1 | """ |
---|
2 | GPU driver for C kernels (with CUDA) |
---|
3 | |
---|
4 | To select cuda, use SAS_OPENCL=cuda, or SAS_OPENCL=cuda:n for a particular |
---|
5 | device number. If no device number is specified, then look for CUDA_DEVICE=n |
---|
6 | or a file ~/.cuda-device containing n for the device number. Otherwise, try |
---|
7 | all available device numbers. |
---|
8 | |
---|
9 | TODO: docs are out of date |
---|
10 | |
---|
11 | There should be a single GPU environment running on the system. This |
---|
12 | environment is constructed on the first call to :func:`env`, and the |
---|
13 | same environment is returned on each call. |
---|
14 | |
---|
15 | After retrieving the environment, the next step is to create the kernel. |
---|
16 | This is done with a call to :meth:`GpuEnvironment.make_kernel`, which |
---|
17 | returns the type of data used by the kernel. |
---|
18 | |
---|
19 | Next a :class:`GpuData` object should be created with the correct kind |
---|
20 | of data. This data object can be used by multiple kernels, for example, |
---|
21 | if the target model is a weighted sum of multiple kernels. The data |
---|
22 | should include any extra evaluation points required to compute the proper |
---|
23 | data smearing. This need not match the square grid for 2D data if there |
---|
24 | is an index saying which q points are active. |
---|
25 | |
---|
26 | Together the GpuData, the program, and a device form a :class:`GpuKernel`. |
---|
27 | This kernel is used during fitting, receiving new sets of parameters and |
---|
28 | evaluating them. The output value is stored in an output buffer on the |
---|
29 | devices, where it can be combined with other structure factors and form |
---|
30 | factors and have instrumental resolution effects applied. |
---|
31 | |
---|
32 | In order to use OpenCL for your models, you will need OpenCL drivers for |
---|
33 | your machine. These should be available from your graphics card vendor. |
---|
34 | Intel provides OpenCL drivers for CPUs as well as their integrated HD |
---|
35 | graphics chipsets. AMD also provides drivers for Intel CPUs, but as of |
---|
36 | this writing the performance is lacking compared to the Intel drivers. |
---|
37 | NVidia combines drivers for CUDA and OpenCL in one package. The result |
---|
38 | is a bit messy if you have multiple drivers installed. You can see which |
---|
39 | drivers are available by starting python and running: |
---|
40 | |
---|
41 | import pyopencl as cl |
---|
42 | cl.create_some_context(interactive=True) |
---|
43 | |
---|
44 | Once you have done that, it will show the available drivers which you |
---|
45 | can select. It will then tell you that you can use these drivers |
---|
46 | automatically by setting the SAS_OPENCL environment variable, which is |
---|
47 | PYOPENCL_CTX equivalent but not conflicting with other pyopnecl programs. |
---|
48 | |
---|
49 | Some graphics cards have multiple devices on the same card. You cannot |
---|
50 | yet use both of them concurrently to evaluate models, but you can run |
---|
51 | the program twice using a different device for each session. |
---|
52 | |
---|
53 | OpenCL kernels are compiled when needed by the device driver. Some |
---|
54 | drivers produce compiler output even when there is no error. You |
---|
55 | can see the output by setting PYOPENCL_COMPILER_OUTPUT=1. It should be |
---|
56 | harmless, albeit annoying. |
---|
57 | """ |
---|
58 | from __future__ import print_function |
---|
59 | |
---|
60 | import os |
---|
61 | import warnings |
---|
62 | import logging |
---|
63 | import time |
---|
64 | import re |
---|
65 | |
---|
66 | import numpy as np # type: ignore |
---|
67 | |
---|
68 | |
---|
69 | # Attempt to setup cuda. This may fail if the pycuda package is not |
---|
70 | # installed or if it is installed but there are no devices available. |
---|
71 | try: |
---|
72 | import pycuda.driver as cuda # type: ignore |
---|
73 | from pycuda.compiler import SourceModule |
---|
74 | from pycuda.tools import make_default_context, clear_context_caches |
---|
75 | # Ask CUDA for the default context (so that we know that one exists) |
---|
76 | # then immediately throw it away in case the user doesn't want it. |
---|
77 | # Note: cribbed from pycuda.autoinit |
---|
78 | cuda.init() |
---|
79 | context = make_default_context() |
---|
80 | context.pop() |
---|
81 | clear_context_caches() |
---|
82 | del context |
---|
83 | HAVE_CUDA = True |
---|
84 | CUDA_ERROR = "" |
---|
85 | except Exception as exc: |
---|
86 | HAVE_CUDA = False |
---|
87 | CUDA_ERROR = str(exc) |
---|
88 | |
---|
89 | from . import generate |
---|
90 | from .kernel import KernelModel, Kernel |
---|
91 | |
---|
92 | # pylint: disable=unused-import |
---|
93 | try: |
---|
94 | from typing import Tuple, Callable, Any |
---|
95 | from .modelinfo import ModelInfo |
---|
96 | from .details import CallDetails |
---|
97 | except ImportError: |
---|
98 | pass |
---|
99 | # pylint: enable=unused-import |
---|
100 | |
---|
101 | # The max loops number is limited by the amount of local memory available |
---|
102 | # on the device. You don't want to make this value too big because it will |
---|
103 | # waste resources, nor too small because it may interfere with users trying |
---|
104 | # to do their polydispersity calculations. A value of 1024 should be much |
---|
105 | # larger than necessary given that cost grows as npts^k where k is the number |
---|
106 | # of polydisperse parameters. |
---|
107 | MAX_LOOPS = 2048 |
---|
108 | |
---|
109 | def use_cuda(): |
---|
110 | env = os.environ.get("SAS_OPENCL", "").lower() |
---|
111 | return HAVE_CUDA and (env == "" or env.startswith("cuda")) |
---|
112 | |
---|
113 | ENV = None |
---|
114 | def reset_environment(): |
---|
115 | """ |
---|
116 | Call to create a new OpenCL context, such as after a change to SAS_OPENCL. |
---|
117 | """ |
---|
118 | global ENV |
---|
119 | # Free any previous allocated context. |
---|
120 | if ENV is not None and ENV.context is not None: |
---|
121 | ENV.release() |
---|
122 | ENV = GpuEnvironment() if use_cuda() else None |
---|
123 | |
---|
124 | def environment(): |
---|
125 | # type: () -> "GpuEnvironment" |
---|
126 | """ |
---|
127 | Returns a singleton :class:`GpuEnvironment`. |
---|
128 | |
---|
129 | This provides an OpenCL context and one queue per device. |
---|
130 | """ |
---|
131 | if ENV is None: |
---|
132 | if not HAVE_CUDA: |
---|
133 | raise RuntimeError("CUDA startup failed with ***" |
---|
134 | + CUDA_ERROR + "***; using C compiler instead") |
---|
135 | reset_environment() |
---|
136 | if ENV is None: |
---|
137 | raise RuntimeError("SAS_OPENCL=None in environment") |
---|
138 | return ENV |
---|
139 | |
---|
140 | def has_type(dtype): |
---|
141 | # type: (np.dtype) -> bool |
---|
142 | """ |
---|
143 | Return true if device supports the requested precision. |
---|
144 | """ |
---|
145 | # Assume the nvidia card supports 32-bit and 64-bit floats. |
---|
146 | # TODO: check if pycuda support F16 |
---|
147 | return dtype in (generate.F32, generate.F64) |
---|
148 | |
---|
149 | |
---|
150 | FUNCTION_PATTERN = re.compile(r"""^ |
---|
151 | (?P<space>\s*) # initial space |
---|
152 | (?P<qualifiers>^(?:\s*\b\w+\b\s*)+) # one or more qualifiers before function |
---|
153 | (?P<function>\s*\b\w+\b\s*[(]) # function name plus open parens |
---|
154 | """, re.VERBOSE|re.MULTILINE) |
---|
155 | |
---|
156 | MARKED_PATTERN = re.compile(r""" |
---|
157 | \b(return|else|kernel|device|__device__)\b |
---|
158 | """, re.VERBOSE|re.MULTILINE) |
---|
159 | |
---|
160 | def _add_device_tag(match): |
---|
161 | # type: (None) -> str |
---|
162 | # Note: should be re.Match, but that isn't a simple type |
---|
163 | """ |
---|
164 | replace qualifiers with __device__ qualifiers if needed |
---|
165 | """ |
---|
166 | qualifiers = match.group("qualifiers") |
---|
167 | if MARKED_PATTERN.search(qualifiers): |
---|
168 | start, end = match.span() |
---|
169 | return match.string[start:end] |
---|
170 | else: |
---|
171 | function = match.group("function") |
---|
172 | space = match.group("space") |
---|
173 | return "".join((space, "__device__ ", qualifiers, function)) |
---|
174 | |
---|
175 | def mark_device_functions(source): |
---|
176 | # type: (str) -> str |
---|
177 | """ |
---|
178 | Mark all function declarations as __device__ functions (except kernel). |
---|
179 | """ |
---|
180 | return FUNCTION_PATTERN.sub(_add_device_tag, source) |
---|
181 | |
---|
182 | def show_device_functions(source): |
---|
183 | # type: (str) -> str |
---|
184 | """ |
---|
185 | Show all discovered function declarations, but don't change any. |
---|
186 | """ |
---|
187 | for match in FUNCTION_PATTERN.finditer(source): |
---|
188 | print(match.group('qualifiers').replace('\n',r'\n'), match.group('function'), '(') |
---|
189 | return source |
---|
190 | |
---|
191 | def compile_model(source, dtype, fast=False): |
---|
192 | # type: (str, np.dtype, bool) -> SourceModule |
---|
193 | """ |
---|
194 | Build a model to run on the gpu. |
---|
195 | |
---|
196 | Returns the compiled program and its type. The returned type will |
---|
197 | be float32 even if the desired type is float64 if any of the |
---|
198 | devices in the context do not support the cl_khr_fp64 extension. |
---|
199 | """ |
---|
200 | dtype = np.dtype(dtype) |
---|
201 | if not has_type(dtype): |
---|
202 | raise RuntimeError("%s not supported for devices"%dtype) |
---|
203 | |
---|
204 | source_list = [generate.convert_type(source, dtype)] |
---|
205 | |
---|
206 | source_list.insert(0, "#define USE_SINCOS\n") |
---|
207 | source = "\n".join(source_list) |
---|
208 | #source = show_device_functions(source) |
---|
209 | source = mark_device_functions(source) |
---|
210 | #with open('/tmp/kernel.cu', 'w') as fd: fd.write(source) |
---|
211 | #print(source) |
---|
212 | #options = ['--verbose', '-E'] |
---|
213 | options = ['--use_fast_math'] if fast else None |
---|
214 | program = SourceModule(source, no_extern_c=True, options=options) # include_dirs=[...] |
---|
215 | |
---|
216 | #print("done with "+program) |
---|
217 | return program |
---|
218 | |
---|
219 | |
---|
220 | # for now, this returns one device in the context |
---|
221 | # TODO: create a context that contains all devices on all platforms |
---|
222 | class GpuEnvironment(object): |
---|
223 | """ |
---|
224 | GPU context, with possibly many devices, and one queue per device. |
---|
225 | """ |
---|
226 | context = None # type: cuda.Context |
---|
227 | def __init__(self, devnum=None): |
---|
228 | # type: (int) -> None |
---|
229 | # Byte boundary for data alignment |
---|
230 | #self.data_boundary = max(d.min_data_type_align_size |
---|
231 | # for d in self.context.devices) |
---|
232 | self.compiled = {} |
---|
233 | env = os.environ.get("SAS_OPENCL", "").lower() |
---|
234 | if devnum is None and env.startswith("cuda:"): |
---|
235 | devnum = int(env[5:]) |
---|
236 | # Set the global context to the particular device number if one is |
---|
237 | # given, otherwise use the default context. Perhaps this will be set |
---|
238 | # by an environment variable within autoinit. |
---|
239 | if devnum is not None: |
---|
240 | self.context = cuda.Device(devnum).make_context() |
---|
241 | else: |
---|
242 | self.context = make_default_context() |
---|
243 | |
---|
244 | def release(self): |
---|
245 | if self.context is not None: |
---|
246 | self.context.pop() |
---|
247 | self.context = None |
---|
248 | |
---|
249 | def __del__(self): |
---|
250 | self.release() |
---|
251 | |
---|
252 | def has_type(self, dtype): |
---|
253 | # type: (np.dtype) -> bool |
---|
254 | """ |
---|
255 | Return True if all devices support a given type. |
---|
256 | """ |
---|
257 | return has_type(dtype) |
---|
258 | |
---|
259 | def compile_program(self, name, source, dtype, fast, timestamp): |
---|
260 | # type: (str, str, np.dtype, bool, float) -> cl.Program |
---|
261 | """ |
---|
262 | Compile the program for the device in the given context. |
---|
263 | """ |
---|
264 | # Note: PyOpenCL caches based on md5 hash of source, options and device |
---|
265 | # so we don't really need to cache things for ourselves. I'll do so |
---|
266 | # anyway just to save some data munging time. |
---|
267 | tag = generate.tag_source(source) |
---|
268 | key = "%s-%s-%s%s"%(name, dtype, tag, ("-fast" if fast else "")) |
---|
269 | # Check timestamp on program |
---|
270 | program, program_timestamp = self.compiled.get(key, (None, np.inf)) |
---|
271 | if program_timestamp < timestamp: |
---|
272 | del self.compiled[key] |
---|
273 | if key not in self.compiled: |
---|
274 | logging.info("building %s for CUDA", key) |
---|
275 | program = compile_model(str(source), dtype, fast) |
---|
276 | self.compiled[key] = (program, timestamp) |
---|
277 | return program |
---|
278 | |
---|
279 | class GpuModel(KernelModel): |
---|
280 | """ |
---|
281 | GPU wrapper for a single model. |
---|
282 | |
---|
283 | *source* and *model_info* are the model source and interface as returned |
---|
284 | from :func:`generate.make_source` and :func:`generate.make_model_info`. |
---|
285 | |
---|
286 | *dtype* is the desired model precision. Any numpy dtype for single |
---|
287 | or double precision floats will do, such as 'f', 'float32' or 'single' |
---|
288 | for single and 'd', 'float64' or 'double' for double. Double precision |
---|
289 | is an optional extension which may not be available on all devices. |
---|
290 | Half precision ('float16','half') may be available on some devices. |
---|
291 | Fast precision ('fast') is a loose version of single precision, indicating |
---|
292 | that the compiler is allowed to take shortcuts. |
---|
293 | """ |
---|
294 | info = None # type: ModelInfo |
---|
295 | source = "" # type: str |
---|
296 | dtype = None # type: np.dtype |
---|
297 | fast = False # type: bool |
---|
298 | program = None # type: SourceModule |
---|
299 | _kernels = None # type: List[cuda.Function] |
---|
300 | |
---|
301 | def __init__(self, source, model_info, dtype=generate.F32, fast=False): |
---|
302 | # type: (Dict[str,str], ModelInfo, np.dtype, bool) -> None |
---|
303 | self.info = model_info |
---|
304 | self.source = source |
---|
305 | self.dtype = dtype |
---|
306 | self.fast = fast |
---|
307 | self.program = None # delay program creation |
---|
308 | self._kernels = None |
---|
309 | |
---|
310 | def __getstate__(self): |
---|
311 | # type: () -> Tuple[ModelInfo, str, np.dtype, bool] |
---|
312 | return self.info, self.source, self.dtype, self.fast |
---|
313 | |
---|
314 | def __setstate__(self, state): |
---|
315 | # type: (Tuple[ModelInfo, str, np.dtype, bool]) -> None |
---|
316 | self.info, self.source, self.dtype, self.fast = state |
---|
317 | self.program = None |
---|
318 | |
---|
319 | def make_kernel(self, q_vectors): |
---|
320 | # type: (List[np.ndarray]) -> "GpuKernel" |
---|
321 | if self.program is None: |
---|
322 | compile_program = environment().compile_program |
---|
323 | timestamp = generate.ocl_timestamp(self.info) |
---|
324 | self.program = compile_program( |
---|
325 | self.info.name, |
---|
326 | self.source['opencl'], |
---|
327 | self.dtype, |
---|
328 | self.fast, |
---|
329 | timestamp) |
---|
330 | variants = ['Iq', 'Iqxy', 'Imagnetic'] |
---|
331 | names = [generate.kernel_name(self.info, k) for k in variants] |
---|
332 | kernels = [self.program.get_function(k) for k in names] |
---|
333 | self._kernels = dict((k, v) for k, v in zip(variants, kernels)) |
---|
334 | is_2d = len(q_vectors) == 2 |
---|
335 | if is_2d: |
---|
336 | kernel = [self._kernels['Iqxy'], self._kernels['Imagnetic']] |
---|
337 | else: |
---|
338 | kernel = [self._kernels['Iq']]*2 |
---|
339 | return GpuKernel(kernel, self.dtype, self.info, q_vectors) |
---|
340 | |
---|
341 | def release(self): |
---|
342 | # type: () -> None |
---|
343 | """ |
---|
344 | Free the resources associated with the model. |
---|
345 | """ |
---|
346 | if self.program is not None: |
---|
347 | self.program = None |
---|
348 | |
---|
349 | def __del__(self): |
---|
350 | # type: () -> None |
---|
351 | self.release() |
---|
352 | |
---|
353 | # TODO: check that we don't need a destructor for buffers which go out of scope |
---|
354 | class GpuInput(object): |
---|
355 | """ |
---|
356 | Make q data available to the gpu. |
---|
357 | |
---|
358 | *q_vectors* is a list of q vectors, which will be *[q]* for 1-D data, |
---|
359 | and *[qx, qy]* for 2-D data. Internally, the vectors will be reallocated |
---|
360 | to get the best performance on OpenCL, which may involve shifting and |
---|
361 | stretching the array to better match the memory architecture. Additional |
---|
362 | points will be evaluated with *q=1e-3*. |
---|
363 | |
---|
364 | *dtype* is the data type for the q vectors. The data type should be |
---|
365 | set to match that of the kernel, which is an attribute of |
---|
366 | :class:`GpuProgram`. Note that not all kernels support double |
---|
367 | precision, so even if the program was created for double precision, |
---|
368 | the *GpuProgram.dtype* may be single precision. |
---|
369 | |
---|
370 | Call :meth:`release` when complete. Even if not called directly, the |
---|
371 | buffer will be released when the data object is freed. |
---|
372 | """ |
---|
373 | def __init__(self, q_vectors, dtype=generate.F32): |
---|
374 | # type: (List[np.ndarray], np.dtype) -> None |
---|
375 | # TODO: do we ever need double precision q? |
---|
376 | self.nq = q_vectors[0].size |
---|
377 | self.dtype = np.dtype(dtype) |
---|
378 | self.is_2d = (len(q_vectors) == 2) |
---|
379 | # TODO: stretch input based on get_warp() |
---|
380 | # not doing it now since warp depends on kernel, which is not known |
---|
381 | # at this point, so instead using 32, which is good on the set of |
---|
382 | # architectures tested so far. |
---|
383 | if self.is_2d: |
---|
384 | # Note: 16 rather than 15 because result is 1 longer than input. |
---|
385 | width = ((self.nq+16)//16)*16 |
---|
386 | self.q = np.empty((width, 2), dtype=dtype) |
---|
387 | self.q[:self.nq, 0] = q_vectors[0] |
---|
388 | self.q[:self.nq, 1] = q_vectors[1] |
---|
389 | else: |
---|
390 | # Note: 32 rather than 31 because result is 1 longer than input. |
---|
391 | width = ((self.nq+32)//32)*32 |
---|
392 | self.q = np.empty(width, dtype=dtype) |
---|
393 | self.q[:self.nq] = q_vectors[0] |
---|
394 | self.global_size = [self.q.shape[0]] |
---|
395 | #print("creating inputs of size", self.global_size) |
---|
396 | self.q_b = cuda.to_device(self.q) |
---|
397 | |
---|
398 | def release(self): |
---|
399 | # type: () -> None |
---|
400 | """ |
---|
401 | Free the memory. |
---|
402 | """ |
---|
403 | if self.q_b is not None: |
---|
404 | self.q_b.free() |
---|
405 | self.q_b = None |
---|
406 | |
---|
407 | def __del__(self): |
---|
408 | # type: () -> None |
---|
409 | self.release() |
---|
410 | |
---|
411 | class GpuKernel(Kernel): |
---|
412 | """ |
---|
413 | Callable SAS kernel. |
---|
414 | |
---|
415 | *kernel* is the GpuKernel object to call |
---|
416 | |
---|
417 | *model_info* is the module information |
---|
418 | |
---|
419 | *q_vectors* is the q vectors at which the kernel should be evaluated |
---|
420 | |
---|
421 | *dtype* is the kernel precision |
---|
422 | |
---|
423 | The resulting call method takes the *pars*, a list of values for |
---|
424 | the fixed parameters to the kernel, and *pd_pars*, a list of (value,weight) |
---|
425 | vectors for the polydisperse parameters. *cutoff* determines the |
---|
426 | integration limits: any points with combined weight less than *cutoff* |
---|
427 | will not be calculated. |
---|
428 | |
---|
429 | Call :meth:`release` when done with the kernel instance. |
---|
430 | """ |
---|
431 | def __init__(self, kernel, dtype, model_info, q_vectors): |
---|
432 | # type: (cl.Kernel, np.dtype, ModelInfo, List[np.ndarray]) -> None |
---|
433 | self.q_input = GpuInput(q_vectors, dtype) |
---|
434 | self.kernel = kernel |
---|
435 | # F16 isn't sufficient, so don't support it |
---|
436 | self._as_dtype = np.float64 if dtype == generate.F64 else np.float32 |
---|
437 | |
---|
438 | # attributes accessed from the outside |
---|
439 | self.dim = '2d' if self.q_input.is_2d else '1d' |
---|
440 | self.info = model_info |
---|
441 | self.dtype = dtype |
---|
442 | |
---|
443 | # holding place for the returned value |
---|
444 | nout = 2 if self.info.have_Fq and self.dim == '1d' else 1 |
---|
445 | extra_q = 4 # total weight, form volume, shell volume and R_eff |
---|
446 | self.result = np.empty(self.q_input.nq*nout+extra_q, dtype) |
---|
447 | |
---|
448 | # Inputs and outputs for each kernel call |
---|
449 | # Note: res may be shorter than res_b if global_size != nq |
---|
450 | width = ((self.result.size+31)//32)*32 * self.dtype.itemsize |
---|
451 | self.result_b = cuda.mem_alloc(width) |
---|
452 | self._need_release = [self.result_b] |
---|
453 | |
---|
454 | def _call_kernel(self, call_details, values, cutoff, magnetic, effective_radius_type): |
---|
455 | # type: (CallDetails, np.ndarray, np.ndarray, float, bool) -> np.ndarray |
---|
456 | # Arrange data transfer to card |
---|
457 | details_b = cuda.to_device(call_details.buffer) |
---|
458 | values_b = cuda.to_device(values) |
---|
459 | |
---|
460 | kernel = self.kernel[1 if magnetic else 0] |
---|
461 | args = [ |
---|
462 | np.uint32(self.q_input.nq), None, None, |
---|
463 | details_b, values_b, self.q_input.q_b, self.result_b, |
---|
464 | self._as_dtype(cutoff), |
---|
465 | np.uint32(effective_radius_type), |
---|
466 | ] |
---|
467 | grid = partition(self.q_input.nq) |
---|
468 | #print("Calling OpenCL") |
---|
469 | #call_details.show(values) |
---|
470 | # Call kernel and retrieve results |
---|
471 | last_nap = time.clock() |
---|
472 | step = 100000000//self.q_input.nq + 1 |
---|
473 | #step = 1000000000 |
---|
474 | for start in range(0, call_details.num_eval, step): |
---|
475 | stop = min(start + step, call_details.num_eval) |
---|
476 | #print("queuing",start,stop) |
---|
477 | args[1:3] = [np.int32(start), np.int32(stop)] |
---|
478 | kernel(*args, **grid) |
---|
479 | if stop < call_details.num_eval: |
---|
480 | sync() |
---|
481 | # Allow other processes to run |
---|
482 | current_time = time.clock() |
---|
483 | if current_time - last_nap > 0.5: |
---|
484 | time.sleep(0.001) |
---|
485 | last_nap = current_time |
---|
486 | sync() |
---|
487 | cuda.memcpy_dtoh(self.result, self.result_b) |
---|
488 | #print("result", self.result) |
---|
489 | |
---|
490 | details_b.free() |
---|
491 | values_b.free() |
---|
492 | |
---|
493 | def release(self): |
---|
494 | # type: () -> None |
---|
495 | """ |
---|
496 | Release resources associated with the kernel. |
---|
497 | """ |
---|
498 | for p in self._need_release: |
---|
499 | p.free() |
---|
500 | self._need_release = [] |
---|
501 | |
---|
502 | def __del__(self): |
---|
503 | # type: () -> None |
---|
504 | self.release() |
---|
505 | |
---|
506 | |
---|
507 | def sync(): |
---|
508 | """ |
---|
509 | Overview: |
---|
510 | Waits for operation in the current context to complete. |
---|
511 | |
---|
512 | Note: Maybe context.synchronize() is sufficient. |
---|
513 | """ |
---|
514 | #return # The following works in C++; don't know what pycuda is doing |
---|
515 | # Create an event with which to synchronize |
---|
516 | done = cuda.Event() |
---|
517 | |
---|
518 | # Schedule an event trigger on the GPU. |
---|
519 | done.record() |
---|
520 | |
---|
521 | #line added to not hog resources |
---|
522 | while not done.query(): |
---|
523 | time.sleep(0.01) |
---|
524 | |
---|
525 | # Block until the GPU executes the kernel. |
---|
526 | done.synchronize() |
---|
527 | # Clean up the event; I don't think they can be reused. |
---|
528 | del done |
---|
529 | |
---|
530 | |
---|
531 | def partition(n): |
---|
532 | ''' |
---|
533 | Overview: |
---|
534 | Auto grids the thread blocks to achieve some level of calculation |
---|
535 | efficiency. |
---|
536 | ''' |
---|
537 | max_gx, max_gy = 65535, 65535 |
---|
538 | blocksize = 32 |
---|
539 | #max_gx, max_gy = 5, 65536 |
---|
540 | #blocksize = 3 |
---|
541 | block = (blocksize, 1, 1) |
---|
542 | num_blocks = int((n+blocksize-1)/blocksize) |
---|
543 | if num_blocks < max_gx: |
---|
544 | grid = (num_blocks, 1) |
---|
545 | else: |
---|
546 | gx = max_gx |
---|
547 | gy = (num_blocks + max_gx - 1) / max_gx |
---|
548 | if gy >= max_gy: |
---|
549 | raise ValueError("vector is too large") |
---|
550 | grid = (gx, gy) |
---|
551 | #print("block", block, "grid", grid) |
---|
552 | #print("waste", block[0]*block[1]*block[2]*grid[0]*grid[1] - n) |
---|
553 | return dict(block=block, grid=grid) |
---|