope that mingw 
     120        # is available. 
    120121        COMPILER = "msvc" 
    121122    else: 
     
    124125    COMPILER = "unix" 
    125126 
    126 ARCH = "" if ct.sizeof(ct.c_void_p) > 4 else "x86"  # 4 byte pointers on x86 
     127ARCH = "" if ct.sizeof(ct.c_void_p) > 4 else "x86"  # 4 byte pointers on x86. 
    127128if COMPILER == "unix": 
    128     # Generic unix compile 
    129     # On mac users will need the X code command line tools installed 
     129    # Generic unix compile. 
     130    # On Mac users will need the X code command line tools installed. 
    130131    #COMPILE = "gcc-mp-4.7 -shared -fPIC -std=c99 -fopenmp -O2 -Wall %s -o %s -lm -lgomp" 
    131132    CC = "cc -shared -fPIC -std=c99 -O2 -Wall".split() 
    132     # add openmp support if not running on a mac 
     133    # Add OpenMP support if not running on a Mac. 
    133134    if sys.platform != "darwin": 
    134         # OpenMP seems to be broken on gcc 5.4.0 (ubuntu 16.04.9) 
     135        # OpenMP seems to be broken on gcc 5.4.0 (ubuntu 16.04.9). 
    135136        # Shut it off for all unix until we can investigate. 
    136137        #CC.append("-fopenmp") 
     
    144145    # vcomp90.dll on the path.  One may be found here: 
    145146    #       C:/Windows/winsxs/x86_microsoft.vc90.openmp*/vcomp90.dll 
    146     # Copy this to the python directory and uncomment the OpenMP COMPILE 
    147     # TODO: remove intermediate OBJ file created in the directory 
    148     # TODO: maybe don't use randomized name for the c file 
    149     # TODO: maybe ask distutils to find MSVC 
     147    # Copy this to the python directory and uncomment the OpenMP COMPILE. 
     148    # TODO: Remove intermediate OBJ file created in the directory. 
     149    # TODO: Maybe don't use randomized name for the c file. 
     150    # TODO: Maybe ask distutils to find MSVC. 
    150151    CC = "cl /nologo /Ox /MD /W3 /GS- /DNDEBUG".split() 
    151152    if "SAS_OPENMP" in os.environ: 
     
    172173ALLOW_SINGLE_PRECISION_DLLS = True 
    173174 
     175 
    174176def compile(source, output): 
    175177    # type: (str, str) -> None 
     
    183185    logging.info(command_str) 
    184186    try: 
    185         # need shell=True on windows to keep console box from popping up 
     187        # Need shell=True on windows to keep console box from popping up. 
    186188        shell = (os.name == 'nt') 
    187189        subprocess.check_output(command, shell=shell, stderr=subprocess.STDOUT) 
     
    192194        raise RuntimeError("compile failed.  File is in %r"%source) 
    193195 
     196 
    194197def dll_name(model_info, dtype): 
    195198    # type: (ModelInfo, np.dtype) ->  str 
     
    202205    basename += ARCH + ".so" 
    203206 
    204     # Hack to find precompiled dlls 
     207    # Hack to find precompiled dlls. 
    205208    path = joinpath(generate.DATA_PATH, '..', 'compiled_models', basename) 
    206209    if os.path.exists(path): 
     
    242245        raise ValueError("16 bit floats not supported") 
    243246    if dtype == F32 and not ALLOW_SINGLE_PRECISION_DLLS: 
    244         dtype = F64  # Force 64-bit dll 
    245     # Note: dtype may be F128 for long double precision 
     247        dtype = F64  # Force 64-bit dll. 
     248    # Note: dtype may be F128 for long double precision. 
    246249 
    247250    dll = dll_path(model_info, dtype) 
     
    254257        need_recompile = dll_time < newest_source 
    255258    if need_recompile: 
    256         # Make sure the DLL path exists 
     259        # Make sure the DLL path exists. 
    257260        if not os.path.exists(SAS_DLL_PATH): 
    258261            os.makedirs(SAS_DLL_PATH) 
     
    263266            file_handle.write(source) 
    264267        compile(source=filename, output=dll) 
    265         # comment the following to keep the generated c file 
    266         # Note: if there is a syntax error then compile raises an error 
     268        # Comment the following to keep the generated C file. 
     269        # Note: If there is a syntax error then compile raises an error 
    267270        # and the source file will not be deleted. 
    268271        os.unlink(filename) 
     
    303306        self.dllpath = dllpath 
    304307        self._dll = None  # type: ct.CDLL 
    305         self._kernels = None # type: List[Callable, Callable] 
     308        self._kernels = None  # type: List[Callable, Callable] 
    306309        self.dtype = np.dtype(dtype) 
    307310 
     
    338341        # type: (List[np.ndarray]) -> DllKernel 
    339342        q_input = PyInput(q_vectors, self.dtype) 
    340         # Note: pickle not supported for DllKernel 
     343        # Note: DLL is lazy loaded. 
    341344        if self._dll is None: 
    342345            self._load_dll() 
     
    358361        self._dll = None 
    359362 
     363 
    360364class DllKernel(Kernel): 
    361365    """ 
     
    379383    def __init__(self, kernel, model_info, q_input): 
    380384        # type: (Callable[[], np.ndarray], ModelInfo, PyInput) -> None 
    381         #,model_info,q_input) 
     385        dtype = q_input.dtype 
     386        self.q_input = q_input 
    382387        self.kernel = kernel 
     388 
     389        # Attributes accessed from the outside. 
     390        self.dim = '2d' if q_input.is_2d else '1d' 
    383391        self.info = model_info 
    384         self.q_input = q_input 
    385         self.dtype = q_input.dtype 
    386         self.dim = '2d' if q_input.is_2d else '1d' 
    387         # leave room for f1/f2 results in case we need to compute beta for 1d models 
     392        self.dtype = dtype 
     393 
     394        # Converter to translate input to target type. 
     395        self._as_dtype = (np.float32 if dtype == generate.F32 
     396                          else np.float64 if dtype == generate.F64 
     397                          else np.float128) 
     398 
     399        # Holding place for the returned value. 
    388400        nout = 2 if self.info.have_Fq else 1 
    389         # +4 for total weight, shell volume, effective radius, form volume 
    390         self.result = np.empty(q_input.nq*nout + 4, self.dtype) 
    391         self.real = (np.float32 if self.q_input.dtype == generate.F32 
    392                      else np.float64 if self.q_input.dtype == generate.F64 
    393                      else np.float128) 
    394  
    395     def _call_kernel(self, call_details, values, cutoff, magnetic, effective_radius_type): 
    396         # type: (CallDetails, np.ndarray, np.ndarray, float, bool, int) -> np.ndarray 
     401        extra_q = 4  # Total weight, form volume, shell volume and R_eff. 
     402        self.result = np.empty(self.q_input.nq*nout + extra_q, dtype) 
     403 
     404    def _call_kernel(self, call_details, values, cutoff, magnetic, 
     405                     effective_radius_type): 
     406        # type: (CallDetails, np.ndarray, float, bool, int) -> np.ndarray 
     407 
     408        # Setup kernel function and arguments. 
    397409        kernel = self.kernel[1 if magnetic else 0] 
    398         args = [ 
    399             self.q_input.nq, # nq 
    400             None, # pd_start 
    401             None, # pd_stop pd_stride[MAX_PD] 
    402             call_details.buffer.ctypes.data, # problem 
    403             values.ctypes.data,  # pars 
    404             self.q_input.q.ctypes.data, # q 
    405             self.result.ctypes.data,   # results 
    406             self.real(cutoff), # cutoff 
    407             effective_radius_type, # cutoff 
     410        kernel_args = [ 
     411            self.q_input.nq,  # Number of inputs. 
     412            None,  # Placeholder for pd_start. 
     413            None,  # Placeholder for pd_stop. 
     414            call_details.buffer.ctypes.data,  # Problem definition. 
     415            values.ctypes.data,  # Parameter values. 
     416            self.q_input.q.ctypes.data,  # Q values. 
     417            self.result.ctypes.data,   # Result storage. 
     418            self._as_dtype(cutoff),  # Probability cutoff. 
     419            effective_radius_type,  # R_eff mode. 
    408420        ] 
     421 
     422        # Call kernel and retrieve results. 
    409423        #print("Calling DLL") 
    410424        #call_details.show(values) 
    411425        step = 100 
     426        # TODO: Do we need the explicit sleep like the OpenCL and CUDA loops? 
    412427        for start in range(0, call_details.num_eval, step): 
    413428            stop = min(start + step, call_details.num_eval) 
    414             args[1:3] = [start, stop] 
    415             kernel(*args) # type: ignore 
     429            kernel_args[1:3] = [start, stop] 
     430            kernel(*kernel_args) # type: ignore 
    416431 
    417432    def release(self): 
    418433        # type: () -> None 
    419434        """ 
    420         Release any resources associated with the kernel. 
     435        Release resources associated with the kernel. 
    421436        """ 
    422         self.q_input.release() 
     437        # TODO: OpenCL/CUDA allocate q_input in __init__ and free it in release. 
     438        # Should we be doing the same for DLL? 
     439        #self.q_input.release() 
     440        pass 
     441 
     442    def __del__(self): 
     443        # type: () -> None 
     444        self.release() 
  • sasmodels/kernelpy.py

    raa8c6e0 r3199b17  
    3333logger = logging.getLogger(__name__) 
    3434 
     35 
    3536class PyModel(KernelModel): 
    3637    """ 
     
    3839    """ 
    3940    def __init__(self, model_info): 
    40         # Make sure Iq is available and vectorized 
     41        # Make sure Iq is available and vectorized. 
    4142        _create_default_functions(model_info) 
    4243        self.info = model_info 
     
    5354        """ 
    5455        pass 
     56 
    5557 
    5658class PyInput(object): 
     
    9193        self.q = None 
    9294 
     95 
    9396class PyKernel(Kernel): 
    9497    """ 
     
    131134        parameter_vector = np.empty(len(partable.call_parameters)-2, 'd') 
    132135 
    133         # Create views into the array to hold the arguments 
     136        # Create views into the array to hold the arguments. 
    134137        offset = 0 
    135138        kernel_args, volume_args = [], [] 
     
    174177                        else (lambda mode: 1.0)) 
    175178 
    176  
    177  
    178179    def _call_kernel(self, call_details, values, cutoff, magnetic, effective_radius_type): 
    179180        # type: (CallDetails, np.ndarray, np.ndarray, float, bool) -> np.ndarray 
     
    195196        self.q_input.release() 
    196197        self.q_input = None 
     198 
    197199 
    198200def _loops(parameters,    # type: np.ndarray 
     
    254256        total = np.zeros(nq, 'd') 
    255257        for loop_index in range(call_details.num_eval): 
    256             # update polydispersity parameter values 
     258            # Update polydispersity parameter values. 
    257259            if p0_index == p0_length: 
    258260                pd_index = (loop_index//pd_stride)%pd_length 
     
    265267            p0_index += 1 
    266268            if weight > cutoff: 
    267                 # Call the scattering function 
     269                # Call the scattering function. 
    268270                # Assume that NaNs are only generated if the parameters are bad; 
    269271                # exclude all q for that NaN.  Even better would be to have an 
     
    273275                    continue 
    274276 
    275                 # update value and norm 
     277                # Update value and norm. 
    276278                total += weight * Iq 
    277279                weight_norm += weight 
     
    293295    any functions that are not already marked as vectorized. 
    294296    """ 
    295     # Note: must call create_vector_Iq before create_vector_Iqxy 
     297    # Note: Must call create_vector_Iq before create_vector_Iqxy. 
    296298    _create_vector_Iq(model_info) 
    297299    _create_vector_Iqxy(model_info) 
  • sasmodels/model_test.py

    r5024a56 r00afc15  
    167167        # test using cuda if desired and available 
    168168        if 'cuda' in loaders and use_cuda(): 
    169             test_name = "%s-cuda"%model_name 
     169            test_name = "%s-cuda" % model_info.id 
    170170            test_method_name = "test_%s_cuda" % model_info.id 
    171171            # Using dtype=None so that the models that are only 
  • sasmodels/models/rpa.c

    r71b751d r19dc29e7  
    2525  double S0ba,Pbb,S0bb,Pbc,S0bc,Pbd,S0bd; 
    2626  double S0ca,S0cb,Pcc,S0cc,Pcd,S0cd; 
    27   double S0da,S0db,S0dc; 
     27  //double S0da,S0db,S0dc; 
    2828  double Pdd,S0dd; 
    2929  double Kaa,Kbb,Kcc; 
    3030  double Kba,Kca,Kcb; 
    31   double Kda,Kdb,Kdc,Kdd; 
     31  //double Kda,Kdb,Kdc,Kdd; 
    3232  double Zaa,Zab,Zac,Zba,Zbb,Zbc,Zca,Zcb,Zcc; 
    3333  double DenT,T11,T12,T13,T21,T22,T23,T31,T32,T33; 
     
    3636  double N11,N12,N13,N21,N22,N23,N31,N32,N33; 
    3737  double M11,M12,M13,M21,M22,M23,M31,M32,M33; 
    38   double S11,S12,S13,S14,S21,S22,S23,S24; 
    39   double S31,S32,S33,S34,S41,S42,S43,S44; 
     38  double S11,S12,S22,S23,S13,S33; 
     39  //double S21,S31,S32,S44;  
     40  //double S14,S24,S34,S41,S42,S43; 
    4041  double Lad,Lbd,Lcd,Nav,Intg; 
    4142 
     
    115116  S0cd=(Phicd*vcd*Ncd)*Pcd; 
    116117 
    117   S0da=S0ad; 
    118   S0db=S0bd; 
    119   S0dc=S0cd; 
     118  //S0da=S0ad; 
     119  //S0db=S0bd; 
     120  //S0dc=S0cd; 
    120121  Pdd=2.0*(exp(-Xd)-1.0+Xd)/(Xd*Xd); // free D chain 
    121122  S0dd=N[3]*Phi[3]*v[3]*Pdd; 
     
    198199  S0ca=S0ac; 
    199200  S0cb=S0bc; 
    200   S0da=S0ad; 
    201   S0db=S0bd; 
    202   S0dc=S0cd; 
     201  //S0da=S0ad; 
     202  //S0db=S0bd; 
     203  //S0dc=S0cd; 
    203204 
    204205  // self chi parameter is 0 ... of course 
     
    206207  Kbb=0.0; 
    207208  Kcc=0.0; 
    208   Kdd=0.0; 
     209  //Kdd=0.0; 
    209210 
    210211  Kba=Kab; 
    211212  Kca=Kac; 
    212213  Kcb=Kbc; 
    213   Kda=Kad; 
    214   Kdb=Kbd; 
    215   Kdc=Kcd; 
     214  //Kda=Kad; 
     215  //Kdb=Kbd; 
     216  //Kdc=Kcd; 
    216217 
    217218  Zaa=Kaa-Kad-Kad; 
     
    294295  S12= Q12*S0aa + Q22*S0ab + Q32*S0ac; 
    295296  S13= Q13*S0aa + Q23*S0ab + Q33*S0ac; 
    296   S14=-S11-S12-S13; 
    297   S21= Q11*S0ba + Q21*S0bb + Q31*S0bc; 
    298297  S22= Q12*S0ba + Q22*S0bb + Q32*S0bc; 
    299298  S23= Q13*S0ba + Q23*S0bb + Q33*S0bc; 
    300   S24=-S21-S22-S23; 
    301   S31= Q11*S0ca + Q21*S0cb + Q31*S0cc; 
    302   S32= Q12*S0ca + Q22*S0cb + Q32*S0cc; 
    303299  S33= Q13*S0ca + Q23*S0cb + Q33*S0cc; 
    304   S34=-S31-S32-S33; 
    305   S41=S14; 
    306   S42=S24; 
    307   S43=S34; 
    308   S44=S11+S22+S33+2.0*S12+2.0*S13+2.0*S23; 
     300  //S21= Q11*S0ba + Q21*S0bb + Q31*S0bc; 
     301  //S31= Q11*S0ca + Q21*S0cb + Q31*S0cc; 
     302  //S32= Q12*S0ca + Q22*S0cb + Q32*S0cc; 
     303  //S44=S11+S22+S33+2.0*S12+2.0*S13+2.0*S23; 
     304  //S14=-S11-S12-S13; 
     305  //S24=-S21-S22-S23; 
     306  //S34=-S31-S32-S33; 
     307  //S41=S14; 
     308  //S42=S24; 
     309  //S43=S34; 
    309310 
    310311  //calculate contrast where L[i] is the scattering length of i and D is the matrix 
Note: See TracChangeset for help on using the changeset viewer.