Changeset 2f63032 in sasmodels
- Timestamp:
- Mar 20, 2016 4:48:58 AM (9 years ago)
- Branches:
- master, core_shell_microgels, costrafo411, magnetic_model, release_v0.94, release_v0.95, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
- Children:
- fc7aa39
- Parents:
- cedad32
- Files:
-
- 2 added
- 1 deleted
- 8 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/Makefile
ra84a0ca r2f63032 85 85 86 86 clean: 87 -$(RMDIR) _build model api ref /models87 -$(RMDIR) _build model api ref$(PATHSEP)models 88 88 89 89 html: build -
sasmodels/models/bessel.py
rad9af31 r2f63032 33 33 Validation of our code was done by comparing the output of the 1D model 34 34 to the output of the software provided by the NIST (Kline, 2006). 35 Figure :num :`figure #sphere-comparison` shows a comparison of the output35 Figure :numref:`figure #sphere-comparison` shows a comparison of the output 36 36 of our model and the output of the NIST software. 37 37 -
sasmodels/models/cylinder.py
r26141cb r2f63032 31 31 To provide easy access to the orientation of the cylinder, we define the 32 32 axis of the cylinder using two angles $\theta$ and $\phi$. Those angles 33 are defined in :num :`figure #cylinder-angle-definition`.33 are defined in :numref:`figure #cylinder-angle-definition`. 34 34 35 35 .. _cylinder-angle-definition: -
sasmodels/models/parallelepiped.py
r43b7eea r2f63032 7 7 ---------- 8 8 9 | This model calculates the scattering from a rectangular parallelepiped (:num :`Figure #parallelepiped-image`).9 | This model calculates the scattering from a rectangular parallelepiped (:numref:`Figure #parallelepiped-image`). 10 10 | If you need to apply polydispersity, see also :ref:`rectangular-prism`. 11 11 -
sasmodels/models/porod.py
r1ce6e82 r2f63032 19 19 q = \sqrt{q_x^2+q_y^2} 20 20 21 References 22 ---------- 23 24 G Porod. *Kolloid Zeit*. 124 (1951) 83. 25 L A Feigin, D I Svergun, G W Taylor. *Structure Analysis by Small-Angle X-ray and Neutron Scattering*. Springer. (1987) 21 26 """ 22 27 -
sasmodels/models/squarewell.py
ra84a0ca r2f63032 14 14 The interaction potential is: 15 15 16 .. comment:: 17 18 .. image:: img/image225.PNG 16 .. image:: img\squarewell.png 19 17 20 18 .. math:: … … 37 35 q = \sqrt{q_x^2 + q_y^2} 38 36 37 References 38 ---------- 39 39 40 REFERENCE 41 42 R V Sharma, K C Sharma, *Physica*, 89A (1977) 213 40 R V Sharma, K C Sharma, *Physica*, 89A (1977) 213. 43 41 44 42 """ -
sasmodels/models/triaxial_ellipsoid.py
r43b7eea r2f63032 36 36 we define the axis of the cylinder using the angles $\theta$, $\phi$ 37 37 and $\psi$. These angles are defined on 38 :num :`figure #triaxial-ellipsoid-angles`.38 :numref:`figure #triaxial-ellipsoid-angles`. 39 39 The angle $\psi$ is the rotational angle around its own $c$ axis 40 40 against the $q$ plane. For example, $\psi = 0$ when the -
sasmodels/resolution.py
ra146eaa r2f63032 196 196 \,dq_\perp dq_\parallel 197 197 198 199 Definition 200 ---------- 198 **Definition** 201 199 202 200 We are using the mid-point integration rule to assign weights to each
Note: See TracChangeset
for help on using the changeset viewer.