Changeset 2773c66 in sasmodels
- Timestamp:
- Sep 8, 2018 10:29:05 AM (7 years ago)
- Branches:
- master, core_shell_microgels, magnetic_model, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
- Children:
- ba51e00
- Parents:
- b763f9d (diff), c88f983 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent. - Files:
-
- 3 added
- 70 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/guide/scripting.rst
r4aa5dce rbd7630d 10 10 The key functions are :func:`sasmodels.core.load_model` for loading the 11 11 model definition and compiling the kernel and 12 :func:`sasmodels.data.load_data` for calling sasview to load the data. Need 13 the data because that defines the resolution function and the q values to 14 evaluate. If there is no data, then use :func:`sasmodels.data.empty_data1D` 15 or :func:`sasmodels.data.empty_data2D` to create some data with a given $q$. 16 17 Using sasmodels through bumps 18 ============================= 19 20 With the data and the model, you can wrap it in a *bumps* model with 12 :func:`sasmodels.data.load_data` for calling sasview to load the data. 13 14 Preparing data 15 ============== 16 17 Usually you will load data via the sasview loader, with the 18 :func:`sasmodels.data.load_data` function. For example:: 19 20 from sasmodels.data import load_data 21 data = load_data("sasmodels/example/093191_201.dat") 22 23 You may want to apply a data mask, such a beam stop, and trim high $q$:: 24 25 from sasmodels.data import set_beam_stop 26 set_beam_stop(data, qmin, qmax) 27 28 The :func:`sasmodels.data.set_beam_stop` method simply sets the *mask* 29 attribute for the data. 30 31 The data defines the resolution function and the q values to evaluate, so 32 even if you simulating experiments prior to making measurements, you still 33 need a data object for reference. Use :func:`sasmodels.data.empty_data1D` 34 or :func:`sasmodels.data.empty_data2D` to create a container with a 35 given $q$ and $\Delta q/q$. For example:: 36 37 import numpy as np 38 from sasmodels.data import empty_data1D 39 40 # 120 points logarithmically spaced from 0.005 to 0.2, with dq/q = 5% 41 q = np.logspace(np.log10(5e-3), np.log10(2e-1), 120) 42 data = empty_data1D(q, resolution=0.05) 43 44 To use a more realistic model of resolution, or to load data from a file 45 format not understood by SasView, you can use :class:`sasmodels.data.Data1D` 46 or :class:`sasmodels.data.Data2D` directly. The 1D data uses 47 *x*, *y*, *dx* and *dy* for $x = q$ and $y = I(q)$, and 2D data uses 48 *x*, *y*, *z*, *dx*, *dy*, *dz* for $x, y = qx, qy$ and $z = I(qx, qy)$. 49 [Note: internally, the Data2D object uses SasView conventions, 50 *qx_data*, *qy_data*, *data*, *dqx_data*, *dqy_data*, and *err_data*.] 51 52 For USANS data, use 1D data, but set *dxl* and *dxw* attributes to 53 indicate slit resolution:: 54 55 data.dxl = 0.117 56 57 See :func:`sasmodels.resolution.slit_resolution` for details. 58 59 SESANS data is more complicated; if your SESANS format is not supported by 60 SasView you need to define a number of attributes beyond *x*, *y*. For 61 example:: 62 63 SElength = np.linspace(0, 2400, 61) # [A] 64 data = np.ones_like(SElength) 65 err_data = np.ones_like(SElength)*0.03 66 67 class Source: 68 wavelength = 6 # [A] 69 wavelength_unit = "A" 70 class Sample: 71 zacceptance = 0.1 # [A^-1] 72 thickness = 0.2 # [cm] 73 74 class SESANSData1D: 75 #q_zmax = 0.23 # [A^-1] 76 lam = 0.2 # [nm] 77 x = SElength 78 y = data 79 dy = err_data 80 sample = Sample() 81 data = SESANSData1D() 82 83 x, y = ... # create or load sesans 84 data = smd.Data 85 86 The *data* module defines various data plotters as well. 87 88 Using sasmodels directly 89 ======================== 90 91 Once you have a computational kernel and a data object, you can evaluate 92 the model for various parameters using 93 :class:`sasmodels.direct_model.DirectModel`. The resulting object *f* 94 will be callable as *f(par=value, ...)*, returning the $I(q)$ for the $q$ 95 values in the data. For example:: 96 97 import numpy as np 98 from sasmodels.data import empty_data1D 99 from sasmodels.core import load_model 100 from sasmodels.direct_model import DirectModel 101 102 # 120 points logarithmically spaced from 0.005 to 0.2, with dq/q = 5% 103 q = np.logspace(np.log10(5e-3), np.log10(2e-1), 120) 104 data = empty_data1D(q, resolution=0.05) 105 kernel = load_model("ellipsoid) 106 f = DirectModel(data, kernel) 107 Iq = f(radius_polar=100) 108 109 Polydispersity information is set with special parameter names: 110 111 * *par_pd* for polydispersity width, $\Delta p/p$, 112 * *par_pd_n* for the number of points in the distribution, 113 * *par_pd_type* for the distribution type (as a string), and 114 * *par_pd_nsigmas* for the limits of the distribution. 115 116 Using sasmodels through the bumps optimizer 117 =========================================== 118 119 Like DirectModel, you can wrap data and a kernel in a *bumps* model with 21 120 class:`sasmodels.bumps_model.Model` and create an 22 class:`sasmodels.bump _model.Experiment` that you can fit with the *bumps*121 class:`sasmodels.bumps_model.Experiment` that you can fit with the *bumps* 23 122 interface. Here is an example from the *example* directory such as 24 123 *example/model.py*:: … … 75 174 SasViewCom bumps.cli example/model.py --preview 76 175 77 Using sasmodels directly 78 ======================== 79 80 Bumps has a notion of parameter boxes in which you can set and retrieve 81 values. Instead of using bumps, you can create a directly callable function 82 with :class:`sasmodels.direct_model.DirectModel`. The resulting object *f* 83 will be callable as *f(par=value, ...)*, returning the $I(q)$ for the $q$ 84 values in the data. Polydisperse parameters use the same naming conventions 85 as in the bumps model, with e.g., radius_pd being the polydispersity associated 86 with radius. 176 Calling the computation kernel 177 ============================== 87 178 88 179 Getting a simple function that you can call on a set of q values and return -
sasmodels/compare.py
raf7a97c rbd7630d 1288 1288 1289 1289 if opts['datafile'] is not None: 1290 data = load_data(os.path.expanduser(opts['datafile'])) 1290 data0 = load_data(os.path.expanduser(opts['datafile'])) 1291 data = data0, data0 1291 1292 else: 1292 1293 # Hack around the fact that make_data doesn't take a pair of resolutions -
sasmodels/data.py
r7e923c2 rc88f983 183 183 *x* is spin echo length and *y* is polarization (P/P0). 184 184 """ 185 isSesans = True 185 186 def __init__(self, **kw): 186 187 Data1D.__init__(self, **kw) … … 301 302 self.wavelength_unit = "A" 302 303 304 class Sample(object): 305 """ 306 Sample attributes. 307 """ 308 def __init__(self): 309 # type: () -> None 310 pass 303 311 304 312 def empty_data1D(q, resolution=0.0, L=0., dL=0.): -
sasmodels/direct_model.py
r1a8c11c r7b9e4dd 31 31 from . import resolution2d 32 32 from .details import make_kernel_args, dispersion_mesh 33 from .modelinfo import DEFAULT_BACKGROUND 33 34 34 35 # pylint: disable=unused-import … … 349 350 350 351 # Need to pull background out of resolution for multiple scattering 351 background = pars.get('background', 0.)352 background = pars.get('background', DEFAULT_BACKGROUND) 352 353 pars = pars.copy() 353 354 pars['background'] = 0. -
sasmodels/generate.py
r5399809 r2773c66 991 991 docs = model_info.docs if model_info.docs is not None else "" 992 992 docs = convert_section_titles_to_boldface(docs) 993 pars = make_partable(model_info.parameters.COMMON 994 + model_info.parameters.kernel_parameters) 993 if model_info.structure_factor: 994 pars = model_info.parameters.kernel_parameters 995 else: 996 pars = model_info.parameters.COMMON + model_info.parameters.kernel_parameters 997 partable = make_partable(pars) 995 998 subst = dict(id=model_info.id.replace('_', '-'), 996 999 name=model_info.name, 997 1000 title=model_info.title, 998 parameters=par s,1001 parameters=partable, 999 1002 returns=Sq_units if model_info.structure_factor else Iq_units, 1000 1003 docs=docs) -
sasmodels/kernel_iq.c
rc57ee9e r2773c66 192 192 QACRotation *rotation, 193 193 double qx, double qy, 194 double *qa _out, double *qc_out)194 double *qab_out, double *qc_out) 195 195 { 196 // Indirect calculation of qab, from qab^2 = |q|^2 - qc^2 196 197 const double dqc = rotation->R31*qx + rotation->R32*qy; 197 // Indirect calculation of qab, from qab^2 = |q|^2 - qc^2 198 const double dqa = sqrt(-dqc*dqc + qx*qx + qy*qy); 199 200 *qa_out = dqa; 198 const double dqab_sq = -dqc*dqc + qx*qx + qy*qy; 199 //*qab_out = sqrt(fabs(dqab_sq)); 200 *qab_out = dqab_sq > 0.0 ? sqrt(dqab_sq) : 0.0; 201 201 *qc_out = dqc; 202 202 } -
sasmodels/modelinfo.py
r5399809 r2773c66 45 45 # Note that scale and background cannot be coordinated parameters whose value 46 46 # depends on the some polydisperse parameter with the current implementation 47 DEFAULT_BACKGROUND = 1e-3 47 48 COMMON_PARAMETERS = [ 48 49 ("scale", "", 1, (0.0, np.inf), "", "Source intensity"), 49 ("background", "1/cm", 1e-3, (-np.inf, np.inf), "", "Source background"),50 ("background", "1/cm", DEFAULT_BACKGROUND, (-np.inf, np.inf), "", "Source background"), 50 51 ] 51 52 assert (len(COMMON_PARAMETERS) == 2 -
sasmodels/models/ellipsoid.py
rd277229 r2773c66 125 125 import numpy as np 126 126 from numpy import inf, sin, cos, pi 127 128 try: 129 from numpy import cbrt 130 except ImportError: 131 def cbrt(x): return x ** (1.0/3.0) 127 132 128 133 name = "ellipsoid" -
sasmodels/models/spinodal.py
r71b751d rc88f983 3 3 ---------- 4 4 5 This model calculates the SAS signal of a phase separating solution 6 under spinodal decomposition. The scattering intensity $I(q)$ is calculated as 5 This model calculates the SAS signal of a phase separating system 6 undergoing spinodal decomposition. The scattering intensity $I(q)$ is calculated 7 as 7 8 8 9 .. math:: 9 10 I(q) = I_{max}\frac{(1+\gamma/2)x^2}{\gamma/2+x^{2+\gamma}}+B 10 11 11 where $x=q/q_0$ and $B$ is a flat background. The characteristic structure 12 length scales with the correlation peak at $q_0$. The exponent $\gamma$ is 13 equal to $d+1$ with d the dimensionality of the off-critical concentration 14 mixtures. A transition to $\gamma=2d$ is seen near the percolation threshold 15 into the critical concentration regime. 12 where $x=q/q_0$, $q_0$ is the peak position, $I_{max}$ is the intensity 13 at $q_0$ (parameterised as the $scale$ parameter), and $B$ is a flat 14 background. The spinodal wavelength is given by $2\pi/q_0$. 15 16 The exponent $\gamma$ is equal to $d+1$ for off-critical concentration 17 mixtures (smooth interfaces) and $2d$ for critical concentration mixtures 18 (entangled interfaces), where $d$ is the dimensionality (ie, 1, 2, 3) of the 19 system. Thus 2 <= $\gamma$ <= 6. A transition from $\gamma=d+1$ to $\gamma=2d$ 20 is expected near the percolation threshold. 21 22 As this function tends to zero as $q$ tends to zero, in practice it may be 23 necessary to combine it with another function describing the low-angle 24 scattering, or to simply omit the low-angle scattering from the fit. 16 25 17 26 References … … 22 31 Physica A 123,497 (1984). 23 32 24 Authorship and Verification 25 ---------------- ------------33 Revision History 34 ---------------- 26 35 27 * **Author:** Dirk Honecker **Date:** Oct 7, 2016 36 * **Author:** Dirk Honecker **Date:** Oct 7, 2016 37 * **Revised:** Steve King **Date:** Sep 7, 2018 28 38 """ 29 39 … … 34 44 title = "Spinodal decomposition model" 35 45 description = """\ 36 I(q) = scale ((1+gamma/2)x^2)/(gamma/2+x^(2+gamma))+background46 I(q) = Imax ((1+gamma/2)x^2)/(gamma/2+x^(2+gamma)) + background 37 47 38 48 List of default parameters: 39 scale = scaling 40 gamma = exponent 41 x = q/q_0 49 50 Imax = correlation peak intensity at q_0 51 background = incoherent background 52 gamma = exponent (see model documentation) 42 53 q_0 = correlation peak position [1/A] 43 background = Incoherent background""" 54 x = q/q_0""" 55 44 56 category = "shape-independent" 45 57 -
sasmodels/product.py
r33d7be3 r2773c66 42 42 pars = [] 43 43 if p_info.have_Fq: 44 par = parse_parameter("structure_factor_mode", "", 0, [["P*S","P*(1+beta*(S-1))"]], "", 45 "Structure factor calculation") 44 par = parse_parameter( 45 "structure_factor_mode", 46 "", 47 0, 48 [["P*S","P*(1+beta*(S-1))"]], 49 "", 50 "Structure factor calculation") 46 51 pars.append(par) 47 52 if p_info.effective_radius_type is not None: 48 par = parse_parameter("radius_effective_mode", "", 0, [["unconstrained"] + p_info.effective_radius_type], "", 49 "Effective radius calculation") 53 par = parse_parameter( 54 "radius_effective_mode", 55 "", 56 0, 57 [["unconstrained"] + p_info.effective_radius_type], 58 "", 59 "Effective radius calculation") 50 60 pars.append(par) 51 61 return pars … … 169 179 )) 170 180 171 def _intermediates_beta(F1, F2, S, scale, bg, effective_radius): 172 # type: (np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, float) -> OrderedDict[str, Union[np.ndarray, float]] 181 def _intermediates_beta(F1, # type: np.ndarray 182 F2, # type: np.ndarray 183 S, # type: np.ndarray 184 scale, # type: np.ndarray 185 bg, # type: np.ndarray 186 effective_radius # type: float 187 ): 188 # type: (...) -> OrderedDict[str, Union[np.ndarray, float]] 173 189 """ 174 190 Returns intermediate results for beta approximation-enabled product. The result may be an array or a float. -
sasmodels/sasview_model.py
raa44a6a r2773c66 543 543 # pylint: disable=unpacking-non-sequence 544 544 q, phi = x 545 return self.calculate_Iq([q*math.cos(phi)], [q*math.sin(phi)])[0] 546 else: 547 return self.calculate_Iq([x])[0] 545 result, _ = self.calculate_Iq([q*math.cos(phi)], [q*math.sin(phi)]) 546 return result[0] 547 else: 548 result, _ = self.calculate_Iq([x]) 549 return result[0] 548 550 549 551 … … 560 562 """ 561 563 if isinstance(x, (list, tuple)): 562 return self.calculate_Iq([x[0]], [x[1]])[0] 563 else: 564 return self.calculate_Iq([x])[0] 564 result, _ = self.calculate_Iq([x[0]], [x[1]]) 565 return result[0] 566 else: 567 result, _ = self.calculate_Iq([x]) 568 return result[0] 565 569 566 570 def evalDistribution(self, qdist): … … 596 600 # Check whether we have a list of ndarrays [qx,qy] 597 601 qx, qy = qdist 598 return self.calculate_Iq(qx, qy) 602 result, _ = self.calculate_Iq(qx, qy) 603 return result 599 604 600 605 elif isinstance(qdist, np.ndarray): 601 606 # We have a simple 1D distribution of q-values 602 return self.calculate_Iq(qdist) 607 result, _ = self.calculate_Iq(qdist) 608 return result 603 609 604 610 else: … … 640 646 if composition and composition[0] == 'product': # only P*S for now 641 647 with calculation_lock: 642 self._calculate_Iq(qx) 643 # for compatibility with sasview 4.3 644 results = self._intermediate_results() 645 return results["P(Q)"], results["S(Q)"] 648 _, lazy_results = self._calculate_Iq(qx) 649 # for compatibility with sasview 4.x 650 results = lazy_results() 651 pq_data = results.get("P(Q)") 652 sq_data = results.get("S(Q)") 653 return pq_data, sq_data 646 654 else: 647 655 return None 648 656 649 def calculate_Iq(self, qx, qy=None): 650 # type: (Sequence[float], Optional[Sequence[float]]) -> np.ndarray 657 def calculate_Iq(self, 658 qx, # type: Sequence[float] 659 qy=None # type: Optional[Sequence[float]] 660 ): 661 # type: (...) -> Tuple[np.ndarray, Callable[[], collections.OrderedDict[str, np.ndarray]]] 651 662 """ 652 663 Calculate Iq for one set of q with the current parameters. … … 656 667 This should NOT be used for fitting since it copies the *q* vectors 657 668 to the card for each evaluation. 669 670 The returned tuple contains the scattering intensity followed by a 671 callable which returns a dictionary of intermediate data from 672 ProductKernel. 658 673 """ 659 674 ## uncomment the following when trying to debug the uncoordinated calls … … 688 703 result = calculator(call_details, values, cutoff=self.cutoff, 689 704 magnetic=is_magnetic) 705 lazy_results = getattr(calculator, 'results', 706 lambda: collections.OrderedDict()) 690 707 #print("result", result) 691 self._intermediate_results = getattr(calculator, 'results', None) 708 692 709 calculator.release() 693 710 #self._model.release() 694 return result 711 712 return result, lazy_results 695 713 696 714 def calculate_ER(self): … … 881 899 q = np.linspace(-0.35, 0.35, 500) 882 900 qx, qy = np.meshgrid(q, q) 883 result = model.calculate_Iq(qx.flatten(), qy.flatten())901 result, _ = model.calculate_Iq(qx.flatten(), qy.flatten()) 884 902 result = result.reshape(qx.shape) 885 903 -
explore/beta/sasfit_compare.py
r7b0abf8 r2a12351b 208 208 F1, F2 = np.zeros_like(q), np.zeros_like(q) 209 209 for k, Rpk in enumerate(Rp_val): 210 print("ellipsoid cycle", k, "of", len(Rp_val)) 210 211 for i, Rei in enumerate(Re_val): 211 212 theory = ellipsoid_theta(q, Rpk, Rei, sld, sld_solvent) … … 343 344 #Sq = Iq/Pq 344 345 #Iq = None#= Sq = None 345 r = I._kernel.results346 return Theory(Q=q, F1=None, F2=None, P=Pq, S=None, I=None, Seff=r[ 1], Ibeta=Iq)346 r = dict(I._kernel.results()) 347 return Theory(Q=q, F1=None, F2=None, P=Pq, S=None, I=None, Seff=r["S_eff(Q)"], Ibeta=Iq) 347 348 348 349 def compare(title, target, actual, fields='F1 F2 P S I Seff Ibeta'): … … 401 402 radius_polar=20, radius_equatorial=400, sld=4, sld_solvent=1, 402 403 background=0, 403 radius_polar_pd= .1, radius_polar_pd_type=pd_type,404 radius_equatorial_pd= .1, radius_equatorial_pd_type=pd_type,404 radius_polar_pd=0.1, radius_polar_pd_type=pd_type, 405 radius_equatorial_pd=0.1, radius_equatorial_pd_type=pd_type, 405 406 volfraction=0.15, 406 407 radius_effective=270.7543927018, 407 408 #radius_effective=12.59921049894873, 408 409 ) 409 target = sasmodels_theory(q, model, beta_mode=1, **pars)410 target = sasmodels_theory(q, model, effective_radius_mode=0, structure_factor_mode=1, **pars) 410 411 actual = ellipsoid_pe(q, norm='sasview', **pars) 411 412 title = " ".join(("sasmodels", model, pd_type)) -
sasmodels/core.py
r71b751d r5399809 363 363 model = load_model("cylinder@hardsphere*sphere") 364 364 actual = [p.name for p in model.info.parameters.kernel_parameters] 365 target = ("sld sld_solvent radius length theta phi volfraction" 366 " beta_mode A_sld A_sld_solvent A_radius").split() 365 target = ("sld sld_solvent radius length theta phi" 366 " radius_effective volfraction structure_factor_mode" 367 " A_sld A_sld_solvent A_radius").split() 367 368 assert target == actual, "%s != %s"%(target, actual) 368 369 -
sasmodels/kernel.py
r2d81cfe r5399809 41 41 dtype = None # type: np.dtype 42 42 43 def __call__(self, call_details, values, cutoff, magnetic):43 def Iq(self, call_details, values, cutoff, magnetic): 44 44 # type: (CallDetails, np.ndarray, np.ndarray, float, bool) -> np.ndarray 45 raise NotImplementedError("need to implement __call__") 45 Pq, Reff = self.Pq_Reff(call_details, values, cutoff, magnetic, effective_radius_type=0) 46 return Pq 47 __call__ = Iq 48 49 def Pq_Reff(self, call_details, values, cutoff, magnetic, effective_radius_type): 50 # type: (CallDetails, np.ndarray, np.ndarray, float, bool, int) -> np.ndarray 51 self._call_kernel(call_details, values, cutoff, magnetic, effective_radius_type) 52 #print("returned",self.q_input.q, self.result) 53 nout = 2 if self.info.have_Fq and self.dim == '1d' else 1 54 total_weight = self.result[nout*self.q_input.nq + 0] 55 if total_weight == 0.: 56 total_weight = 1. 57 weighted_volume = self.result[nout*self.q_input.nq + 1] 58 weighted_radius = self.result[nout*self.q_input.nq + 2] 59 effective_radius = weighted_radius/total_weight 60 # compute I = scale*P + background 61 # = scale*(sum(w*F^2)/sum w)/(sum (w*V)/sum w) + background 62 # = scale/sum (w*V) * sum(w*F^2) + background 63 F2 = self.result[0:nout*self.q_input.nq:nout] 64 scale = values[0]/(weighted_volume if weighted_volume != 0.0 else 1.0) 65 background = values[1] 66 Pq = scale*F2 + background 67 #print("scale",scale,background) 68 return Pq, effective_radius 69 70 def beta(self, call_details, values, cutoff, magnetic, effective_radius_type): 71 # type: (CallDetails, np.ndarray, np.ndarray, float, bool, int) -> np.ndarray 72 if self.dim == '2d': 73 raise NotImplementedError("beta not yet supported for 2D") 74 if not self.info.have_Fq: 75 raise NotImplementedError("beta not yet supported for "+self.info.id) 76 self._call_kernel(call_details, values, cutoff, magnetic, effective_radius_type) 77 total_weight = self.result[2*self.q_input.nq + 0] 78 if total_weight == 0.: 79 total_weight = 1. 80 weighted_volume = self.result[2*self.q_input.nq + 1] 81 weighted_radius = self.result[2*self.q_input.nq + 2] 82 volume_average = weighted_volume/total_weight 83 effective_radius = weighted_radius/total_weight 84 F2 = self.result[0:2*self.q_input.nq:2]/total_weight 85 F1 = self.result[1:2*self.q_input.nq:2]/total_weight 86 return F1, F2, volume_average, effective_radius 46 87 47 88 def release(self): 48 89 # type: () -> None 49 90 pass 91 92 def _call_kernel(self, call_details, values, cutoff, magnetic, effective_radius_type): 93 # type: (CallDetails, np.ndarray, np.ndarray, float, bool, int) -> np.ndarray 94 raise NotImpmentedError() -
sasmodels/kernel_header.c
r108e70e r296c52b 68 68 #define NEED_EXPM1 69 69 #define NEED_TGAMMA 70 #define NEED_CBRT 70 71 // expf missing from windows? 71 72 #define expf exp … … 85 86 # define pown(a,b) pow(a,b) 86 87 #endif // !USE_OPENCL 88 89 #if defined(NEED_CBRT) 90 #define cbrt(_x) pow(_x, 0.33333333333333333333333) 91 #endif 87 92 88 93 #if defined(NEED_EXPM1) -
sasmodels/kernelcl.py
rc036ddb r5399809 481 481 # at this point, so instead using 32, which is good on the set of 482 482 # architectures tested so far. 483 extra_q = 3 # total weight, weighted volume and weighted radius 483 484 if self.is_2d: 484 # Note: 16 rather than 15 because result is 1 longer than input. 485 width = ((self.nq+16)//16)*16 485 width = ((self.nq+15+extra_q)//16)*16 486 486 self.q = np.empty((width, 2), dtype=dtype) 487 487 self.q[:self.nq, 0] = q_vectors[0] 488 488 self.q[:self.nq, 1] = q_vectors[1] 489 489 else: 490 # Note: 32 rather than 31 because result is 1 longer than input. 491 width = ((self.nq+32)//32)*32 490 width = ((self.nq+31+extra_q)//32)*32 492 491 self.q = np.empty(width, dtype=dtype) 493 492 self.q[:self.nq] = q_vectors[0] … … 539 538 self.dim = '2d' if q_input.is_2d else '1d' 540 539 # leave room for f1/f2 results in case we need to compute beta for 1d models 541 n um_returns = 1 if self.dim == '2d' else 2 #542 # plus 1 for the normalization value543 self.result = np.empty( (q_input.nq+1)*num_returns,dtype)540 nout = 2 if self.info.have_Fq and self.dim == '1d' else 1 541 # plus 3 weight, volume, radius 542 self.result = np.empty(q_input.nq*nout + 3, self.dtype) 544 543 545 544 # Inputs and outputs for each kernel call … … 549 548 550 549 self.result_b = cl.Buffer(self.queue.context, mf.READ_WRITE, 551 q_input.global_size[0] * n um_returns* dtype.itemsize)550 q_input.global_size[0] * nout * dtype.itemsize) 552 551 self.q_input = q_input # allocated by GpuInput above 553 552 … … 558 557 else np.float32) # will never get here, so use np.float32 559 558 560 def Iq(self, call_details, values, cutoff, magnetic): 561 # type: (CallDetails, np.ndarray, np.ndarray, float, bool) -> np.ndarray 562 self._call_kernel(call_details, values, cutoff, magnetic) 563 #print("returned",self.q_input.q, self.result) 564 pd_norm = self.result[self.q_input.nq] 565 scale = values[0]/(pd_norm if pd_norm != 0.0 else 1.0) 566 background = values[1] 567 #print("scale",scale,background) 568 return scale*self.result[:self.q_input.nq] + background 569 __call__ = Iq 570 571 def beta(self, call_details, values, cutoff, magnetic): 572 # type: (CallDetails, np.ndarray, np.ndarray, float, bool) -> np.ndarray 573 if self.dim == '2d': 574 raise NotImplementedError("beta not yet supported for 2D") 575 self._call_kernel(call_details, values, cutoff, magnetic) 576 w_norm = self.result[2*self.q_input.nq + 1] 577 pd_norm = self.result[self.q_input.nq] 578 if w_norm == 0.: 579 w_norm = 1. 580 F2 = self.result[:self.q_input.nq]/w_norm 581 F1 = self.result[self.q_input.nq+1:2*self.q_input.nq+1]/w_norm 582 volume_avg = pd_norm/w_norm 583 return F1, F2, volume_avg 584 585 def _call_kernel(self, call_details, values, cutoff, magnetic): 559 def _call_kernel(self, call_details, values, cutoff, magnetic, effective_radius_type): 586 560 # type: (CallDetails, np.ndarray, np.ndarray, float, bool) -> np.ndarray 587 561 context = self.queue.context … … 597 571 details_b, values_b, self.q_input.q_b, self.result_b, 598 572 self.real(cutoff), 573 np.uint32(effective_radius_type), 599 574 ] 600 575 #print("Calling OpenCL") -
sasmodels/kerneldll.py
r2f8cbb9 r6e7ba14 315 315 316 316 # int, int, int, int*, double*, double*, double*, double*, double 317 argtypes = [ct.c_int32]*3 + [ct.c_void_p]*4 + [float_type ]317 argtypes = [ct.c_int32]*3 + [ct.c_void_p]*4 + [float_type, ct.c_int32] 318 318 names = [generate.kernel_name(self.info, variant) 319 319 for variant in ("Iq", "Iqxy", "Imagnetic")] … … 382 382 self.dim = '2d' if q_input.is_2d else '1d' 383 383 # leave room for f1/f2 results in case we need to compute beta for 1d models 384 n um_returns = 1 if self.dim == '2d' else 2 #385 # plus 1 for the normalization value386 self.result = np.empty( (q_input.nq+1)*num_returns, self.dtype)384 nout = 2 if self.info.have_Fq else 1 385 # plus 3 weight, volume, radius 386 self.result = np.empty(q_input.nq*nout + 3, self.dtype) 387 387 self.real = (np.float32 if self.q_input.dtype == generate.F32 388 388 else np.float64 if self.q_input.dtype == generate.F64 389 389 else np.float128) 390 390 391 def Iq(self, call_details, values, cutoff, magnetic): 392 # type: (CallDetails, np.ndarray, np.ndarray, float, bool) -> np.ndarray 393 self._call_kernel(call_details, values, cutoff, magnetic) 394 #print("returned",self.q_input.q, self.result) 395 pd_norm = self.result[self.q_input.nq] 396 scale = values[0]/(pd_norm if pd_norm != 0.0 else 1.0) 397 background = values[1] 398 #print("scale",scale,background) 399 return scale*self.result[:self.q_input.nq] + background 400 __call__ = Iq 401 402 def beta(self, call_details, values, cutoff, magnetic): 403 # type: (CallDetails, np.ndarray, np.ndarray, float, bool) -> np.ndarray 404 if self.dim == '2d': 405 raise NotImplementedError("beta not yet supported for 2D") 406 self._call_kernel(call_details, values, cutoff, magnetic) 407 w_norm = self.result[2*self.q_input.nq + 1] 408 pd_norm = self.result[self.q_input.nq] 409 if w_norm == 0.: 410 w_norm = 1. 411 F2 = self.result[:self.q_input.nq]/w_norm 412 F1 = self.result[self.q_input.nq+1:2*self.q_input.nq+1]/w_norm 413 volume_avg = pd_norm/w_norm 414 return F1, F2, volume_avg 415 416 def _call_kernel(self, call_details, values, cutoff, magnetic): 391 def _call_kernel(self, call_details, values, cutoff, magnetic, effective_radius_type): 392 # type: (CallDetails, np.ndarray, np.ndarray, float, bool, int) -> np.ndarray 417 393 kernel = self.kernel[1 if magnetic else 0] 418 394 args = [ … … 425 401 self.result.ctypes.data, # results 426 402 self.real(cutoff), # cutoff 403 effective_radius_type, # cutoff 427 404 ] 428 405 #print("Calling DLL") -
sasmodels/kernelpy.py
r108e70e r5399809 12 12 13 13 import numpy as np # type: ignore 14 from numpy import pi 15 try: 16 from numpy import cbrt 17 except ImportError: 18 def cbrt(x): return x ** (1.0/3.0) 14 19 15 20 from .generate import F64 … … 158 163 159 164 # Generate a closure which calls the form_volume if it exists. 160 form_volume = model_info.form_volume 161 self._volume = ((lambda: form_volume(*volume_args)) if form_volume else 162 (lambda: 1.0)) 163 164 def __call__(self, call_details, values, cutoff, magnetic): 165 self._volume_args = volume_args 166 volume = model_info.form_volume 167 radius = model_info.effective_radius 168 self._volume = ((lambda: volume(*volume_args)) if volume 169 else (lambda: 1.0)) 170 self._radius = ((lambda mode: radius(mode, *volume_args)) if radius 171 else (lambda mode: cbrt(0.75/pi*volume(*volume_args))) if volume 172 else (lambda mode: 1.0)) 173 174 175 176 def _call_kernel(self, call_details, values, cutoff, magnetic, effective_radius_type): 165 177 # type: (CallDetails, np.ndarray, np.ndarray, float, bool) -> np.ndarray 166 178 if magnetic: … … 168 180 #print("Calling python kernel") 169 181 #call_details.show(values) 170 res = _loops(self._parameter_vector, self._form, self._volume, 171 self.q_input.nq, call_details, values, cutoff) 172 return res 182 radius = ((lambda: 0.0) if effective_radius_type == 0 183 else (lambda: self._radius(effective_radius_type))) 184 self.result = _loops( 185 self._parameter_vector, self._form, self._volume, radius, 186 self.q_input.nq, call_details, values, cutoff) 173 187 174 188 def release(self): … … 183 197 form, # type: Callable[[], np.ndarray] 184 198 form_volume, # type: Callable[[], float] 199 form_radius, # type: Callable[[], float] 185 200 nq, # type: int 186 201 call_details, # type: details.CallDetails 187 202 values, # type: np.ndarray 188 cutoff 203 cutoff, # type: float 189 204 ): 190 205 # type: (...) -> None … … 198 213 # # 199 214 ################################################################ 215 216 # WARNING: Trickery ahead 217 # The parameters[] vector is embedded in the closures for form(), 218 # form_volume() and form_radius(). We set the initial vector from 219 # the values for the model parameters. As we loop through the polydispesity 220 # mesh, we update the components with the polydispersity values before 221 # calling the respective functions. 200 222 n_pars = len(parameters) 201 223 parameters[:] = values[2:n_pars+2] 224 202 225 if call_details.num_active == 0: 203 pd_norm = float(form_volume()) 204 scale = values[0]/(pd_norm if pd_norm != 0.0 else 1.0) 205 background = values[1] 206 return scale*form() + background 207 208 pd_value = values[2+n_pars:2+n_pars + call_details.num_weights] 209 pd_weight = values[2+n_pars + call_details.num_weights:] 210 211 pd_norm = 0.0 212 partial_weight = np.NaN 213 weight = np.NaN 214 215 p0_par = call_details.pd_par[0] 216 p0_length = call_details.pd_length[0] 217 p0_index = p0_length 218 p0_offset = call_details.pd_offset[0] 219 220 pd_par = call_details.pd_par[:call_details.num_active] 221 pd_offset = call_details.pd_offset[:call_details.num_active] 222 pd_stride = call_details.pd_stride[:call_details.num_active] 223 pd_length = call_details.pd_length[:call_details.num_active] 224 225 total = np.zeros(nq, 'd') 226 for loop_index in range(call_details.num_eval): 227 # update polydispersity parameter values 228 if p0_index == p0_length: 229 pd_index = (loop_index//pd_stride)%pd_length 230 parameters[pd_par] = pd_value[pd_offset+pd_index] 231 partial_weight = np.prod(pd_weight[pd_offset+pd_index][1:]) 232 p0_index = loop_index%p0_length 233 234 weight = partial_weight * pd_weight[p0_offset + p0_index] 235 parameters[p0_par] = pd_value[p0_offset + p0_index] 236 p0_index += 1 237 if weight > cutoff: 238 # Call the scattering function 239 # Assume that NaNs are only generated if the parameters are bad; 240 # exclude all q for that NaN. Even better would be to have an 241 # INVALID expression like the C models, but that is too expensive. 242 Iq = np.asarray(form(), 'd') 243 if np.isnan(Iq).any(): 244 continue 245 246 # update value and norm 247 total += weight * Iq 248 pd_norm += weight * form_volume() 249 250 scale = values[0]/(pd_norm if pd_norm != 0.0 else 1.0) 251 background = values[1] 252 return scale*total + background 226 total = form() 227 weight_norm = 1.0 228 weighted_volume = form_volume() 229 weighted_radius = form_radius() 230 231 else: 232 pd_value = values[2+n_pars:2+n_pars + call_details.num_weights] 233 pd_weight = values[2+n_pars + call_details.num_weights:] 234 235 weight_norm = 0.0 236 weighted_volume = 0.0 237 weighted_radius = 0.0 238 partial_weight = np.NaN 239 weight = np.NaN 240 241 p0_par = call_details.pd_par[0] 242 p0_length = call_details.pd_length[0] 243 p0_index = p0_length 244 p0_offset = call_details.pd_offset[0] 245 246 pd_par = call_details.pd_par[:call_details.num_active] 247 pd_offset = call_details.pd_offset[:call_details.num_active] 248 pd_stride = call_details.pd_stride[:call_details.num_active] 249 pd_length = call_details.pd_length[:call_details.num_active] 250 251 total = np.zeros(nq, 'd') 252 for loop_index in range(call_details.num_eval): 253 # update polydispersity parameter values 254 if p0_index == p0_length: 255 pd_index = (loop_index//pd_stride)%pd_length 256 parameters[pd_par] = pd_value[pd_offset+pd_index] 257 partial_weight = np.prod(pd_weight[pd_offset+pd_index][1:]) 258 p0_index = loop_index%p0_length 259 260 weight = partial_weight * pd_weight[p0_offset + p0_index] 261 parameters[p0_par] = pd_value[p0_offset + p0_index] 262 p0_index += 1 263 if weight > cutoff: 264 # Call the scattering function 265 # Assume that NaNs are only generated if the parameters are bad; 266 # exclude all q for that NaN. Even better would be to have an 267 # INVALID expression like the C models, but that is expensive. 268 Iq = np.asarray(form(), 'd') 269 if np.isnan(Iq).any(): 270 continue 271 272 # update value and norm 273 total += weight * Iq 274 weight_norm += weight 275 weighted_volume += weight * form_volume() 276 weighted_radius += weight * form_radius() 277 278 result = np.hstack((total, weight_norm, weighted_volume, weighted_radius)) 279 return result 253 280 254 281 -
sasmodels/models/barbell.c
r71b751d rd277229 62 62 } 63 63 64 static double 65 radius_from_volume(double radius_bell, double radius, double length) 66 { 67 const double vol_barbell = form_volume(radius_bell,radius,length); 68 return cbrt(0.75*vol_barbell/M_PI); 69 } 70 71 static double 72 radius_from_totallength(double radius_bell, double radius, double length) 73 { 74 const double hdist = sqrt(square(radius_bell) - square(radius)); 75 return 0.5*length + hdist + radius_bell; 76 } 77 78 static double 79 effective_radius(int mode, double radius_bell, double radius, double length) 80 { 81 if (mode == 1) { 82 return radius_from_volume(radius_bell, radius , length); 83 } else if (mode == 2) { 84 return radius; 85 } else if (mode == 3) { 86 return 0.5*length; 87 } else { 88 return radius_from_totallength(radius_bell,radius,length); 89 } 90 } 91 64 92 static void 65 93 Fq(double q,double *F1, double *F2, double sld, double solvent_sld, -
sasmodels/models/barbell.py
r71b751d rd277229 117 117 source = ["lib/polevl.c", "lib/sas_J1.c", "lib/gauss76.c", "barbell.c"] 118 118 have_Fq = True 119 effective_radius_type = ["equivalent sphere","radius","half length","half total length"] 119 120 120 121 def random(): -
sasmodels/models/capped_cylinder.c
r71b751d rd277229 84 84 } 85 85 86 static double 87 radius_from_volume(double radius, double radius_cap, double length) 88 { 89 const double vol_cappedcyl = form_volume(radius,radius_cap,length); 90 return cbrt(0.75*vol_cappedcyl/M_PI); 91 } 92 93 static double 94 radius_from_totallength(double radius, double radius_cap, double length) 95 { 96 const double hc = radius_cap - sqrt(radius_cap*radius_cap - radius*radius); 97 return 0.5*length + hc; 98 } 99 100 static double 101 effective_radius(int mode, double radius, double radius_cap, double length) 102 { 103 if (mode == 1) { 104 return radius_from_volume(radius, radius_cap, length); 105 } else if (mode == 2) { 106 return radius; 107 } else if (mode == 3) { 108 return 0.5*length; 109 } else { 110 return radius_from_totallength(radius, radius_cap,length); 111 } 112 } 113 86 114 static void 87 115 Fq(double q,double *F1, double *F2, double sld, double solvent_sld, -
sasmodels/models/capped_cylinder.py
r71b751d rd277229 137 137 source = ["lib/polevl.c", "lib/sas_J1.c", "lib/gauss76.c", "capped_cylinder.c"] 138 138 have_Fq = True 139 effective_radius_type = ["equivalent sphere","radius","half length","half total length"] 139 140 140 141 def random(): -
sasmodels/models/core_multi_shell.c
r71b751d rd277229 19 19 } 20 20 21 static double 22 outer_radius(double core_radius, double fp_n, double thickness[]) 23 { 24 double r = core_radius; 25 int n = (int)(fp_n+0.5); 26 for (int i=0; i < n; i++) { 27 r += thickness[i]; 28 } 29 return r; 30 } 31 32 static double 33 effective_radius(int mode, double core_radius, double fp_n, double thickness[]) 34 { 35 if (mode == 1) { 36 double r = core_radius; 37 int n = (int)(fp_n+0.5); 38 for (int i=0; i < n; i++) { 39 r += thickness[i]; 40 } 41 return r; 42 //return outer_radius(core_radius,fp_n,thickness); 43 } else { 44 return core_radius; 45 } 46 } 47 21 48 static void 22 49 Fq(double q, double *F1, double *F2, double core_sld, double core_radius, -
sasmodels/models/core_multi_shell.py
r71b751d rd277229 100 100 source = ["lib/sas_3j1x_x.c", "core_multi_shell.c"] 101 101 have_Fq = True 102 effective_radius_type = ["outer radius", "core radius"] 102 103 103 104 def random(): … … 144 145 return np.asarray(z), np.asarray(rho) 145 146 146 def ER(radius, n, thickness):147 """Effective radius"""148 n = int(n[0]+0.5) # n is a control parameter and is not polydisperse149 return np.sum(thickness[:n], axis=0) + radius147 #def ER(radius, n, thickness): 148 # """Effective radius""" 149 # n = int(n[0]+0.5) # n is a control parameter and is not polydisperse 150 # return np.sum(thickness[:n], axis=0) + radius 150 151 151 152 demo = dict(sld_core=6.4, -
sasmodels/models/core_shell_bicelle.c
r71b751d rd277229 34 34 35 35 return t; 36 } 37 38 static double 39 radius_from_volume(double radius, double thick_rim, double thick_face, double length) 40 { 41 const double volume_bicelle = form_volume(radius,thick_rim,thick_face,length); 42 return cbrt(0.75*volume_bicelle/M_PI); 43 } 44 45 static double 46 radius_from_diagonal(double radius, double thick_rim, double thick_face, double length) 47 { 48 const double radius_tot = radius + thick_rim; 49 const double length_tot = length + 2.0*thick_face; 50 return sqrt(radius_tot*radius_tot + 0.25*length_tot*length_tot); 51 } 52 53 static double 54 effective_radius(int mode, double radius, double thick_rim, double thick_face, double length) 55 { 56 if (mode == 1) { 57 return radius_from_volume(radius, thick_rim, thick_face, length); 58 } else if (mode == 2) { 59 return radius + thick_rim; 60 } else if (mode == 3) { 61 return 0.5*length + thick_face; 62 } else { 63 return radius_from_diagonal(radius,thick_rim,thick_face,length); 64 } 36 65 } 37 66 -
sasmodels/models/core_shell_bicelle.py
r71b751d rd277229 155 155 "core_shell_bicelle.c"] 156 156 have_Fq = True 157 effective_radius_type = ["equivalent sphere","outer rim radius", "half outer thickness","half diagonal"] 157 158 158 159 def random(): -
sasmodels/models/core_shell_bicelle_elliptical.c
r71b751d rd277229 8 8 { 9 9 return M_PI*(r_minor+thick_rim)*(r_minor*x_core+thick_rim)*(length+2.0*thick_face); 10 } 11 12 static double 13 radius_from_volume(double r_minor, double x_core, double thick_rim, double thick_face, double length) 14 { 15 const double volume_bicelle = form_volume(r_minor, x_core, thick_rim,thick_face,length); 16 return cbrt(0.75*volume_bicelle/M_PI); 17 } 18 19 static double 20 radius_from_diagonal(double r_minor, double x_core, double thick_rim, double thick_face, double length) 21 { 22 const double radius_max = (x_core < 1.0 ? r_minor : x_core*r_minor); 23 const double radius_max_tot = radius_max + thick_rim; 24 const double length_tot = length + 2.0*thick_face; 25 return sqrt(radius_max_tot*radius_max_tot + 0.25*length_tot*length_tot); 26 } 27 28 static double 29 effective_radius(int mode, double r_minor, double x_core, double thick_rim, double thick_face, double length) 30 { 31 if (mode == 1) { 32 return radius_from_volume(r_minor, x_core, thick_rim, thick_face, length); 33 } else if (mode == 2) { 34 return 0.5*r_minor*(1.0 + x_core) + thick_rim; 35 } else if (mode == 3) { 36 return (x_core < 1.0 ? x_core*r_minor+thick_rim : r_minor+thick_rim); 37 } else if (mode == 4) { 38 return (x_core > 1.0 ? x_core*r_minor+thick_rim : r_minor+thick_rim); 39 } else if (mode ==5) { 40 return 0.5*length + thick_face; 41 } else { 42 return radius_from_diagonal(r_minor,x_core,thick_rim,thick_face,length); 43 } 10 44 } 11 45 -
sasmodels/models/core_shell_bicelle_elliptical.py
r71b751d rd277229 147 147 "core_shell_bicelle_elliptical.c"] 148 148 have_Fq = True 149 effective_radius_type = ["equivalent sphere","outer rim average radius","outer rim min radius", 150 "outer max radius", "half outer thickness","half diagonal"] 149 151 150 152 def random(): -
sasmodels/models/core_shell_bicelle_elliptical_belt_rough.c
r71b751d rd277229 9 9 return M_PI*( (r_minor + thick_rim)*(r_minor*x_core + thick_rim)* length + 10 10 square(r_minor)*x_core*2.0*thick_face ); 11 } 12 13 static double 14 radius_from_volume(double r_minor, double x_core, double thick_rim, double thick_face, double length) 15 { 16 const double volume_bicelle = form_volume(r_minor, x_core, thick_rim,thick_face,length); 17 return cbrt(0.75*volume_bicelle/M_PI); 18 } 19 20 static double 21 radius_from_diagonal(double r_minor, double x_core, double thick_rim, double thick_face, double length) 22 { 23 const double radius_max = (x_core < 1.0 ? r_minor : x_core*r_minor); 24 const double radius_max_tot = radius_max + thick_rim; 25 const double length_tot = length + 2.0*thick_face; 26 return sqrt(radius_max_tot*radius_max_tot + 0.25*length_tot*length_tot); 27 } 28 29 static double 30 effective_radius(int mode, double r_minor, double x_core, double thick_rim, double thick_face, double length) 31 { 32 if (mode == 1) { 33 return radius_from_volume(r_minor, x_core, thick_rim, thick_face, length); 34 } else if (mode == 2) { 35 return 0.5*r_minor*(1.0 + x_core) + thick_rim; 36 } else if (mode == 3) { 37 return (x_core < 1.0 ? x_core*r_minor+thick_rim : r_minor+thick_rim); 38 } else if (mode == 4) { 39 return (x_core > 1.0 ? x_core*r_minor+thick_rim : r_minor+thick_rim); 40 } else if (mode ==5) { 41 return 0.5*length + thick_face; 42 } else { 43 return radius_from_diagonal(r_minor,x_core,thick_rim,thick_face,length); 44 } 11 45 } 12 46 -
sasmodels/models/core_shell_bicelle_elliptical_belt_rough.py
r71b751d rd277229 160 160 "core_shell_bicelle_elliptical_belt_rough.c"] 161 161 have_Fq = True 162 effective_radius_type = ["equivalent sphere","outer rim average radius","outer rim min radius", 163 "outer max radius", "half outer thickness","half diagonal"] 162 164 163 165 demo = dict(scale=1, background=0, -
sasmodels/models/core_shell_cylinder.c
r71b751d rd277229 11 11 { 12 12 return M_PI*square(radius+thickness)*(length+2.0*thickness); 13 } 14 15 static double 16 radius_from_volume(double radius, double thickness, double length) 17 { 18 const double volume_outer_cyl = form_volume(radius,thickness,length); 19 return cbrt(0.75*volume_outer_cyl/M_PI); 20 } 21 22 static double 23 radius_from_diagonal(double radius, double thickness, double length) 24 { 25 const double radius_outer = radius + thickness; 26 const double length_outer = length + thickness; 27 return sqrt(radius_outer*radius_outer + 0.25*length_outer*length_outer); 28 } 29 30 static double 31 effective_radius(int mode, double radius, double thickness, double length) 32 { 33 if (mode == 1) { 34 return radius_from_volume(radius, thickness, length); 35 } else if (mode == 2) { 36 return radius + thickness; 37 } else if (mode == 3) { 38 return 0.5*length + thickness; 39 } else if (mode == 4) { 40 return (radius < 0.5*length ? radius + thickness : 0.5*length + thickness); 41 } else if (mode == 5) { 42 return (radius > 0.5*length ? radius + thickness : 0.5*length + thickness); 43 } else { 44 return radius_from_diagonal(radius,thickness,length); 45 } 13 46 } 14 47 -
sasmodels/models/core_shell_cylinder.py
r71b751d rd277229 126 126 source = ["lib/polevl.c", "lib/sas_J1.c", "lib/gauss76.c", "core_shell_cylinder.c"] 127 127 have_Fq = True 128 effective_radius_type = ["equivalent sphere","outer radius","half outer length","half min outer dimension", 129 "half max outer dimension","half outer diagonal"] 128 130 129 def ER(radius, thickness, length):130 """131 Returns the effective radius used in the S*P calculation132 """133 radius = radius + thickness134 length = length + 2 * thickness135 ddd = 0.75 * radius * (2 * radius * length + (length + radius) * (length + pi * radius))136 return 0.5 * (ddd) ** (1. / 3.)131 #def ER(radius, thickness, length): 132 # """ 133 # Returns the effective radius used in the S*P calculation 134 # """ 135 # radius = radius + thickness 136 # length = length + 2 * thickness 137 # ddd = 0.75 * radius * (2 * radius * length + (length + radius) * (length + pi * radius)) 138 # return 0.5 * (ddd) ** (1. / 3.) 137 139 138 140 def VR(radius, thickness, length): -
sasmodels/models/core_shell_ellipsoid.c
r71b751d r3c60146 36 36 double vol = M_4PI_3*equat_shell*equat_shell*polar_shell; 37 37 return vol; 38 } 39 40 static double 41 radius_from_volume(double radius_equat_core, double x_core, double thick_shell, double x_polar_shell) 42 { 43 const double volume_ellipsoid = form_volume(radius_equat_core, x_core, thick_shell, x_polar_shell); 44 return cbrt(0.75*volume_ellipsoid/M_PI); 45 } 46 47 static double 48 radius_from_curvature(double radius_equat_core, double x_core, double thick_shell, double x_polar_shell) 49 { 50 // Trivial cases 51 if (1.0 == x_core && 1.0 == x_polar_shell) return radius_equat_core + thick_shell; 52 if ((radius_equat_core + thick_shell)*(radius_equat_core*x_core + thick_shell*x_polar_shell) == 0.) return 0.; 53 54 // see equation (26) in A.Isihara, J.Chem.Phys. 18(1950)1446-1449 55 const double radius_equat_tot = radius_equat_core + thick_shell; 56 const double radius_polar_tot = radius_equat_core*x_core + thick_shell*x_polar_shell; 57 const double ratio = (radius_polar_tot < radius_equat_tot 58 ? radius_polar_tot / radius_equat_tot 59 : radius_equat_tot / radius_polar_tot); 60 const double e1 = sqrt(1.0 - ratio*ratio); 61 const double b1 = 1.0 + asin(e1) / (e1 * ratio); 62 const double bL = (1.0 + e1) / (1.0 - e1); 63 const double b2 = 1.0 + 0.5 * ratio * ratio / e1 * log(bL); 64 const double delta = 0.75 * b1 * b2; 65 const double ddd = 2.0 * (delta + 1.0) * radius_polar_tot * radius_equat_tot * radius_equat_tot; 66 return 0.5 * cbrt(ddd); 67 } 68 69 static double 70 effective_radius(int mode, double radius_equat_core, double x_core, double thick_shell, double x_polar_shell) 71 { 72 const double radius_equat_tot = radius_equat_core + thick_shell; 73 const double radius_polar_tot = radius_equat_core*x_core + thick_shell*x_polar_shell; 74 75 if (mode == 1) { 76 return radius_from_volume(radius_equat_core, x_core, thick_shell, x_polar_shell); 77 } else if (mode == 2) { 78 return radius_from_curvature(radius_equat_core, x_core, thick_shell, x_polar_shell); 79 } else if (mode == 3) { 80 return (radius_polar_tot < radius_equat_tot ? radius_polar_tot : radius_equat_tot); 81 } else { 82 return (radius_polar_tot > radius_equat_tot ? radius_polar_tot : radius_equat_tot); 83 } 38 84 } 39 85 -
sasmodels/models/core_shell_ellipsoid.py
r71b751d rd277229 146 146 source = ["lib/sas_3j1x_x.c", "lib/gauss76.c", "core_shell_ellipsoid.c"] 147 147 have_Fq = True 148 149 def ER(radius_equat_core, x_core, thick_shell, x_polar_shell): 150 """ 151 Returns the effective radius used in the S*P calculation 152 """ 153 from .ellipsoid import ER as ellipsoid_ER 154 polar_outer = radius_equat_core*x_core + thick_shell*x_polar_shell 155 equat_outer = radius_equat_core + thick_shell 156 return ellipsoid_ER(polar_outer, equat_outer) 148 effective_radius_type = ["equivalent sphere","average outer curvature", "min outer radius", "max outer radius"] 149 150 #def ER(radius_equat_core, x_core, thick_shell, x_polar_shell): 151 # """ 152 # Returns the effective radius used in the S*P calculation 153 # """ 154 # from .ellipsoid import ER as ellipsoid_ER 155 # polar_outer = radius_equat_core*x_core + thick_shell*x_polar_shell 156 # equat_outer = radius_equat_core + thick_shell 157 # return ellipsoid_ER(polar_outer, equat_outer) 157 158 158 159 def random(): -
sasmodels/models/core_shell_parallelepiped.c
r71b751d rd277229 25 25 2.0 * length_a * length_b * thick_rim_c; 26 26 #endif 27 } 28 29 static double 30 radius_from_volume(double length_a, double length_b, double length_c, 31 double thick_rim_a, double thick_rim_b, double thick_rim_c) 32 { 33 const double volume_paral = form_volume(length_a, length_b, length_c, thick_rim_a, thick_rim_b, thick_rim_c); 34 return cbrt(0.75*volume_paral/M_PI); 35 } 36 37 static double 38 radius_from_crosssection(double length_a, double length_b, double thick_rim_a, double thick_rim_b) 39 { 40 const double area_xsec_paral = length_a*length_b + 2.0*thick_rim_a*length_b + 2.0*thick_rim_b*length_a; 41 return sqrt(area_xsec_paral/M_PI); 42 } 43 44 static double 45 effective_radius(int mode, double length_a, double length_b, double length_c, 46 double thick_rim_a, double thick_rim_b, double thick_rim_c) 47 { 48 if (mode == 1) { 49 return radius_from_volume(length_a, length_b, length_c, thick_rim_a, thick_rim_b, thick_rim_c); 50 } else if (mode == 2) { 51 return 0.5 * (length_a + thick_rim_a); 52 } else if (mode == 3) { 53 return 0.5 * (length_b + thick_rim_b); 54 } else if (mode == 4) { 55 return 0.5 * (length_c + thick_rim_c); 56 } else if (mode == 5) { 57 return radius_from_crosssection(length_a, length_b, thick_rim_a, thick_rim_b); 58 } else if (mode == 6) { 59 return 0.5*sqrt(square(length_a+thick_rim_a) + square(length_b+thick_rim_b)); 60 } else { 61 return 0.5*sqrt(square(length_a+thick_rim_a) + square(length_b+thick_rim_b) + square(length_c+thick_rim_c)); 62 } 27 63 } 28 64 -
sasmodels/models/core_shell_parallelepiped.py
r71b751d rd277229 227 227 source = ["lib/gauss76.c", "core_shell_parallelepiped.c"] 228 228 have_Fq = True 229 230 231 def ER(length_a, length_b, length_c, thick_rim_a, thick_rim_b, thick_rim_c): 232 """ 233 Return equivalent radius (ER) 234 """ 235 from .parallelepiped import ER as ER_p 236 237 a = length_a + 2*thick_rim_a 238 b = length_b + 2*thick_rim_b 239 c = length_c + 2*thick_rim_c 240 return ER_p(a, b, c) 229 effective_radius_type = ["equivalent sphere","half outer length_a", "half outer length_b", "half outer length_c", 230 "equivalent circular cross-section","half outer ab diagonal","half outer diagonal"] 231 232 #def ER(length_a, length_b, length_c, thick_rim_a, thick_rim_b, thick_rim_c): 233 # """ 234 # Return equivalent radius (ER) 235 # """ 236 # from .parallelepiped import ER as ER_p 237 # 238 # a = length_a + 2*thick_rim_a 239 # b = length_b + 2*thick_rim_b 240 # c = length_c + 2*thick_rim_c 241 # return ER_p(a, b, c) 241 242 242 243 # VR defaults to 1.0 -
sasmodels/models/core_shell_sphere.c
r71b751d rd277229 3 3 { 4 4 return M_4PI_3 * cube(radius + thickness); 5 } 6 7 static double 8 effective_radius(int mode, double radius, double thickness) 9 { 10 if (mode == 1) { 11 return radius + thickness; 12 } else { 13 return radius; 14 } 5 15 } 6 16 -
sasmodels/models/core_shell_sphere.py
r71b751d rd277229 78 78 source = ["lib/sas_3j1x_x.c", "lib/core_shell.c", "core_shell_sphere.c"] 79 79 have_Fq = True 80 effective_radius_type = ["outer radius", "core radius"] 80 81 81 82 demo = dict(scale=1, background=0, radius=60, thickness=10, 82 83 sld_core=1.0, sld_shell=2.0, sld_solvent=0.0) 83 84 84 def ER(radius, thickness):85 """86 Equivalent radius87 @param radius: core radius88 @param thickness: shell thickness89 """90 return radius + thickness85 #def ER(radius, thickness): 86 # """ 87 # Equivalent radius 88 # @param radius: core radius 89 # @param thickness: shell thickness 90 # """ 91 # return radius + thickness 91 92 92 93 def VR(radius, thickness): -
sasmodels/models/cylinder.c
r71b751d rd277229 11 11 { 12 12 return sas_2J1x_x(qab*radius) * sas_sinx_x(qc*0.5*length); 13 } 14 15 static double 16 radius_from_volume(double radius, double length) 17 { 18 return cbrt(0.75*radius*radius*length); 19 } 20 21 static double 22 radius_from_diagonal(double radius, double length) 23 { 24 return sqrt(radius*radius + 0.25*length*length); 25 } 26 27 static double 28 effective_radius(int mode, double radius, double length) 29 { 30 if (mode == 1) { 31 return radius_from_volume(radius, length); 32 } else if (mode == 2) { 33 return radius; 34 } else if (mode == 3) { 35 return 0.5*length; 36 } else if (mode == 4) { 37 return (radius < 0.5*length ? radius : 0.5*length); 38 } else if (mode == 5) { 39 return (radius > 0.5*length ? radius : 0.5*length); 40 } else { 41 return radius_from_diagonal(radius,length); 42 } 13 43 } 14 44 -
sasmodels/models/cylinder.py
r71b751d rd277229 139 139 source = ["lib/polevl.c", "lib/sas_J1.c", "lib/gauss76.c", "cylinder.c"] 140 140 have_Fq = True 141 effective_radius_type = ["equivalent sphere","radius","half length","half min dimension","half max dimension","half diagonal"] 141 142 142 def ER(radius, length):143 """144 Return equivalent radius (ER)145 """146 ddd = 0.75 * radius * (2 * radius * length + (length + radius) * (length + pi * radius))147 return 0.5 * (ddd) ** (1. / 3.)143 #def ER(radius, length): 144 # """ 145 # Return equivalent radius (ER) 146 # """ 147 # ddd = 0.75 * radius * (2 * radius * length + (length + radius) * (length + pi * radius)) 148 # return 0.5 * (ddd) ** (1. / 3.) 148 149 149 150 def random(): -
sasmodels/models/ellipsoid.c
r71b751d rd277229 4 4 return M_4PI_3*radius_polar*radius_equatorial*radius_equatorial; 5 5 } 6 7 static double 8 radius_from_volume(double radius_polar, double radius_equatorial) 9 { 10 return cbrt(radius_polar*radius_equatorial*radius_equatorial); 11 } 12 13 static double 14 radius_from_curvature(double radius_polar, double radius_equatorial) 15 { 16 // Trivial cases 17 if (radius_polar == radius_equatorial) return radius_polar; 18 if (radius_polar * radius_equatorial == 0.) return 0.; 19 20 // see equation (26) in A.Isihara, J.Chem.Phys. 18(1950)1446-1449 21 const double ratio = (radius_polar < radius_equatorial 22 ? radius_polar / radius_equatorial 23 : radius_equatorial / radius_polar); 24 const double e1 = sqrt(1.0 - ratio*ratio); 25 const double b1 = 1.0 + asin(e1) / (e1 * ratio); 26 const double bL = (1.0 + e1) / (1.0 - e1); 27 const double b2 = 1.0 + 0.5 * ratio * ratio / e1 * log(bL); 28 const double delta = 0.75 * b1 * b2; 29 const double ddd = 2.0 * (delta + 1.0) * radius_polar * radius_equatorial * radius_equatorial; 30 return 0.5 * cbrt(ddd); 31 } 32 33 static double 34 effective_radius(int mode, double radius_polar, double radius_equatorial) 35 { 36 if (mode == 1) { 37 return radius_from_volume(radius_polar, radius_equatorial); 38 } else if (mode == 2) { 39 return radius_from_curvature(radius_polar, radius_equatorial); 40 } else if (mode == 3) { 41 return (radius_polar < radius_equatorial ? radius_polar : radius_equatorial); 42 } else { 43 return (radius_polar > radius_equatorial ? radius_polar : radius_equatorial); 44 } 45 } 46 6 47 7 48 static void -
sasmodels/models/elliptical_cylinder.c
r71b751d rd277229 3 3 { 4 4 return M_PI * radius_minor * radius_minor * r_ratio * length; 5 } 6 7 static double 8 radius_from_volume(double radius_minor, double r_ratio, double length) 9 { 10 const double volume_ellcyl = form_volume(radius_minor,r_ratio,length); 11 return cbrt(0.75*volume_ellcyl/M_PI); 12 } 13 14 static double 15 radius_from_min_dimension(double radius_minor, double r_ratio, double length) 16 { 17 const double rad_min = (r_ratio > 1.0 ? radius_minor : r_ratio*radius_minor); 18 return (rad_min < length ? rad_min : length); 19 } 20 21 static double 22 radius_from_max_dimension(double radius_minor, double r_ratio, double length) 23 { 24 const double rad_max = (r_ratio < 1.0 ? radius_minor : r_ratio*radius_minor); 25 return (rad_max > length ? rad_max : length); 26 } 27 28 static double 29 radius_from_diagonal(double radius_minor, double r_ratio, double length) 30 { 31 const double radius_max = (r_ratio > 1.0 ? radius_minor*r_ratio : radius_minor); 32 return sqrt(radius_max*radius_max + 0.25*length*length); 33 } 34 35 static double 36 effective_radius(int mode, double radius_minor, double r_ratio, double length) 37 { 38 if (mode == 1) { 39 return radius_from_volume(radius_minor, r_ratio, length); 40 } else if (mode == 2) { 41 return 0.5*radius_minor*(1.0 + r_ratio); 42 } else if (mode == 3) { 43 return (r_ratio > 1.0 ? radius_minor : r_ratio*radius_minor); 44 } else if (mode == 4) { 45 return (r_ratio < 1.0 ? radius_minor : r_ratio*radius_minor); 46 } else if (mode == 5) { 47 return sqrt(radius_minor*radius_minor*r_ratio); 48 } else if (mode == 6) { 49 return 0.5*length; 50 } else if (mode == 7) { 51 return radius_from_min_dimension(radius_minor,r_ratio,length); 52 } else if (mode == 8) { 53 return radius_from_max_dimension(radius_minor,r_ratio,length); 54 } else { 55 return radius_from_diagonal(radius_minor,r_ratio,length); 56 } 5 57 } 6 58 -
sasmodels/models/elliptical_cylinder.py
r71b751d rd277229 123 123 source = ["lib/polevl.c", "lib/sas_J1.c", "lib/gauss76.c", "elliptical_cylinder.c"] 124 124 have_Fq = True 125 effective_radius_type = ["equivalent sphere","average radius","min radius","max radius", 126 "equivalent circular cross-section","half length","half min dimension","half max dimension","half diagonal"] 125 127 126 128 demo = dict(scale=1, background=0, radius_minor=100, axis_ratio=1.5, length=400.0, … … 128 130 theta_pd=10, phi_pd=2, psi_pd=3) 129 131 130 def ER(radius_minor, axis_ratio, length):131 """132 Equivalent radius133 @param radius_minor: Ellipse minor radius134 @param axis_ratio: Ratio of major radius over minor radius135 @param length: Length of the cylinder136 """137 radius = sqrt(radius_minor * radius_minor * axis_ratio)138 ddd = 0.75 * radius * (2 * radius * length139 + (length + radius) * (length + pi * radius))140 return 0.5 * (ddd) ** (1. / 3.)132 #def ER(radius_minor, axis_ratio, length): 133 # """ 134 # Equivalent radius 135 # @param radius_minor: Ellipse minor radius 136 # @param axis_ratio: Ratio of major radius over minor radius 137 # @param length: Length of the cylinder 138 # """ 139 # radius = sqrt(radius_minor * radius_minor * axis_ratio) 140 # ddd = 0.75 * radius * (2 * radius * length 141 # + (length + radius) * (length + pi * radius)) 142 # return 0.5 * (ddd) ** (1. / 3.) 141 143 142 144 def random(): -
sasmodels/models/fuzzy_sphere.py
r71b751d rd277229 78 78 ["sld_solvent", "1e-6/Ang^2", 3, [-inf, inf], "sld", "Solvent scattering length density"], 79 79 ["radius", "Ang", 60, [0, inf], "volume", "Sphere radius"], 80 ["fuzziness", "Ang", 10, [0, inf], " ", "std deviation of Gaussian convolution for interface (must be << radius)"],80 ["fuzziness", "Ang", 10, [0, inf], "volume", "std deviation of Gaussian convolution for interface (must be << radius)"], 81 81 ] 82 82 # pylint: enable=bad-whitespace,line-too-long 83 83 84 source = ["lib/sas_3j1x_x.c" ]84 source = ["lib/sas_3j1x_x.c","fuzzy_sphere.c"] 85 85 have_Fq = True 86 effective_radius_type = ["radius","radius + fuzziness"] 86 87 87 c_code = """ 88 static double form_volume(double radius) 89 { 90 return M_4PI_3*cube(radius); 91 } 92 93 static void Fq(double q, double *F1, double *F2, double sld, double sld_solvent, 94 double radius, double fuzziness) 95 { 96 const double qr = q*radius; 97 const double bes = sas_3j1x_x(qr); 98 const double qf = exp(-0.5*square(q*fuzziness)); 99 const double contrast = (sld - sld_solvent); 100 const double form = contrast * form_volume(radius) * bes * qf; 101 *F1 = 1.0e-2*form; 102 *F2 = 1.0e-4*form*form; 103 } 104 """ 105 106 def ER(radius): 107 """ 108 Return radius 109 """ 110 return radius 88 #def ER(radius): 89 # """ 90 # Return radius 91 # """ 92 # return radius 111 93 112 94 # VR defaults to 1.0 -
sasmodels/models/hollow_cylinder.c
r71b751d rd277229 22 22 } 23 23 24 static double 25 radius_from_volume(double radius, double thickness, double length) 26 { 27 const double volume_outer_cyl = M_PI*square(radius + thickness)*length; 28 return cbrt(0.75*volume_outer_cyl/M_PI); 29 } 30 31 static double 32 radius_from_diagonal(double radius, double thickness, double length) 33 { 34 return sqrt(square(radius + thickness) + 0.25*square(length)); 35 } 36 37 static double 38 effective_radius(int mode, double radius, double thickness, double length) 39 { 40 if (mode == 1) { 41 return radius_from_volume(radius, thickness, length); 42 } else if (mode == 2) { 43 return radius + thickness; 44 } else if (mode == 3) { 45 return 0.5*length; 46 } else if (mode == 4) { 47 return (radius + thickness < 0.5*length ? radius + thickness : 0.5*length); 48 } else if (mode == 5) { 49 return (radius + thickness > 0.5*length ? radius + thickness : 0.5*length); 50 } else { 51 return radius_from_diagonal(radius,thickness,length); 52 } 53 } 24 54 25 55 static void -
sasmodels/models/hollow_cylinder.py
r71b751d rd277229 90 90 source = ["lib/polevl.c", "lib/sas_J1.c", "lib/gauss76.c", "hollow_cylinder.c"] 91 91 have_Fq = True 92 effective_radius_type = ["equivalent sphere","outer radius","half length", 93 "half outer min dimension","half outer max dimension","half outer diagonal"] 92 94 93 95 # pylint: disable=W0613 94 def ER(radius, thickness, length):95 """96 :param radius: Cylinder core radius97 :param thickness: Cylinder wall thickness98 :param length: Cylinder length99 :return: Effective radius100 """101 router = radius + thickness102 if router == 0 or length == 0:103 return 0.0104 len1 = router105 len2 = length/2.0106 term1 = len1*len1*2.0*len2/2.0107 term2 = 1.0 + (len2/len1)*(1.0 + 1/len2/2.0)*(1.0 + pi*len1/len2/2.0)108 ddd = 3.0*term1*term2109 diam = pow(ddd, (1.0/3.0))110 return diam96 #def ER(radius, thickness, length): 97 # """ 98 # :param radius: Cylinder core radius 99 # :param thickness: Cylinder wall thickness 100 # :param length: Cylinder length 101 # :return: Effective radius 102 # """ 103 # router = radius + thickness 104 # if router == 0 or length == 0: 105 # return 0.0 106 # len1 = router 107 # len2 = length/2.0 108 # term1 = len1*len1*2.0*len2/2.0 109 # term2 = 1.0 + (len2/len1)*(1.0 + 1/len2/2.0)*(1.0 + pi*len1/len2/2.0) 110 # ddd = 3.0*term1*term2 111 # diam = pow(ddd, (1.0/3.0)) 112 # return diam 111 113 112 114 def VR(radius, thickness, length): -
sasmodels/models/hollow_rectangular_prism.c
r71b751d rd277229 11 11 double vol_shell = vol_total - vol_core; 12 12 return vol_shell; 13 } 14 15 static double 16 effective_radius(int mode, double length_a, double b2a_ratio, double c2a_ratio, double thickness) 17 { 18 if (mode == 1) { 19 return cbrt(0.75*cube(length_a)*b2a_ratio*c2a_ratio/M_PI); 20 } else if (mode == 2) { 21 return 0.5 * length_a; 22 } else if (mode == 3) { 23 return 0.5 * length_a*b2a_ratio; 24 } else if (mode == 4) { 25 return 0.5 * length_a*c2a_ratio; 26 } else if (mode == 5) { 27 return length_a*sqrt(b2a_ratio/M_PI); 28 } else if (mode == 6) { 29 return 0.5*sqrt(square(length_a) * (1.0 + square(b2a_ratio))); 30 } else { 31 return 0.5*sqrt(square(length_a) * (1.0 + square(b2a_ratio) + square(c2a_ratio))); 32 } 13 33 } 14 34 -
sasmodels/models/hollow_rectangular_prism.py
r71b751d rd277229 143 143 source = ["lib/gauss76.c", "hollow_rectangular_prism.c"] 144 144 have_Fq = True 145 146 def ER(length_a, b2a_ratio, c2a_ratio, thickness): 147 """ 148 Return equivalent radius (ER) 149 thickness parameter not used 150 """ 151 b_side = length_a * b2a_ratio 152 c_side = length_a * c2a_ratio 153 154 # surface average radius (rough approximation) 155 surf_rad = sqrt(length_a * b_side / pi) 156 157 ddd = 0.75 * surf_rad * (2 * surf_rad * c_side + (c_side + surf_rad) * (c_side + pi * surf_rad)) 158 return 0.5 * (ddd) ** (1. / 3.) 145 effective_radius_type = ["equivalent sphere","half length_a", "half length_b", "half length_c", 146 "equivalent outer circular cross-section","half ab diagonal","half diagonal"] 147 148 #def ER(length_a, b2a_ratio, c2a_ratio, thickness): 149 # """ 150 # Return equivalent radius (ER) 151 # thickness parameter not used 152 # """ 153 # b_side = length_a * b2a_ratio 154 # c_side = length_a * c2a_ratio 155 # 156 # # surface average radius (rough approximation) 157 # surf_rad = sqrt(length_a * b_side / pi) 158 # 159 # ddd = 0.75 * surf_rad * (2 * surf_rad * c_side + (c_side + surf_rad) * (c_side + pi * surf_rad)) 160 # return 0.5 * (ddd) ** (1. / 3.) 159 161 160 162 def VR(length_a, b2a_ratio, c2a_ratio, thickness): -
sasmodels/models/hollow_rectangular_prism_thin_walls.c
r71b751d rd277229 6 6 double vol_shell = 2.0 * (length_a*length_b + length_a*length_c + length_b*length_c); 7 7 return vol_shell; 8 } 9 10 static double 11 effective_radius(int mode, double length_a, double b2a_ratio, double c2a_ratio) 12 { 13 if (mode == 1) { 14 return cbrt(0.75*cube(length_a)*b2a_ratio*c2a_ratio/M_PI); 15 } else if (mode == 2) { 16 return 0.5 * length_a; 17 } else if (mode == 3) { 18 return 0.5 * length_a*b2a_ratio; 19 } else if (mode == 4) { 20 return 0.5 * length_a*c2a_ratio; 21 } else if (mode == 5) { 22 return length_a*sqrt(b2a_ratio/M_PI); 23 } else if (mode == 6) { 24 return 0.5*sqrt(square(length_a) * (1.0 + square(b2a_ratio))); 25 } else { 26 return 0.5*sqrt(square(length_a) * (1.0 + square(b2a_ratio) + square(c2a_ratio))); 27 } 8 28 } 9 29 -
sasmodels/models/hollow_rectangular_prism_thin_walls.py
r71b751d rd277229 103 103 source = ["lib/gauss76.c", "hollow_rectangular_prism_thin_walls.c"] 104 104 have_Fq = True 105 effective_radius_type = ["equivalent sphere","half length_a", "half length_b", "half length_c", 106 "equivalent outer circular cross-section","half ab diagonal","half diagonal"] 105 107 106 def ER(length_a, b2a_ratio, c2a_ratio):107 """108 Return equivalent radius (ER)109 """110 b_side = length_a * b2a_ratio111 c_side = length_a * c2a_ratio112 113 # surface average radius (rough approximation)114 surf_rad = sqrt(length_a * b_side / pi)115 116 ddd = 0.75 * surf_rad * (2 * surf_rad * c_side + (c_side + surf_rad) * (c_side + pi * surf_rad))117 return 0.5 * (ddd) ** (1. / 3.)108 #def ER(length_a, b2a_ratio, c2a_ratio): 109 # """ 110 # Return equivalent radius (ER) 111 # """ 112 # b_side = length_a * b2a_ratio 113 # c_side = length_a * c2a_ratio 114 # 115 # # surface average radius (rough approximation) 116 # surf_rad = sqrt(length_a * b_side / pi) 117 # 118 # ddd = 0.75 * surf_rad * (2 * surf_rad * c_side + (c_side + surf_rad) * (c_side + pi * surf_rad)) 119 # return 0.5 * (ddd) ** (1. / 3.) 118 120 119 121 def VR(length_a, b2a_ratio, c2a_ratio): -
sasmodels/models/mono_gauss_coil.py
r2d81cfe rd277229 54 54 55 55 import numpy as np 56 from numpy import inf , exp, errstate56 from numpy import inf 57 57 58 58 name = "mono_gauss_coil" … … 69 69 parameters = [ 70 70 ["i_zero", "1/cm", 70.0, [0.0, inf], "", "Intensity at q=0"], 71 ["rg", "Ang", 75.0, [0.0, inf], " ", "Radius of gyration"],71 ["rg", "Ang", 75.0, [0.0, inf], "volume", "Radius of gyration"], 72 72 ] 73 74 source = ["mono_gauss_coil.c"] 75 have_Fq = False 76 effective_radius_type = ["R_g","2R_g","3R_g","(5/3)^0.5*R_g"] 77 78 73 79 # pylint: enable=bad-whitespace, line-too-long 74 80 75 # NB: Scale and Background are implicit parameters on every model76 def Iq(q, i_zero, rg):77 # pylint: disable = missing-docstring78 z = (q * rg)**279 80 with errstate(invalid='ignore'):81 inten = (i_zero * 2.0) * (exp(-z) + z - 1.0)/z**282 inten[q == 0] = i_zero83 return inten84 Iq.vectorized = True # Iq accepts an array of q values81 ## NB: Scale and Background are implicit parameters on every model 82 #def Iq(q, i_zero, rg): 83 # # pylint: disable = missing-docstring 84 # z = (q * rg)**2 85 # 86 # with errstate(invalid='ignore'): 87 # inten = (i_zero * 2.0) * (exp(-z) + z - 1.0)/z**2 88 # inten[q == 0] = i_zero 89 # return inten 90 #Iq.vectorized = True # Iq accepts an array of q values 85 91 86 92 def random(): -
sasmodels/models/multilayer_vesicle.c
r71b751d rd277229 47 47 } 48 48 49 static double 50 effective_radius(int mode, double radius, double thick_shell, double thick_solvent, double fp_n_shells) 51 { 52 return radius + fp_n_shells*thick_shell + (fp_n_shells - 1.0)*thick_solvent; 53 } 54 49 55 static void 50 56 Fq(double q, -
sasmodels/models/multilayer_vesicle.py
r71b751d rd277229 146 146 source = ["lib/sas_3j1x_x.c", "multilayer_vesicle.c"] 147 147 have_Fq = True 148 effective_radius_type = ["outer radius"] 148 149 149 def ER(radius, thick_shell, thick_solvent, n_shells):150 n_shells = int(n_shells+0.5)151 return radius + n_shells * (thick_shell + thick_solvent) - thick_solvent150 #def ER(radius, thick_shell, thick_solvent, n_shells): 151 # n_shells = int(n_shells+0.5) 152 # return radius + n_shells * (thick_shell + thick_solvent) - thick_solvent 152 153 153 154 def random(): -
sasmodels/models/onion.c
r71b751d rd277229 40 40 } 41 41 42 static double 43 effective_radius(int mode, double radius_core, double n_shells, double thickness[]) 44 { 45 int n = (int)(n_shells+0.5); 46 double r = radius_core; 47 for (int i=0; i < n; i++) { 48 r += thickness[i]; 49 } 50 return r; 51 } 52 42 53 static void 43 54 Fq(double q, double *F1, double *F2, double sld_core, double radius_core, double sld_solvent, -
sasmodels/models/onion.py
r71b751d rd277229 316 316 single = False 317 317 have_Fq = True 318 effective_radius_type = ["outer radius"] 318 319 319 320 profile_axes = ['Radius (A)', 'SLD (1e-6/A^2)'] … … 366 367 return np.asarray(z), np.asarray(rho) 367 368 368 def ER(radius_core, n_shells, thickness):369 """Effective radius"""370 n = int(n_shells[0]+0.5)371 return np.sum(thickness[:n], axis=0) + radius_core369 #def ER(radius_core, n_shells, thickness): 370 # """Effective radius""" 371 # n = int(n_shells[0]+0.5) 372 # return np.sum(thickness[:n], axis=0) + radius_core 372 373 373 374 demo = { -
sasmodels/models/parallelepiped.c
r71b751d rd277229 3 3 { 4 4 return length_a * length_b * length_c; 5 } 6 7 static double 8 effective_radius(int mode, double length_a, double length_b, double length_c) 9 { 10 if (mode == 1) { 11 return cbrt(0.75*length_a*length_b*length_c/M_PI); 12 } else if (mode == 2) { 13 return 0.5 * length_a; 14 } else if (mode == 3) { 15 return 0.5 * length_b; 16 } else if (mode == 4) { 17 return 0.5 * length_c; 18 } else if (mode == 5) { 19 return sqrt(length_a*length_b/M_PI); 20 } else if (mode == 6) { 21 return 0.5*sqrt(length_a*length_a + length_b*length_b); 22 } else { 23 return 0.5*sqrt(length_a*length_a + length_b*length_b + length_c*length_c); 24 } 5 25 } 6 26 -
sasmodels/models/parallelepiped.py
r71b751d rd277229 231 231 source = ["lib/gauss76.c", "parallelepiped.c"] 232 232 have_Fq = True 233 234 def ER(length_a, length_b, length_c): 235 """ 236 Return effective radius (ER) for P(q)*S(q) 237 """ 238 # now that axes can be in any size order, need to sort a,b,c 239 # where a~b and c is either much smaller or much larger 240 abc = np.vstack((length_a, length_b, length_c)) 241 abc = np.sort(abc, axis=0) 242 selector = (abc[1] - abc[0]) > (abc[2] - abc[1]) 243 length = np.where(selector, abc[0], abc[2]) 244 # surface average radius (rough approximation) 245 radius = sqrt(np.where(~selector, abc[0]*abc[1], abc[1]*abc[2]) / pi) 246 247 ddd = 0.75 * radius * (2*radius*length + (length + radius)*(length + pi*radius)) 248 return 0.5 * (ddd) ** (1. / 3.) 233 effective_radius_type = ["equivalent sphere","half length_a", "half length_b", "half length_c", 234 "equivalent circular cross-section","half ab diagonal","half diagonal"] 235 236 #def ER(length_a, length_b, length_c): 237 # """ 238 # Return effective radius (ER) for P(q)*S(q) 239 # """ 240 # # now that axes can be in any size order, need to sort a,b,c 241 # # where a~b and c is either much smaller or much larger 242 # abc = np.vstack((length_a, length_b, length_c)) 243 # abc = np.sort(abc, axis=0) 244 # selector = (abc[1] - abc[0]) > (abc[2] - abc[1]) 245 # length = np.where(selector, abc[0], abc[2]) 246 # # surface average radius (rough approximation) 247 # radius = sqrt(np.where(~selector, abc[0]*abc[1], abc[1]*abc[2]) / pi) 248 # 249 # ddd = 0.75 * radius * (2*radius*length + (length + radius)*(length + pi*radius)) 250 # return 0.5 * (ddd) ** (1. / 3.) 249 251 250 252 # VR defaults to 1.0 -
sasmodels/models/pringle.c
r74768cb rd277229 104 104 } 105 105 106 static double 107 effective_radius(int mode, double radius, double thickness, double alpha, double beta) 108 { 109 if (mode == 1) { 110 return cbrt(0.75*radius*radius*thickness); 111 } else { 112 return radius; 113 } 114 } 115 106 116 double Iq( 107 117 double q, -
sasmodels/models/pringle.py
ref07e95 rd277229 74 74 source = ["lib/polevl.c", "lib/sas_J0.c", "lib/sas_J1.c", \ 75 75 "lib/sas_JN.c", "lib/gauss76.c", "pringle.c"] 76 effective_radius_type = ["equivalent sphere","radius"] 76 77 77 def ER(radius, thickness, alpha, beta):78 """79 Return equivalent radius (ER)80 """81 ddd = 0.75 * radius * (2 * radius * thickness + (thickness + radius) \82 * (thickness + pi * radius))83 return 0.5 * (ddd) ** (1. / 3.)78 #def ER(radius, thickness, alpha, beta): 79 # """ 80 # Return equivalent radius (ER) 81 # """ 82 # ddd = 0.75 * radius * (2 * radius * thickness + (thickness + radius) \ 83 # * (thickness + pi * radius)) 84 # return 0.5 * (ddd) ** (1. / 3.) 84 85 85 86 def random(): -
sasmodels/models/raspberry.c
r71b751d rd277229 1 double form_volume(double radius_lg );1 double form_volume(double radius_lg, double radius_sm, double penetration); 2 2 3 3 double Iq(double q, … … 6 6 double radius_lg, double radius_sm, double penetration); 7 7 8 double form_volume(double radius_lg )8 double form_volume(double radius_lg, double radius_sm, double penetration) 9 9 { 10 10 //Because of the complex structure, volume normalization must … … 12 12 double volume=1.0; 13 13 return volume; 14 } 15 16 static double 17 effective_radius(int mode, double radius_lg, double radius_sm, double penetration) 18 { 19 if (mode == 1) { 20 return radius_lg; 21 } else { 22 return radius_lg + 2.0*radius_sm - penetration; 23 } 14 24 } 15 25 -
sasmodels/models/raspberry.py
ref07e95 rd277229 145 145 ["radius_lg", "Ang", 5000, [0, inf], "volume", 146 146 "radius of large spheres"], 147 ["radius_sm", "Ang", 100, [0, inf], " ",147 ["radius_sm", "Ang", 100, [0, inf], "volume", 148 148 "radius of small spheres"], 149 ["penetration", "Ang", 0, [-1, 1], " ",149 ["penetration", "Ang", 0, [-1, 1], "volume", 150 150 "fractional penetration depth of small spheres into large sphere"], 151 151 ] 152 152 153 153 source = ["lib/sas_3j1x_x.c", "raspberry.c"] 154 effective_radius_type = ["radius_large","radius_outer"] 154 155 155 156 def random(): -
sasmodels/models/rectangular_prism.c
r71b751d rd277229 3 3 { 4 4 return length_a * (length_a*b2a_ratio) * (length_a*c2a_ratio); 5 } 6 7 static double 8 effective_radius(int mode, double length_a, double b2a_ratio, double c2a_ratio) 9 { 10 if (mode == 1) { 11 return cbrt(0.75*cube(length_a)*b2a_ratio*c2a_ratio/M_PI); 12 } else if (mode == 2) { 13 return 0.5 * length_a; 14 } else if (mode == 3) { 15 return 0.5 * length_a*b2a_ratio; 16 } else if (mode == 4) { 17 return 0.5 * length_a*c2a_ratio; 18 } else if (mode == 5) { 19 return length_a*sqrt(b2a_ratio/M_PI); 20 } else if (mode == 6) { 21 return 0.5*sqrt(square(length_a) * (1.0 + square(b2a_ratio))); 22 } else { 23 return 0.5*sqrt(square(length_a) * (1.0 + square(b2a_ratio) + square(c2a_ratio))); 24 } 5 25 } 6 26 -
sasmodels/models/rectangular_prism.py
r71b751d rd277229 136 136 source = ["lib/gauss76.c", "rectangular_prism.c"] 137 137 have_Fq = True 138 effective_radius_type = ["equivalent sphere","half length_a", "half length_b", "half length_c", 139 "equivalent circular cross-section","half ab diagonal","half diagonal"] 138 140 139 def ER(length_a, b2a_ratio, c2a_ratio):140 """141 Return equivalent radius (ER)142 """143 b_side = length_a * b2a_ratio144 c_side = length_a * c2a_ratio145 146 # surface average radius (rough approximation)147 surf_rad = sqrt(length_a * b_side / pi)148 149 ddd = 0.75 * surf_rad * (2 * surf_rad * c_side + (c_side + surf_rad) * (c_side + pi * surf_rad))150 return 0.5 * (ddd) ** (1. / 3.)141 #def ER(length_a, b2a_ratio, c2a_ratio): 142 # """ 143 # Return equivalent radius (ER) 144 # """ 145 # b_side = length_a * b2a_ratio 146 # c_side = length_a * c2a_ratio 147 # 148 # # surface average radius (rough approximation) 149 # surf_rad = sqrt(length_a * b_side / pi) 150 # 151 # ddd = 0.75 * surf_rad * (2 * surf_rad * c_side + (c_side + surf_rad) * (c_side + pi * surf_rad)) 152 # return 0.5 * (ddd) ** (1. / 3.) 151 153 152 154 def random(): -
sasmodels/models/sphere.py
r71b751d rd277229 67 67 ] 68 68 69 source = ["lib/sas_3j1x_x.c" ]69 source = ["lib/sas_3j1x_x.c","sphere.c"] 70 70 have_Fq = True 71 effective_radius_type = ["radius"] 71 72 72 c_code = """ 73 static double form_volume(double radius) 74 { 75 return M_4PI_3*cube(radius); 76 } 77 78 static void Fq(double q, double *f1, double *f2, double sld, double sld_solvent, double radius) 79 { 80 const double bes = sas_3j1x_x(q*radius); 81 const double contrast = (sld - sld_solvent); 82 const double form = contrast * form_volume(radius) * bes; 83 *f1 = 1.0e-2*form; 84 *f2 = 1.0e-4*form*form; 85 } 86 """ 87 88 def ER(radius): 89 """ 90 Return equivalent radius (ER) 91 """ 92 return radius 73 #def ER(radius): 74 # """ 75 # Return equivalent radius (ER) 76 # """ 77 # return radius 93 78 94 79 # VR defaults to 1.0 -
sasmodels/models/spherical_sld.c
r71b751d rd277229 10 10 } 11 11 return M_4PI_3*cube(r); 12 } 13 14 static double 15 effective_radius(int mode, double fp_n_shells, double thickness[], double interface[]) 16 { 17 int n_shells= (int)(fp_n_shells + 0.5); 18 double r = 0.0; 19 for (int i=0; i < n_shells; i++) { 20 r += thickness[i] + interface[i]; 21 } 22 return r; 12 23 } 13 24 -
sasmodels/models/spherical_sld.py
r71b751d rd277229 210 210 single = False # TODO: fix low q behaviour 211 211 have_Fq = True 212 effective_radius_type = ["outer radius"] 212 213 213 214 profile_axes = ['Radius (A)', 'SLD (1e-6/A^2)'] … … 255 256 256 257 257 def ER(n_shells, thickness, interface):258 """Effective radius"""259 n_shells = int(n_shells + 0.5)260 total = (np.sum(thickness[:n_shells], axis=1)261 + np.sum(interface[:n_shells], axis=1))262 return total258 #def ER(n_shells, thickness, interface): 259 # """Effective radius""" 260 # n_shells = int(n_shells + 0.5) 261 # total = (np.sum(thickness[:n_shells], axis=1) 262 # + np.sum(interface[:n_shells], axis=1)) 263 # return total 263 264 264 265 -
sasmodels/models/triaxial_ellipsoid.c
r71b751d rd277229 7 7 } 8 8 9 static double 10 radius_from_volume(double radius_equat_minor, double radius_equat_major, double radius_polar) 11 { 12 return cbrt(radius_equat_minor*radius_equat_major*radius_polar); 13 } 14 15 static double 16 radius_from_min_dimension(double radius_equat_minor, double radius_equat_major, double radius_polar) 17 { 18 const double rad_equat_min = (radius_equat_minor < radius_equat_major ? radius_equat_minor : radius_equat_major); 19 return (rad_equat_min < radius_polar ? rad_equat_min : radius_polar); 20 } 21 22 static double 23 radius_from_max_dimension(double radius_equat_minor, double radius_equat_major, double radius_polar) 24 { 25 const double rad_equat_max = (radius_equat_minor < radius_equat_major ? radius_equat_major : radius_equat_minor); 26 return (rad_equat_max > radius_polar ? rad_equat_max : radius_polar); 27 } 28 29 static double 30 effective_radius(int mode, double radius_equat_minor, double radius_equat_major, double radius_polar) 31 { 32 if (mode == 1) { 33 return radius_from_volume(radius_equat_minor,radius_equat_major, radius_polar); 34 } else if (mode == 2) { 35 return radius_from_min_dimension(radius_equat_minor,radius_equat_major, radius_polar); 36 } else { 37 return radius_from_max_dimension(radius_equat_minor,radius_equat_major, radius_polar); 38 } 39 } 9 40 10 41 static void -
sasmodels/models/triaxial_ellipsoid.py
r71b751d rd277229 158 158 source = ["lib/sas_3j1x_x.c", "lib/gauss76.c", "triaxial_ellipsoid.c"] 159 159 have_Fq = True 160 effective_radius_type = ["equivalent sphere","min radius", "max radius"] 160 161 161 162 def ER(radius_equat_minor, radius_equat_major, radius_polar): -
sasmodels/models/vesicle.c
r71b751d rd277229 6 6 } 7 7 8 static double 9 effective_radius(int mode, double radius, double thickness) 10 { 11 return radius + thickness; 12 } 8 13 9 14 static void -
sasmodels/models/vesicle.py
r71b751d rd277229 95 95 source = ["lib/sas_3j1x_x.c", "vesicle.c"] 96 96 have_Fq = True 97 effective_radius_type = ["outer radius"] 97 98 98 def ER(radius, thickness):99 '''100 returns the effective radius used in the S*P calculation101 102 :param radius: core radius103 :param thickness: shell thickness104 '''105 return radius + thickness99 #def ER(radius, thickness): 100 # ''' 101 # returns the effective radius used in the S*P calculation 102 # 103 # :param radius: core radius 104 # :param thickness: shell thickness 105 # ''' 106 # return radius + thickness 106 107 107 108 def VR(radius, thickness):
Note: See TracChangeset
for help on using the changeset viewer.