Changeset 12f77e9 in sasmodels
- Timestamp:
- Oct 30, 2018 10:56:38 AM (6 years ago)
- Branches:
- master
- Children:
- 4e96703
- Parents:
- 1657e21 (diff), c6084f1 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent. - Files:
-
- 6 added
- 20 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/guide/magnetism/magnetism.rst
rbefe905 rdf87acf 89 89 90 90 =========== ================================================================ 91 M0:sld$D_M M_0$92 mtheta:sld$\theta_M$93 mphi:sld$\phi_M$94 up :angle $\theta_\mathrm{up}$95 up :frac_i $u_i$ = (spin up)/(spin up + spin down) *before* the sample96 up :frac_f $u_f$ = (spin up)/(spin up + spin down) *after* the sample91 sld_M0 $D_M M_0$ 92 sld_mtheta $\theta_M$ 93 sld_mphi $\phi_M$ 94 up_frac_i $u_i$ = (spin up)/(spin up + spin down) *before* the sample 95 up_frac_f $u_f$ = (spin up)/(spin up + spin down) *after* the sample 96 up_angle $\theta_\mathrm{up}$ 97 97 =========== ================================================================ 98 98 99 99 .. note:: 100 The values of the 'up :frac_i' and 'up:frac_f' must be in the range 0 to 1.100 The values of the 'up_frac_i' and 'up_frac_f' must be in the range 0 to 1. 101 101 102 102 *Document History* -
doc/guide/plugin.rst
r2015f02 r57c609b 428 428 def random(): 429 429 ... 430 431 This function provides a model-specific random parameter set which shows model 432 features in the USANS to SANS range. For example, core-shell sphere sets the 433 outer radius of the sphere logarithmically in `[20, 20,000]`, which sets the Q 434 value for the transition from flat to falling. It then uses a beta distribution 435 to set the percentage of the shape which is shell, giving a preference for very 436 thin or very thick shells (but never 0% or 100%). Using `-sets=10` in sascomp 437 should show a reasonable variety of curves over the default sascomp q range. 438 The parameter set is returned as a dictionary of `{parameter: value, ...}`. 439 Any model parameters not included in the dictionary will default according to 430 431 This function provides a model-specific random parameter set which shows model 432 features in the USANS to SANS range. For example, core-shell sphere sets the 433 outer radius of the sphere logarithmically in `[20, 20,000]`, which sets the Q 434 value for the transition from flat to falling. It then uses a beta distribution 435 to set the percentage of the shape which is shell, giving a preference for very 436 thin or very thick shells (but never 0% or 100%). Using `-sets=10` in sascomp 437 should show a reasonable variety of curves over the default sascomp q range. 438 The parameter set is returned as a dictionary of `{parameter: value, ...}`. 439 Any model parameters not included in the dictionary will default according to 440 440 the code in the `_randomize_one()` function from sasmodels/compare.py. 441 441 … … 701 701 erf, erfc, tgamma, lgamma: **do not use** 702 702 Special functions that should be part of the standard, but are missing 703 or inaccurate on some platforms. Use sas_erf, sas_erfc andsas_gamma704 instead (see below). Note: lgamma(x) has not yet been tested.703 or inaccurate on some platforms. Use sas_erf, sas_erfc, sas_gamma 704 and sas_lgamma instead (see below). 705 705 706 706 Some non-standard constants and functions are also provided: … … 769 769 Gamma function sas_gamma\ $(x) = \Gamma(x)$. 770 770 771 The standard math function, tgamma(x) is unstable for $x < 1$771 The standard math function, tgamma(x), is unstable for $x < 1$ 772 772 on some platforms. 773 773 774 774 :code:`source = ["lib/sas_gamma.c", ...]` 775 775 (`sas_gamma.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_gamma.c>`_) 776 777 sas_gammaln(x): 778 log gamma function sas_gammaln\ $(x) = \log \Gamma(|x|)$. 779 780 The standard math function, lgamma(x), is incorrect for single 781 precision on some platforms. 782 783 :code:`source = ["lib/sas_gammainc.c", ...]` 784 (`sas_gammainc.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_gammainc.c>`_) 785 786 sas_gammainc(a, x), sas_gammaincc(a, x): 787 Incomplete gamma function 788 sas_gammainc\ $(a, x) = \int_0^x t^{a-1}e^{-t}\,dt / \Gamma(a)$ 789 and complementary incomplete gamma function 790 sas_gammaincc\ $(a, x) = \int_x^\infty t^{a-1}e^{-t}\,dt / \Gamma(a)$ 791 792 :code:`source = ["lib/sas_gammainc.c", ...]` 793 (`sas_gammainc.c <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_gammainc.c>`_) 776 794 777 795 sas_erf(x), sas_erfc(x): … … 811 829 If $n$ = 0 or 1, it uses sas_J0($x$) or sas_J1($x$), respectively. 812 830 831 Warning: JN(n,x) can be very inaccurate (0.1%) for x not in [0.1, 100]. 832 813 833 The standard math function jn(n, x) is not available on all platforms. 814 834 … … 819 839 Sine integral Si\ $(x) = \int_0^x \tfrac{\sin t}{t}\,dt$. 820 840 841 Warning: Si(x) can be very inaccurate (0.1%) for x in [0.1, 100]. 842 821 843 This function uses Taylor series for small and large arguments: 822 844 823 For large arguments ,845 For large arguments use the following Taylor series, 824 846 825 847 .. math:: … … 829 851 - \frac{\sin(x)}{x}\left(\frac{1}{x} - \frac{3!}{x^3} + \frac{5!}{x^5} - \frac{7!}{x^7}\right) 830 852 831 For small arguments ,853 For small arguments , 832 854 833 855 .. math:: -
explore/precision.py
r2a7e20e rfba9ca0 95 95 neg: [-100,100] 96 96 97 For arbitrary range use "start:stop:steps:scale" where scale is 98 one of log, lin, or linear. 99 97 100 *diff* is "relative", "absolute" or "none" 98 101 … … 102 105 linear = not xrange.startswith("log") 103 106 if xrange == "zoom": 104 lin_min, lin_max, lin_steps = 1000, 1010, 2000107 start, stop, steps = 1000, 1010, 2000 105 108 elif xrange == "neg": 106 lin_min, lin_max, lin_steps = -100.1, 100.1, 2000109 start, stop, steps = -100.1, 100.1, 2000 107 110 elif xrange == "linear": 108 lin_min, lin_max, lin_steps = 1, 1000, 2000109 lin_min, lin_max, lin_steps = 0.001, 2, 2000111 start, stop, steps = 1, 1000, 2000 112 start, stop, steps = 0.001, 2, 2000 110 113 elif xrange == "log": 111 log_min, log_max, log_steps = -3, 5, 400114 start, stop, steps = -3, 5, 400 112 115 elif xrange == "logq": 113 log_min, log_max, log_steps = -4, 1, 400 116 start, stop, steps = -4, 1, 400 117 elif ':' in xrange: 118 parts = xrange.split(':') 119 linear = parts[3] != "log" if len(parts) == 4 else True 120 steps = int(parts[2]) if len(parts) > 2 else 400 121 start = float(parts[0]) 122 stop = float(parts[1]) 123 114 124 else: 115 125 raise ValueError("unknown range "+xrange) … … 121 131 # value to x in the given precision. 122 132 if linear: 123 lin_min = max(lin_min, self.limits[0])124 lin_max = min(lin_max, self.limits[1])125 qrf = np.linspace( lin_min, lin_max, lin_steps, dtype='single')126 #qrf = np.linspace( lin_min, lin_max, lin_steps, dtype='double')133 start = max(start, self.limits[0]) 134 stop = min(stop, self.limits[1]) 135 qrf = np.linspace(start, stop, steps, dtype='single') 136 #qrf = np.linspace(start, stop, steps, dtype='double') 127 137 qr = [mp.mpf(float(v)) for v in qrf] 128 #qr = mp.linspace( lin_min, lin_max, lin_steps)138 #qr = mp.linspace(start, stop, steps) 129 139 else: 130 log_min = np.log10(max(10**log_min, self.limits[0]))131 log_max = np.log10(min(10**log_max, self.limits[1]))132 qrf = np.logspace( log_min, log_max, log_steps, dtype='single')133 #qrf = np.logspace( log_min, log_max, log_steps, dtype='double')140 start = np.log10(max(10**start, self.limits[0])) 141 stop = np.log10(min(10**stop, self.limits[1])) 142 qrf = np.logspace(start, stop, steps, dtype='single') 143 #qrf = np.logspace(start, stop, steps, dtype='double') 134 144 qr = [mp.mpf(float(v)) for v in qrf] 135 #qr = [10**v for v in mp.linspace( log_min, log_max, log_steps)]145 #qr = [10**v for v in mp.linspace(start, stop, steps)] 136 146 137 147 target = self.call_mpmath(qr, bits=500) … … 176 186 """ 177 187 if diff == "relative": 178 err = np.array([ abs((t-a)/t) for t, a in zip(target, actual)], 'd')188 err = np.array([(abs((t-a)/t) if t != 0 else a) for t, a in zip(target, actual)], 'd') 179 189 #err = np.clip(err, 0, 1) 180 190 pylab.loglog(x, err, '-', label=label) … … 197 207 return model_info 198 208 209 # Hack to allow second parameter A in two parameter functions 210 A = 1 211 def parse_extra_pars(): 212 global A 213 214 A_str = str(A) 215 pop = [] 216 for k, v in enumerate(sys.argv[1:]): 217 if v.startswith("A="): 218 A_str = v[2:] 219 pop.append(k+1) 220 if pop: 221 sys.argv = [v for k, v in enumerate(sys.argv) if k not in pop] 222 A = float(A_str) 223 224 parse_extra_pars() 225 199 226 200 227 # =============== FUNCTION DEFINITIONS ================ … … 297 324 ocl_function=make_ocl("return sas_gamma(q);", "sas_gamma", ["lib/sas_gamma.c"]), 298 325 limits=(-3.1, 10), 326 ) 327 add_function( 328 name="gammaln(x)", 329 mp_function=mp.loggamma, 330 np_function=scipy.special.gammaln, 331 ocl_function=make_ocl("return sas_gammaln(q);", "sas_gammaln", ["lib/sas_gammainc.c"]), 332 #ocl_function=make_ocl("return lgamma(q);", "sas_gammaln"), 333 ) 334 add_function( 335 name="gammainc(x)", 336 mp_function=lambda x, a=A: mp.gammainc(a, a=0, b=x)/mp.gamma(a), 337 np_function=lambda x, a=A: scipy.special.gammainc(a, x), 338 ocl_function=make_ocl("return sas_gammainc(%.15g,q);"%A, "sas_gammainc", ["lib/sas_gammainc.c"]), 339 ) 340 add_function( 341 name="gammaincc(x)", 342 mp_function=lambda x, a=A: mp.gammainc(a, a=x, b=mp.inf)/mp.gamma(a), 343 np_function=lambda x, a=A: scipy.special.gammaincc(a, x), 344 ocl_function=make_ocl("return sas_gammaincc(%.15g,q);"%A, "sas_gammaincc", ["lib/sas_gammainc.c"]), 299 345 ) 300 346 add_function( … … 463 509 lanczos_gamma = """\ 464 510 const double coeff[] = { 465 76.18009172947146, 466 24.01409824083091, 511 76.18009172947146, -86.50532032941677, 512 24.01409824083091, -1.231739572450155, 467 513 0.1208650973866179e-2,-0.5395239384953e-5 468 514 }; … … 475 521 """ 476 522 add_function( 477 name="log 523 name="loggamma(x)", 478 524 mp_function=mp.loggamma, 479 525 np_function=scipy.special.gammaln, … … 599 645 600 646 ALL_FUNCTIONS = set(FUNCTIONS.keys()) 601 ALL_FUNCTIONS.discard("loggamma") # OCL version not ready yet647 ALL_FUNCTIONS.discard("loggamma") # use cephes-based gammaln instead 602 648 ALL_FUNCTIONS.discard("3j1/x:taylor") 603 649 ALL_FUNCTIONS.discard("3j1/x:trig") … … 615 661 -r indicates that the relative error should be plotted (default), 616 662 -x<range> indicates the steps in x, where <range> is one of the following 617 log indicates log stepping in [10^-3, 10^5] (default) 618 logq indicates log stepping in [10^-4, 10^1] 619 linear indicates linear stepping in [1, 1000] 620 zoom indicates linear stepping in [1000, 1010] 621 neg indicates linear stepping in [-100.1, 100.1] 622 and name is "all" or one of: 663 log indicates log stepping in [10^-3, 10^5] (default) 664 logq indicates log stepping in [10^-4, 10^1] 665 linear indicates linear stepping in [1, 1000] 666 zoom indicates linear stepping in [1000, 1010] 667 neg indicates linear stepping in [-100.1, 100.1] 668 start:stop:n[:stepping] indicates an n-step plot in [start, stop] 669 or [10^start, 10^stop] if stepping is "log" (default n=400) 670 Some functions (notably gammainc/gammaincc) have an additional parameter A 671 which can be set from the command line as A=value. Default is A=1. 672 673 Name is one of: 623 674 """+names) 624 675 sys.exit(1) -
sasmodels/__init__.py
re65c3ba ra1ec908 14 14 defining new models. 15 15 """ 16 __version__ = "0.9 7"16 __version__ = "0.98" 17 17 18 18 def data_files(): -
sasmodels/compare.py
r01dba26 r12f77e9 369 369 370 370 # Limit magnetic SLDs to a smaller range, from zero to iron=5/A^2 371 if par.name. startswith('M0:'):371 if par.name.endswith('_M0'): 372 372 return np.random.uniform(0, 5) 373 373 … … 539 539 magnetic_pars = [] 540 540 for p in parameters.user_parameters(pars, is2d): 541 if any(p.id. startswith(x) for x in ('M0:', 'mtheta:', 'mphi:')):541 if any(p.id.endswith(x) for x in ('_M0', '_mtheta', '_mphi')): 542 542 continue 543 543 if p.id.startswith('up:'): … … 551 551 pdtype=pars.get(p.id+"_pd_type", 'gaussian'), 552 552 relative_pd=p.relative_pd, 553 M0=pars.get( 'M0:'+p.id, 0.),554 mphi=pars.get( 'mphi:'+p.id, 0.),555 mtheta=pars.get( 'mtheta:'+p.id, 0.),553 M0=pars.get(p.id+'_M0', 0.), 554 mphi=pars.get(p.id+'_mphi', 0.), 555 mtheta=pars.get(p.id+'_mtheta', 0.), 556 556 ) 557 557 lines.append(_format_par(p.name, **fields)) … … 619 619 if suppress: 620 620 for p in pars: 621 if p. startswith("M0:"):621 if p.endswith("_M0"): 622 622 pars[p] = 0 623 623 else: … … 625 625 first_mag = None 626 626 for p in pars: 627 if p. startswith("M0:"):627 if p.endswith("_M0"): 628 628 any_mag |= (pars[p] != 0) 629 629 if first_mag is None: -
sasmodels/convert.py
ra69d8cd r610ef23 165 165 if version == (3, 1, 2): 166 166 oldpars = _hand_convert_3_1_2_to_4_1(name, oldpars) 167 if version < (4, 2, 0): 168 oldpars = _rename_magnetic_pars(oldpars) 167 169 return oldpars 170 171 def _rename_magnetic_pars(pars): 172 """ 173 Change from M0:par to par_M0, etc. 174 """ 175 keys = list(pars.items()) 176 for k in keys: 177 if k.startswith('M0:'): 178 pars[k[3:]+'_M0'] = pars.pop(k) 179 elif k.startswith('mtheta:'): 180 pars[k[7:]+'_mtheta'] = pars.pop(k) 181 elif k.startswith('mphi:'): 182 pars[k[5:]+'_mphi'] = pars.pop(k) 183 elif k.startswith('up:'): 184 pars['up_'+k[3:]] = pars.pop(k) 185 return pars 168 186 169 187 def _hand_convert_3_1_2_to_4_1(name, oldpars): -
sasmodels/custom/__init__.py
r0f48f1e rd321747 12 12 import sys 13 13 import os 14 from os.path import basename, splitext 14 from os.path import basename, splitext, join as joinpath, exists, dirname 15 15 16 16 try: … … 18 18 from importlib.util import spec_from_file_location, module_from_spec # type: ignore 19 19 def load_module_from_path(fullname, path): 20 # type: (str, str) -> "module" 20 21 """load module from *path* as *fullname*""" 21 22 spec = spec_from_file_location(fullname, os.path.expanduser(path)) … … 27 28 import imp 28 29 def load_module_from_path(fullname, path): 30 # type: (str, str) -> "module" 29 31 """load module from *path* as *fullname*""" 30 32 # Clear out old definitions, if any … … 37 39 return module 38 40 41 _MODULE_CACHE = {} # type: Dict[str, Tuple("module", int)] 42 _MODULE_DEPENDS = {} # type: Dict[str, List[str]] 43 _MODULE_DEPENDS_STACK = [] # type: List[str] 39 44 def load_custom_kernel_module(path): 45 # type: str -> "module" 40 46 """load SAS kernel from *path* as *sasmodels.custom.modelname*""" 41 47 # Pull off the last .ext if it exists; there may be others 42 48 name = basename(splitext(path)[0]) 43 # Placing the model in the 'sasmodels.custom' name space. 44 kernel_module = load_module_from_path('sasmodels.custom.'+name, 45 os.path.expanduser(path)) 46 return kernel_module 49 path = os.path.expanduser(path) 50 51 # Reload module if necessary. 52 if need_reload(path): 53 # Assume the module file is the only dependency 54 _MODULE_DEPENDS[path] = set([path]) 55 56 # Load the module while pushing it onto the dependency stack. If 57 # this triggers any submodules, then they will add their dependencies 58 # to this module as the "working_on" parent. Pop the stack when the 59 # module is loaded. 60 _MODULE_DEPENDS_STACK.append(path) 61 module = load_module_from_path('sasmodels.custom.'+name, path) 62 _MODULE_DEPENDS_STACK.pop() 63 64 # Include external C code in the dependencies. We are looking 65 # for module.source and assuming that it is a list of C source files 66 # relative to the module itself. Any files that do not exist, 67 # such as those in the standard libraries, will be ignored. 68 # TODO: look in builtin module path for standard c sources 69 # TODO: share code with generate.model_sources 70 c_sources = getattr(module, 'source', None) 71 if isinstance(c_sources, (list, tuple)): 72 _MODULE_DEPENDS[path].update(_find_sources(path, c_sources)) 73 74 # Cache the module, and tag it with the newest timestamp 75 timestamp = max(os.path.getmtime(f) for f in _MODULE_DEPENDS[path]) 76 _MODULE_CACHE[path] = module, timestamp 77 78 #print("loading", os.path.basename(path), _MODULE_CACHE[path][1], 79 # [os.path.basename(p) for p in _MODULE_DEPENDS[path]]) 80 81 # Add path and all its dependence to the parent module, if there is one. 82 if _MODULE_DEPENDS_STACK: 83 working_on = _MODULE_DEPENDS_STACK[-1] 84 _MODULE_DEPENDS[working_on].update(_MODULE_DEPENDS[path]) 85 86 return _MODULE_CACHE[path][0] 87 88 def need_reload(path): 89 # type: str -> bool 90 """ 91 Return True if any path dependencies have a timestamp newer than the time 92 when the path was most recently loaded. 93 """ 94 # TODO: fails if a dependency has a modification time in the future 95 # If the newest dependency has a time stamp in the future, then this 96 # will be recorded as the cached time. When a second dependency 97 # is updated to the current time stamp, it will still be considered 98 # older than the current build and the reload will not be triggered. 99 # Could instead treat all future times as 0 here and in the code above 100 # which records the newest timestamp. This will force a reload when 101 # the future time is reached, but other than that should perform 102 # correctly. Probably not worth the extra code... 103 _, cache_time = _MODULE_CACHE.get(path, (None, -1)) 104 depends = _MODULE_DEPENDS.get(path, [path]) 105 #print("reload", any(cache_time < os.path.getmtime(p) for p in depends)) 106 #for f in depends: print(">>> ", f, os.path.getmtime(f)) 107 return any(cache_time < os.path.getmtime(p) for p in depends) 108 109 def _find_sources(path, source_list): 110 # type: (str, List[str]) -> List[str] 111 """ 112 Return a list of the sources relative to base file; ignore any that 113 are not found. 114 """ 115 root = dirname(path) 116 found = [] 117 for source_name in source_list: 118 source_path = joinpath(root, source_name) 119 if exists(source_path): 120 found.append(source_path) 121 return found -
sasmodels/kernelpy.py
r108e70e r12eec1e 37 37 self.info = model_info 38 38 self.dtype = np.dtype('d') 39 logger.info(" loadpython model " + self.info.name)39 logger.info("make python model " + self.info.name) 40 40 41 41 def make_kernel(self, q_vectors): -
sasmodels/model_test.py
r012cd34 r12eec1e 47 47 import sys 48 48 import unittest 49 import traceback 49 50 50 51 try: … … 74 75 # pylint: enable=unused-import 75 76 76 77 77 def make_suite(loaders, models): 78 78 # type: (List[str], List[str]) -> unittest.TestSuite … … 86 86 *models* is the list of models to test, or *["all"]* to test all models. 87 87 """ 88 ModelTestCase = _hide_model_case_from_nose()89 88 suite = unittest.TestSuite() 90 89 … … 95 94 skip = [] 96 95 for model_name in models: 97 if model_name in skip: 98 continue 99 model_info = load_model_info(model_name) 100 101 #print('------') 102 #print('found tests in', model_name) 103 #print('------') 104 105 # if ispy then use the dll loader to call pykernel 106 # don't try to call cl kernel since it will not be 107 # available in some environmentes. 108 is_py = callable(model_info.Iq) 109 110 # Some OpenCL drivers seem to be flaky, and are not producing the 111 # expected result. Since we don't have known test values yet for 112 # all of our models, we are instead going to compare the results 113 # for the 'smoke test' (that is, evaluation at q=0.1 for the default 114 # parameters just to see that the model runs to completion) between 115 # the OpenCL and the DLL. To do this, we define a 'stash' which is 116 # shared between OpenCL and DLL tests. This is just a list. If the 117 # list is empty (which it will be when DLL runs, if the DLL runs 118 # first), then the results are appended to the list. If the list 119 # is not empty (which it will be when OpenCL runs second), the results 120 # are compared to the results stored in the first element of the list. 121 # This is a horrible stateful hack which only makes sense because the 122 # test suite is thrown away after being run once. 123 stash = [] 124 125 if is_py: # kernel implemented in python 126 test_name = "%s-python"%model_name 127 test_method_name = "test_%s_python" % model_info.id 96 if model_name not in skip: 97 model_info = load_model_info(model_name) 98 _add_model_to_suite(loaders, suite, model_info) 99 100 return suite 101 102 def _add_model_to_suite(loaders, suite, model_info): 103 ModelTestCase = _hide_model_case_from_nose() 104 105 #print('------') 106 #print('found tests in', model_name) 107 #print('------') 108 109 # if ispy then use the dll loader to call pykernel 110 # don't try to call cl kernel since it will not be 111 # available in some environmentes. 112 is_py = callable(model_info.Iq) 113 114 # Some OpenCL drivers seem to be flaky, and are not producing the 115 # expected result. Since we don't have known test values yet for 116 # all of our models, we are instead going to compare the results 117 # for the 'smoke test' (that is, evaluation at q=0.1 for the default 118 # parameters just to see that the model runs to completion) between 119 # the OpenCL and the DLL. To do this, we define a 'stash' which is 120 # shared between OpenCL and DLL tests. This is just a list. If the 121 # list is empty (which it will be when DLL runs, if the DLL runs 122 # first), then the results are appended to the list. If the list 123 # is not empty (which it will be when OpenCL runs second), the results 124 # are compared to the results stored in the first element of the list. 125 # This is a horrible stateful hack which only makes sense because the 126 # test suite is thrown away after being run once. 127 stash = [] 128 129 if is_py: # kernel implemented in python 130 test_name = "%s-python"%model_info.name 131 test_method_name = "test_%s_python" % model_info.id 132 test = ModelTestCase(test_name, model_info, 133 test_method_name, 134 platform="dll", # so that 135 dtype="double", 136 stash=stash) 137 suite.addTest(test) 138 else: # kernel implemented in C 139 140 # test using dll if desired 141 if 'dll' in loaders or not use_opencl(): 142 test_name = "%s-dll"%model_info.name 143 test_method_name = "test_%s_dll" % model_info.id 128 144 test = ModelTestCase(test_name, model_info, 129 test_method_name,130 platform="dll", # so that131 dtype="double",132 stash=stash)145 test_method_name, 146 platform="dll", 147 dtype="double", 148 stash=stash) 133 149 suite.addTest(test) 134 else: # kernel implemented in C 135 136 # test using dll if desired 137 if 'dll' in loaders or not use_opencl(): 138 test_name = "%s-dll"%model_name 139 test_method_name = "test_%s_dll" % model_info.id 140 test = ModelTestCase(test_name, model_info, 141 test_method_name, 142 platform="dll", 143 dtype="double", 144 stash=stash) 145 suite.addTest(test) 146 147 # test using opencl if desired and available 148 if 'opencl' in loaders and use_opencl(): 149 test_name = "%s-opencl"%model_name 150 test_method_name = "test_%s_opencl" % model_info.id 151 # Using dtype=None so that the models that are only 152 # correct for double precision are not tested using 153 # single precision. The choice is determined by the 154 # presence of *single=False* in the model file. 155 test = ModelTestCase(test_name, model_info, 156 test_method_name, 157 platform="ocl", dtype=None, 158 stash=stash) 159 #print("defining", test_name) 160 suite.addTest(test) 161 162 return suite 150 151 # test using opencl if desired and available 152 if 'opencl' in loaders and use_opencl(): 153 test_name = "%s-opencl"%model_info.name 154 test_method_name = "test_%s_opencl" % model_info.id 155 # Using dtype=None so that the models that are only 156 # correct for double precision are not tested using 157 # single precision. The choice is determined by the 158 # presence of *single=False* in the model file. 159 test = ModelTestCase(test_name, model_info, 160 test_method_name, 161 platform="ocl", dtype=None, 162 stash=stash) 163 #print("defining", test_name) 164 suite.addTest(test) 165 163 166 164 167 def _hide_model_case_from_nose(): … … 348 351 return abs(target-actual)/shift < 1.5*10**-digits 349 352 350 def run_one(model): 351 # type: (str) -> str 352 """ 353 Run the tests for a single model, printing the results to stdout. 354 355 *model* can by a python file, which is handy for checking user defined 356 plugin models. 353 # CRUFT: old interface; should be deprecated and removed 354 def run_one(model_name): 355 # msg = "use check_model(model_info) rather than run_one(model_name)" 356 # warnings.warn(msg, category=DeprecationWarning, stacklevel=2) 357 try: 358 model_info = load_model_info(model_name) 359 except Exception: 360 output = traceback.format_exc() 361 return output 362 363 success, output = check_model(model_info) 364 return output 365 366 def check_model(model_info): 367 # type: (ModelInfo) -> str 368 """ 369 Run the tests for a single model, capturing the output. 370 371 Returns success status and the output string. 357 372 """ 358 373 # Note that running main() directly did not work from within the … … 369 384 # Build a test suite containing just the model 370 385 loaders = ['opencl'] if use_opencl() else ['dll'] 371 models = [model] 372 try: 373 suite = make_suite(loaders, models) 374 except Exception: 375 import traceback 376 stream.writeln(traceback.format_exc()) 377 return 386 suite = unittest.TestSuite() 387 _add_model_to_suite(loaders, suite, model_info) 378 388 379 389 # Warn if there are no user defined tests. … … 390 400 for test in suite: 391 401 if not test.info.tests: 392 stream.writeln("Note: %s has no user defined tests."%model )402 stream.writeln("Note: %s has no user defined tests."%model_info.name) 393 403 break 394 404 else: … … 406 416 output = stream.getvalue() 407 417 stream.close() 408 return output418 return result.wasSuccessful(), output 409 419 410 420 -
sasmodels/modelinfo.py
r7b9e4dd rbd547d0 466 466 self.is_asymmetric = any(p.name == 'psi' for p in self.kernel_parameters) 467 467 self.magnetism_index = [k for k, p in enumerate(self.call_parameters) 468 if p.id. startswith('M0:')]468 if p.id.endswith('_M0')] 469 469 470 470 self.pd_1d = set(p.name for p in self.call_parameters … … 586 586 if self.nmagnetic > 0: 587 587 full_list.extend([ 588 Parameter('up :frac_i', '', 0., [0., 1.],588 Parameter('up_frac_i', '', 0., [0., 1.], 589 589 'magnetic', 'fraction of spin up incident'), 590 Parameter('up :frac_f', '', 0., [0., 1.],590 Parameter('up_frac_f', '', 0., [0., 1.], 591 591 'magnetic', 'fraction of spin up final'), 592 Parameter('up :angle', 'degrees', 0., [0., 360.],592 Parameter('up_angle', 'degrees', 0., [0., 360.], 593 593 'magnetic', 'spin up angle'), 594 594 ]) … … 596 596 for p in slds: 597 597 full_list.extend([ 598 Parameter( 'M0:'+p.id, '1e-6/Ang^2', 0., [-np.inf, np.inf],598 Parameter(p.id+'_M0', '1e-6/Ang^2', 0., [-np.inf, np.inf], 599 599 'magnetic', 'magnetic amplitude for '+p.description), 600 Parameter( 'mtheta:'+p.id, 'degrees', 0., [-90., 90.],600 Parameter(p.id+'_mtheta', 'degrees', 0., [-90., 90.], 601 601 'magnetic', 'magnetic latitude for '+p.description), 602 Parameter( 'mphi:'+p.id, 'degrees', 0., [-180., 180.],602 Parameter(p.id+'_mphi', 'degrees', 0., [-180., 180.], 603 603 'magnetic', 'magnetic longitude for '+p.description), 604 604 ]) … … 640 640 641 641 Parameters marked as sld will automatically have a set of associated 642 magnetic parameters ( m0:p, mtheta:p, mphi:p), as well as polarization643 information (up :theta, up:frac_i, up:frac_f).642 magnetic parameters (p_M0, p_mtheta, p_mphi), as well as polarization 643 information (up_theta, up_frac_i, up_frac_f). 644 644 """ 645 645 # control parameters go first … … 668 668 result.append(expanded_pars[name]) 669 669 if is2d: 670 for tag in ' M0:', 'mtheta:', 'mphi:':671 if tag+namein expanded_pars:672 result.append(expanded_pars[ tag+name])670 for tag in '_M0', '_mtheta', '_mphi': 671 if name+tag in expanded_pars: 672 result.append(expanded_pars[name+tag]) 673 673 674 674 # Gather the user parameters in order … … 703 703 append_group(p.id) 704 704 705 if is2d and 'up :angle' in expanded_pars:705 if is2d and 'up_angle' in expanded_pars: 706 706 result.extend([ 707 expanded_pars['up :frac_i'],708 expanded_pars['up :frac_f'],709 expanded_pars['up :angle'],707 expanded_pars['up_frac_i'], 708 expanded_pars['up_frac_f'], 709 expanded_pars['up_angle'], 710 710 ]) 711 711 … … 793 793 info.structure_factor = getattr(kernel_module, 'structure_factor', False) 794 794 info.profile_axes = getattr(kernel_module, 'profile_axes', ['x', 'y']) 795 # Note: custom.load_custom_kernel_module assumes the C sources are defined 796 # by this attribute. 795 797 info.source = getattr(kernel_module, 'source', []) 796 798 info.c_code = getattr(kernel_module, 'c_code', None) … … 1014 1016 for k in range(control+1, p.length+1) 1015 1017 if p.length > 1) 1018 for p in self.parameters.kernel_parameters: 1019 if p.length > 1 and p.type == "sld": 1020 for k in range(control+1, p.length+1): 1021 base = p.id+str(k) 1022 hidden.update((base+"_M0", base+"_mtheta", base+"_mphi")) 1016 1023 return hidden -
sasmodels/models/bcc_paracrystal.py
r2d81cfe rda7b26b 1 1 r""" 2 .. warning:: This model and this model description are under review following 3 concerns raised by SasView users. If you need to use this model, 4 please email help@sasview.org for the latest situation. *The 5 SasView Developers. September 2018.* 6 2 7 Definition 3 8 ---------- … … 13 18 14 19 I(q) = \frac{\text{scale}}{V_p} V_\text{lattice} P(q) Z(q) 15 16 20 17 21 where *scale* is the volume fraction of spheres, $V_p$ is the volume of the … … 97 101 98 102 Authorship and Verification 99 --------------------------- -103 --------------------------- 100 104 101 105 * **Author:** NIST IGOR/DANSE **Date:** pre 2010 -
sasmodels/models/be_polyelectrolyte.py
ref07e95 rca77fc1 1 1 r""" 2 .. note:: Please read the Validation section below. 3 2 4 Definition 3 5 ---------- … … 11 13 12 14 I(q) = K\frac{q^2+k^2}{4\pi L_b\alpha ^2} 13 \frac{1}{1+r_{0}^ 2(q^2+k^2)(q^2-12hC_a/b^2)} + background15 \frac{1}{1+r_{0}^4(q^2+k^2)(q^2-12hC_a/b^2)} + background 14 16 15 17 k^2 = 4\pi L_b(2C_s + \alpha C_a) 16 18 17 r_{0}^2 = \frac{ 1}{\alpha \sqrt{C_a} \left( b/\sqrt{48\pi L_b}\right)}19 r_{0}^2 = \frac{b}{\alpha \sqrt{C_a 48\pi L_b}} 18 20 19 21 where 20 22 21 23 $K$ is the contrast factor for the polymer which is defined differently than in 22 other models and is given in barns where $1 barn = 10^{-24}cm^2$. $K$ is24 other models and is given in barns where 1 $barn = 10^{-24}$ $cm^2$. $K$ is 23 25 defined as: 24 26 … … 29 31 a = b_p - (v_p/v_s) b_s 30 32 31 where $b_p$ and $b_s$ are sum of the scattering lengths of the atoms 32 constituting the monomer of the polymer and the sum of the scattering lengths 33 of the atoms constituting the solvent molecules respectively, and $v_p$ and 34 $v_s$ are the partial molar volume of the polymer and the solvent respectively 35 36 $L_b$ is the Bjerrum length(|Ang|) - **Note:** This parameter needs to be 37 kept constant for a given solvent and temperature! 38 39 $h$ is the virial parameter (|Ang^3|/mol) - **Note:** See [#Borue]_ for the 40 correct interpretation of this parameter. It incorporates second and third 41 virial coefficients and can be Negative. 42 43 $b$ is the monomer length(|Ang|), $C_s$ is the concentration of monovalent 44 salt(mol/L), $\alpha$ is the ionization degree (ionization degree : ratio of 45 charged monomers to total number of monomers), $C_a$ is the polymer molar 46 concentration(mol/L), and $background$ is the incoherent background. 33 where: 34 35 - $b_p$ and $b_s$ are **sum of the scattering lengths of the atoms** 36 constituting the polymer monomer and the solvent molecules, respectively. 37 38 - $v_p$ and $v_s$ are the partial molar volume of the polymer and the 39 solvent, respectively. 40 41 - $L_b$ is the Bjerrum length (|Ang|) - **Note:** This parameter needs to be 42 kept constant for a given solvent and temperature! 43 44 - $h$ is the virial parameter (|Ang^3|) - **Note:** See [#Borue]_ for the 45 correct interpretation of this parameter. It incorporates second and third 46 virial coefficients and can be *negative*. 47 48 - $b$ is the monomer length (|Ang|). 49 50 - $C_s$ is the concentration of monovalent salt(1/|Ang^3| - internally converted from mol/L). 51 52 - $\alpha$ is the degree of ionization (the ratio of charged monomers to the total 53 number of monomers) 54 55 - $C_a$ is the polymer molar concentration (1/|Ang^3| - internally converted from mol/L) 56 57 - $background$ is the incoherent background. 47 58 48 59 For 2D data the scattering intensity is calculated in the same way as 1D, … … 52 63 53 64 q = \sqrt{q_x^2 + q_y^2} 65 66 Validation 67 ---------- 68 69 As of the last revision, this code is believed to be correct. However it 70 needs further validation and should be used with caution at this time. The 71 history of this code goes back to a 1998 implementation. It was recently noted 72 that in that implementation, while both the polymer concentration and salt 73 concentration were converted from experimental units of mol/L to more 74 dimensionally useful units of 1/|Ang^3|, only the converted version of the 75 polymer concentration was actually being used in the calculation while the 76 unconverted salt concentration (still in apparent units of mol/L) was being 77 used. This was carried through to Sasmodels as used for SasView 4.1 (though 78 the line of code converting the salt concentration to the new units was removed 79 somewhere along the line). Simple dimensional analysis of the calculation shows 80 that the converted salt concentration should be used, which the original code 81 suggests was the intention, so this has now been corrected (for SasView 4.2). 82 Once better validation has been performed this note will be removed. 54 83 55 84 References … … 66 95 67 96 * **Author:** NIST IGOR/DANSE **Date:** pre 2010 68 * **Last Modified by:** Paul Kienzle **Date:** July 24, 201669 * **Last Reviewed by:** Paul Butler and Richard Heenan **Date:** October 07, 201697 * **Last Modified by:** Paul Butler **Date:** September 25, 2018 98 * **Last Reviewed by:** Paul Butler **Date:** September 25, 2018 70 99 """ 71 100 … … 92 121 ["contrast_factor", "barns", 10.0, [-inf, inf], "", "Contrast factor of the polymer"], 93 122 ["bjerrum_length", "Ang", 7.1, [0, inf], "", "Bjerrum length"], 94 ["virial_param", "Ang^3 /mol", 12.0, [-inf, inf], "", "Virial parameter"],123 ["virial_param", "Ang^3", 12.0, [-inf, inf], "", "Virial parameter"], 95 124 ["monomer_length", "Ang", 10.0, [0, inf], "", "Monomer length"], 96 125 ["salt_concentration", "mol/L", 0.0, [-inf, inf], "", "Concentration of monovalent salt"], … … 102 131 103 132 def Iq(q, 104 contrast_factor =10.0,105 bjerrum_length =7.1,106 virial_param =12.0,107 monomer_length =10.0,108 salt_concentration =0.0,109 ionization_degree =0.05,110 polymer_concentration =0.7):133 contrast_factor, 134 bjerrum_length, 135 virial_param, 136 monomer_length, 137 salt_concentration, 138 ionization_degree, 139 polymer_concentration): 111 140 """ 112 :param q: Input q-value 113 :param contrast_factor: Contrast factor of the polymer 114 :param bjerrum_length: Bjerrum length 115 :param virial_param: Virial parameter 116 :param monomer_length: Monomer length 117 :param salt_concentration: Concentration of monovalent salt 118 :param ionization_degree: Degree of ionization 119 :param polymer_concentration: Polymer molar concentration 120 :return: 1-D intensity 141 :params: see parameter table 142 :return: 1-D form factor for polyelectrolytes in low salt 143 144 parameter names, units, default values, and behavior (volume, sld etc) are 145 defined in the parameter table. The concentrations are converted from 146 experimental mol/L to dimensionaly useful 1/A3 in first two lines 121 147 """ 122 148 123 concentration = polymer_concentration * 6.022136e-4 124 125 k_square = 4.0 * pi * bjerrum_length * (2*salt_concentration + 126 ionization_degree * concentration) 127 128 r0_square = 1.0/ionization_degree/sqrt(concentration) * \ 149 concentration_pol = polymer_concentration * 6.022136e-4 150 concentration_salt = salt_concentration * 6.022136e-4 151 152 k_square = 4.0 * pi * bjerrum_length * (2*concentration_salt + 153 ionization_degree * concentration_pol) 154 155 r0_square = 1.0/ionization_degree/sqrt(concentration_pol) * \ 129 156 (monomer_length/sqrt((48.0*pi*bjerrum_length))) 130 157 … … 133 160 134 161 term2 = 1.0 + r0_square**2 * (q**2 + k_square) * \ 135 (q**2 - (12.0 * virial_param * concentration /(monomer_length**2)))162 (q**2 - (12.0 * virial_param * concentration_pol/(monomer_length**2))) 136 163 137 164 return term1/term2 … … 174 201 175 202 # Accuracy tests based on content in test/utest_other_models.py 203 # Note that these should some day be validated beyond this self validation 204 # (circular reasoning). -- i.e. the "good value," at least for those with 205 # non zero salt concentrations, were obtained by running the current 206 # model in SasView and copying the appropriate result here. 207 # PDB -- Sep 26, 2018 176 208 [{'contrast_factor': 10.0, 177 209 'bjerrum_length': 7.1, … … 184 216 }, 0.001, 0.0948379], 185 217 186 # Additional tests with larger range of parameters187 218 [{'contrast_factor': 10.0, 188 219 'bjerrum_length': 100.0, 189 220 'virial_param': 3.0, 190 'monomer_length': 1.0,191 'salt_concentration': 10.0,192 'ionization_degree': 2.0,193 'polymer_concentration': 10.0,221 'monomer_length': 5.0, 222 'salt_concentration': 1.0, 223 'ionization_degree': 0.1, 224 'polymer_concentration': 1.0, 194 225 'background': 0.0, 195 }, 0.1, -3.75693800588],226 }, 0.1, 0.253469484], 196 227 197 228 [{'contrast_factor': 10.0, 198 229 'bjerrum_length': 100.0, 199 230 'virial_param': 3.0, 200 'monomer_length': 1.0,201 'salt_concentration': 10.0,202 'ionization_degree': 2.0,203 'polymer_concentration': 10.0,204 'background': 100.0205 }, 5.0, 100.029142149],231 'monomer_length': 5.0, 232 'salt_concentration': 1.0, 233 'ionization_degree': 0.1, 234 'polymer_concentration': 1.0, 235 'background': 1.0, 236 }, 0.05, 1.738358122], 206 237 207 238 [{'contrast_factor': 100.0, 208 239 'bjerrum_length': 10.0, 209 'virial_param': 180.0,210 'monomer_length': 1.0,240 'virial_param': 12.0, 241 'monomer_length': 10.0, 211 242 'salt_concentration': 0.1, 212 243 'ionization_degree': 0.5, 213 244 'polymer_concentration': 0.1, 214 'background': 0.0,215 }, 200., 1.80664667511e-06],245 'background': 0.01, 246 }, 0.5, 0.012881893], 216 247 ] -
sasmodels/models/fcc_paracrystal.py
r2d81cfe rda7b26b 3 3 #note - calculation requires double precision 4 4 r""" 5 .. warning:: This model and this model description are under review following 6 concerns raised by SasView users. If you need to use this model, 7 please email help@sasview.org for the latest situation. *The 8 SasView Developers. September 2018.* 9 10 Definition 11 ---------- 12 5 13 Calculates the scattering from a **face-centered cubic lattice** with 6 14 paracrystalline distortion. Thermal vibrations are considered to be … … 8 16 Paracrystalline distortion is assumed to be isotropic and characterized by 9 17 a Gaussian distribution. 10 11 Definition12 ----------13 18 14 19 The scattering intensity $I(q)$ is calculated as … … 23 28 is the paracrystalline structure factor for a face-centered cubic structure. 24 29 25 Equation (1) of the 1990 reference is used to calculate $Z(q)$, using 26 equations (23)-(25) from the 1987 paper for $Z1$, $Z2$, and $Z3$. 30 Equation (1) of the 1990 reference\ [#CIT1990]_ is used to calculate $Z(q)$, 31 using equations (23)-(25) from the 1987 paper\ [#CIT1987]_ for $Z1$, $Z2$, and 32 $Z3$. 27 33 28 34 The lattice correction (the occupied volume of the lattice) for a … … 88 94 ---------- 89 95 90 Hideki Matsuoka et. al. *Physical Review B*, 36 (1987) 1754-1765 91 (Original Paper) 96 .. [#CIT1987] Hideki Matsuoka et. al. *Physical Review B*, 36 (1987) 1754-1765 97 (Original Paper) 98 .. [#CIT1990] Hideki Matsuoka et. al. *Physical Review B*, 41 (1990) 3854 -3856 99 (Corrections to FCC and BCC lattice structure calculation) 92 100 93 Hideki Matsuoka et. al. *Physical Review B*, 41 (1990) 3854 -3856 94 (Corrections to FCC and BCC lattice structure calculation) 101 Authorship and Verification 102 --------------------------- 103 104 * **Author:** NIST IGOR/DANSE **Date:** pre 2010 105 * **Last Modified by:** Paul Butler **Date:** September 29, 2016 106 * **Last Reviewed by:** Richard Heenan **Date:** March 21, 2016 95 107 """ 96 108 -
sasmodels/models/sc_paracrystal.py
r2d81cfe rda7b26b 1 1 r""" 2 .. warning:: This model and this model description are under review following 3 concerns raised by SasView users. If you need to use this model, 4 please email help@sasview.org for the latest situation. *The 5 SasView Developers. September 2018.* 6 7 Definition 8 ---------- 9 2 10 Calculates the scattering from a **simple cubic lattice** with 3 11 paracrystalline distortion. Thermal vibrations are considered to be … … 5 13 Paracrystalline distortion is assumed to be isotropic and characterized 6 14 by a Gaussian distribution. 7 8 Definition9 ----------10 15 11 16 The scattering intensity $I(q)$ is calculated as … … 20 25 $Z(q)$ is the paracrystalline structure factor for a simple cubic structure. 21 26 22 Equation (16) of the 1987 reference is used to calculate $Z(q)$, using 23 equations (13)-(15) from the 1987 paper for Z1, Z2, and Z3. 27 Equation (16) of the 1987 reference\ [#CIT1987]_ is used to calculate $Z(q)$, 28 using equations (13)-(15) from the 1987 paper\ [#CIT1987]_ for $Z1$, $Z2$, and 29 $Z3$. 24 30 25 31 The lattice correction (the occupied volume of the lattice) for a simple cubic … … 91 97 Reference 92 98 --------- 93 Hideki Matsuoka et. al. *Physical Review B,* 36 (1987) 1754-176594 (Original Paper)95 99 96 Hideki Matsuoka et. al. *Physical Review B,* 41 (1990) 3854 -3856 97 (Corrections to FCC and BCC lattice structure calculation) 100 .. [#CIT1987] Hideki Matsuoka et. al. *Physical Review B*, 36 (1987) 1754-1765 101 (Original Paper) 102 .. [#CIT1990] Hideki Matsuoka et. al. *Physical Review B*, 41 (1990) 3854 -3856 103 (Corrections to FCC and BCC lattice structure calculation) 104 105 Authorship and Verification 106 --------------------------- 107 108 * **Author:** NIST IGOR/DANSE **Date:** pre 2010 109 * **Last Modified by:** Paul Butler **Date:** September 29, 2016 110 * **Last Reviewed by:** Richard Heenan **Date:** March 21, 2016 98 111 """ 99 112 -
sasmodels/models/spinodal.py
r475ff58 r93fe8a1 12 12 where $x=q/q_0$, $q_0$ is the peak position, $I_{max}$ is the intensity 13 13 at $q_0$ (parameterised as the $scale$ parameter), and $B$ is a flat 14 background. The spinodal wavelength is given by $2\pi/q_0$. 14 background. The spinodal wavelength, $\Lambda$, is given by $2\pi/q_0$. 15 16 The definition of $I_{max}$ in the literature varies. Hashimoto *et al* (1991) 17 define it as 18 19 .. math:: 20 I_{max} = \Lambda^3\Delta\rho^2 21 22 whereas Meier & Strobl (1987) give 23 24 .. math:: 25 I_{max} = V_z\Delta\rho^2 26 27 where $V_z$ is the volume per monomer unit. 15 28 16 29 The exponent $\gamma$ is equal to $d+1$ for off-critical concentration … … 28 41 29 42 H. Furukawa. Dynamics-scaling theory for phase-separating unmixing mixtures: 30 Growth rates of droplets and scaling properties of autocorrelation functions. 31 Physica A 123,497 (1984). 43 Growth rates of droplets and scaling properties of autocorrelation functions. 44 Physica A 123, 497 (1984). 45 46 H. Meier & G. Strobl. Small-Angle X-ray Scattering Study of Spinodal 47 Decomposition in Polystyrene/Poly(styrene-co-bromostyrene) Blends. 48 Macromolecules 20, 649-654 (1987). 49 50 T. Hashimoto, M. Takenaka & H. Jinnai. Scattering Studies of Self-Assembling 51 Processes of Polymer Blends in Spinodal Decomposition. 52 J. Appl. Cryst. 24, 457-466 (1991). 32 53 33 54 Revision History … … 35 56 36 57 * **Author:** Dirk Honecker **Date:** Oct 7, 2016 37 * **Revised:** Steve King **Date:** Sep 7, 201858 * **Revised:** Steve King **Date:** Oct 25, 2018 38 59 """ 39 60 -
sasmodels/sasview_model.py
raa25fc7 r12f77e9 67 67 #: set of defined models (standard and custom) 68 68 MODELS = {} # type: Dict[str, SasviewModelType] 69 # TODO: remove unused MODEL_BY_PATH cache once sasview no longer references it 69 70 #: custom model {path: model} mapping so we can check timestamps 70 71 MODEL_BY_PATH = {} # type: Dict[str, SasviewModelType] 72 #: Track modules that we have loaded so we can determine whether the model 73 #: has changed since we last reloaded. 74 _CACHED_MODULE = {} # type: Dict[str, "module"] 71 75 72 76 def find_model(modelname): … … 111 115 Load a custom model given the model path. 112 116 """ 113 model = MODEL_BY_PATH.get(path, None)114 if model is not None and model.timestamp == getmtime(path):115 #logger.info("Model already loaded %s", path)116 return model117 118 117 #logger.info("Loading model %s", path) 118 119 # Load the kernel module. This may already be cached by the loader, so 120 # only requires checking the timestamps of the dependents. 119 121 kernel_module = custom.load_custom_kernel_module(path) 120 if hasattr(kernel_module, 'Model'): 121 model = kernel_module.Model 122 123 # Check if the module has changed since we last looked. 124 reloaded = kernel_module != _CACHED_MODULE.get(path, None) 125 _CACHED_MODULE[path] = kernel_module 126 127 # Turn the module into a model. We need to do this in even if the 128 # model has already been loaded so that we can determine the model 129 # name and retrieve it from the MODELS cache. 130 model = getattr(kernel_module, 'Model', None) 131 if model is not None: 122 132 # Old style models do not set the name in the class attributes, so 123 133 # set it here; this name will be overridden when the object is created … … 132 142 model_info = modelinfo.make_model_info(kernel_module) 133 143 model = make_model_from_info(model_info) 134 model.timestamp = getmtime(path)135 144 136 145 # If a model name already exists and we are loading a different model, … … 148 157 _previous_name, model.name, model.filename) 149 158 150 MODELS[model.name] = model 151 MODEL_BY_PATH[path] = model 152 return model 159 # Only update the model if the module has changed 160 if reloaded or model.name not in MODELS: 161 MODELS[model.name] = model 162 163 return MODELS[model.name] 153 164 154 165 … … 377 388 hidden.add('background') 378 389 self._model_info.parameters.defaults['background'] = 0. 390 391 # Update the parameter lists to exclude any hidden parameters 392 self.magnetic_params = tuple(pname for pname in self.magnetic_params 393 if pname not in hidden) 394 self.orientation_params = tuple(pname for pname in self.orientation_params 395 if pname not in hidden) 379 396 380 397 self._persistency_dict = {} … … 791 808 return value, [value], [1.0] 792 809 810 @classmethod 811 def runTests(cls): 812 """ 813 Run any tests built into the model and captures the test output. 814 815 Returns success flag and output 816 """ 817 from .model_test import check_model 818 return check_model(cls._model_info) 819 793 820 def test_cylinder(): 794 821 # type: () -> float … … 878 905 Model = _make_standard_model('sphere') 879 906 model = Model() 880 model.setParam(' M0:sld', 8)907 model.setParam('sld_M0', 8) 881 908 q = np.linspace(-0.35, 0.35, 500) 882 909 qx, qy = np.meshgrid(q, q) -
sasmodels/special.py
rdf69efa rfba9ca0 113 113 The standard math function, tgamma(x) is unstable for $x < 1$ 114 114 on some platforms. 115 116 sas_gammaln(x): 117 log gamma function sas_gammaln\ $(x) = \log \Gamma(|x|)$. 118 119 The standard math function, lgamma(x), is incorrect for single 120 precision on some platforms. 121 122 sas_gammainc(a, x), sas_gammaincc(a, x): 123 Incomplete gamma function 124 sas_gammainc\ $(a, x) = \int_0^x t^{a-1}e^{-t}\,dt / \Gamma(a)$ 125 and complementary incomplete gamma function 126 sas_gammaincc\ $(a, x) = \int_x^\infty t^{a-1}e^{-t}\,dt / \Gamma(a)$ 115 127 116 128 sas_erf(x), sas_erfc(x): … … 207 219 from numpy import pi, nan, inf 208 220 from scipy.special import gamma as sas_gamma 221 from scipy.special import gammaln as sas_gammaln 222 from scipy.special import gammainc as sas_gammainc 223 from scipy.special import gammaincc as sas_gammaincc 209 224 from scipy.special import erf as sas_erf 210 225 from scipy.special import erfc as sas_erfc -
setup.py
r1f991d6 r783e76f 29 29 return version[1:-1] 30 30 raise RuntimeError("Could not read version from %s/__init__.py"%package) 31 32 install_requires = ['numpy', 'scipy'] 33 34 if sys.platform=='win32' or sys.platform=='cygwin': 35 install_requires.append('tinycc') 31 36 32 37 setup( … … 61 66 'sasmodels': ['*.c', '*.cl'], 62 67 }, 63 install_requires=[ 64 ], 68 install_requires=install_requires, 65 69 extras_require={ 70 'full': ['docutils', 'bumps', 'matplotlib'], 71 'server': ['bumps'], 66 72 'OpenCL': ["pyopencl"], 67 'Bumps': ["bumps"],68 'TinyCC': ["tinycc"],69 73 }, 70 74 build_requires=['setuptools'], -
doc/guide/pd/polydispersity.rst
rd089a00 ra5cb9bc 11 11 -------------------------------------------- 12 12 13 For some models we can calculate the average intensity for a population of 14 particles that possess size and/or orientational (ie, angular) distributions. 15 In SasView we call the former *polydispersity* but use the parameter *PD* to 16 parameterise both. In other words, the meaning of *PD* in a model depends on 13 For some models we can calculate the average intensity for a population of 14 particles that possess size and/or orientational (ie, angular) distributions. 15 In SasView we call the former *polydispersity* but use the parameter *PD* to 16 parameterise both. In other words, the meaning of *PD* in a model depends on 17 17 the actual parameter it is being applied too. 18 18 19 The resultant intensity is then normalized by the average particle volume such 19 The resultant intensity is then normalized by the average particle volume such 20 20 that 21 21 … … 24 24 P(q) = \text{scale} \langle F^* F \rangle / V + \text{background} 25 25 26 where $F$ is the scattering amplitude and $\langle\cdot\rangle$ denotes an 26 where $F$ is the scattering amplitude and $\langle\cdot\rangle$ denotes an 27 27 average over the distribution $f(x; \bar x, \sigma)$, giving 28 28 29 29 .. math:: 30 30 31 P(q) = \frac{\text{scale}}{V} \int_\mathbb{R} 31 P(q) = \frac{\text{scale}}{V} \int_\mathbb{R} 32 32 f(x; \bar x, \sigma) F^2(q, x)\, dx + \text{background} 33 33 34 34 Each distribution is characterized by a center value $\bar x$ or 35 35 $x_\text{med}$, a width parameter $\sigma$ (note this is *not necessarily* 36 the standard deviation, so read the description of the distribution carefully), 37 the number of sigmas $N_\sigma$ to include from the tails of the distribution, 38 and the number of points used to compute the average. The center of the 39 distribution is set by the value of the model parameter. 40 41 The distribution width applied to *volume* (ie, shape-describing) parameters 42 is relative to the center value such that $\sigma = \mathrm{PD} \cdot \bar x$. 43 However, the distribution width applied to *orientation* parameters is just 44 $\sigma = \mathrm{PD}$. 36 the standard deviation, so read the description carefully), the number of 37 sigmas $N_\sigma$ to include from the tails of the distribution, and the 38 number of points used to compute the average. The center of the distribution 39 is set by the value of the model parameter. The meaning of a polydispersity 40 parameter *PD* (not to be confused with a molecular weight distributions 41 in polymer science) in a model depends on the type of parameter it is being 42 applied too. 43 44 The distribution width applied to *volume* (ie, shape-describing) parameters 45 is relative to the center value such that $\sigma = \mathrm{PD} \cdot \bar x$. 46 However, the distribution width applied to *orientation* (ie, angle-describing) 47 parameters is just $\sigma = \mathrm{PD}$. 45 48 46 49 $N_\sigma$ determines how far into the tails to evaluate the distribution, … … 52 55 53 56 Users should note that the averaging computation is very intensive. Applying 54 polydispersion and/or orientational distributions to multiple parameters at 55 the same time, or increasing the number of points in the distribution, will 56 require patience! However, the calculations are generally more robust with 57 polydispersion and/or orientational distributions to multiple parameters at 58 the same time, or increasing the number of points in the distribution, will 59 require patience! However, the calculations are generally more robust with 57 60 more data points or more angles. 58 61 … … 66 69 * *Schulz Distribution* 67 70 * *Array Distribution* 71 * *User-defined Distributions* 68 72 69 73 These are all implemented as *number-average* distributions. 70 74 71 Additional distributions are under consideration.72 75 73 76 **Beware: when the Polydispersity & Orientational Distribution panel in SasView is** … … 75 78 **This may not be suitable. See Suggested Applications below.** 76 79 77 .. note:: In 2009 IUPAC decided to introduce the new term 'dispersity' to replace 78 the term 'polydispersity' (see `Pure Appl. Chem., (2009), 81(2), 79 351-353 <http://media.iupac.org/publications/pac/2009/pdf/8102x0351.pdf>`_ 80 in order to make the terminology describing distributions of chemical 81 properties unambiguous. However, these terms are unrelated to the 82 proportional size distributions and orientational distributions used in 80 .. note:: In 2009 IUPAC decided to introduce the new term 'dispersity' to replace 81 the term 'polydispersity' (see `Pure Appl. Chem., (2009), 81(2), 82 351-353 <http://media.iupac.org/publications/pac/2009/pdf/8102x0351.pdf>`_ 83 in order to make the terminology describing distributions of chemical 84 properties unambiguous. However, these terms are unrelated to the 85 proportional size distributions and orientational distributions used in 83 86 SasView models. 84 87 … … 92 95 or angular orientations, consider using the Gaussian or Boltzmann distributions. 93 96 94 If applying polydispersion to parameters describing angles, use the Uniform 95 distribution. Beware of using distributions that are always positive (eg, the 97 If applying polydispersion to parameters describing angles, use the Uniform 98 distribution. Beware of using distributions that are always positive (eg, the 96 99 Lognormal) because angles can be negative! 97 100 98 The array distribution allows a user-defined distribution to be applied. 101 The array distribution provides a very simple means of implementing a user- 102 defined distribution, but without any fittable parameters. Greater flexibility 103 is conferred by the user-defined distribution. 99 104 100 105 .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ … … 334 339 .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 335 340 341 User-defined Distributions 342 ^^^^^^^^^^^^^^^^^^^^^^^^^^ 343 344 You can also define your own distribution by creating a python file defining a 345 *Distribution* object with a *_weights* method. The *_weights* method takes 346 *center*, *sigma*, *lb* and *ub* as arguments, and can access *self.npts* 347 and *self.nsigmas* from the distribution. They are interpreted as follows: 348 349 * *center* the value of the shape parameter (for size dispersity) or zero 350 if it is an angular dispersity. This parameter may be fitted. 351 352 * *sigma* the width of the distribution, which is the polydispersity parameter 353 times the center for size dispersity, or the polydispersity parameter alone 354 for angular dispersity. This parameter may be fitted. 355 356 * *lb*, *ub* are the parameter limits (lower & upper bounds) given in the model 357 definition file. For example, a radius parameter has *lb* equal to zero. A 358 volume fraction parameter would have *lb* equal to zero and *ub* equal to one. 359 360 * *self.nsigmas* the distance to go into the tails when evaluating the 361 distribution. For a two parameter distribution, this value could be 362 co-opted to use for the second parameter, though it will not be available 363 for fitting. 364 365 * *self.npts* the number of points to use when evaluating the distribution. 366 The user will adjust this to trade calculation time for accuracy, but the 367 distribution code is free to return more or fewer, or use it for the third 368 parameter in a three parameter distribution. 369 370 As an example, the code following wraps the Laplace distribution from scipy stats:: 371 372 import numpy as np 373 from scipy.stats import laplace 374 375 from sasmodels import weights 376 377 class Dispersion(weights.Dispersion): 378 r""" 379 Laplace distribution 380 381 .. math:: 382 383 w(x) = e^{-\sigma |x - \mu|} 384 """ 385 type = "laplace" 386 default = dict(npts=35, width=0, nsigmas=3) # default values 387 def _weights(self, center, sigma, lb, ub): 388 x = self._linspace(center, sigma, lb, ub) 389 wx = laplace.pdf(x, center, sigma) 390 return x, wx 391 392 You can plot the weights for a given value and width using the following:: 393 394 from numpy import inf 395 from matplotlib import pyplot as plt 396 from sasmodels import weights 397 398 # reload the user-defined weights 399 weights.load_weights() 400 x, wx = weights.get_weights('laplace', n=35, width=0.1, nsigmas=3, value=50, 401 limits=[0, inf], relative=True) 402 403 # plot the weights 404 plt.interactive(True) 405 plt.plot(x, wx, 'x') 406 407 The *self.nsigmas* and *self.npts* parameters are normally used to control 408 the accuracy of the distribution integral. The *self._linspace* function 409 uses them to define the *x* values (along with the *center*, *sigma*, 410 *lb*, and *ub* which are passed as parameters). If you repurpose npts or 411 nsigmas you will need to generate your own *x*. Be sure to honour the 412 limits *lb* and *ub*, for example to disallow a negative radius or constrain 413 the volume fraction to lie between zero and one. 414 415 To activate a user-defined distribution, put it in a file such as *distname.py* 416 in the *SAS_WEIGHTS_PATH* folder. This is defined with an environment 417 variable, defaulting to:: 418 419 SAS_WEIGHTS_PATH=~/.sasview/weights 420 421 The weights path is loaded on startup. To update the distribution definition 422 in a running application you will need to enter the following python commands:: 423 424 import sasmodels.weights 425 sasmodels.weights.load_weights('path/to/distname.py') 426 427 .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 428 336 429 Note about DLS polydispersity 337 430 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 338 431 339 Several measures of polydispersity abound in Dynamic Light Scattering (DLS) and 340 it should not be assumed that any of the following can be simply equated with 432 Several measures of polydispersity abound in Dynamic Light Scattering (DLS) and 433 it should not be assumed that any of the following can be simply equated with 341 434 the polydispersity *PD* parameter used in SasView. 342 435 343 The dimensionless **Polydispersity Index (PI)** is a measure of the width of the 344 distribution of autocorrelation function decay rates (*not* the distribution of 345 particle sizes itself, though the two are inversely related) and is defined by 436 The dimensionless **Polydispersity Index (PI)** is a measure of the width of the 437 distribution of autocorrelation function decay rates (*not* the distribution of 438 particle sizes itself, though the two are inversely related) and is defined by 346 439 ISO 22412:2017 as 347 440 … … 350 443 PI = \mu_{2} / \bar \Gamma^2 351 444 352 where $\mu_\text{2}$ is the second cumulant, and $\bar \Gamma^2$ is the 445 where $\mu_\text{2}$ is the second cumulant, and $\bar \Gamma^2$ is the 353 446 intensity-weighted average value, of the distribution of decay rates. 354 447 … … 359 452 PI = \sigma^2 / 2\bar \Gamma^2 360 453 361 where $\sigma$ is the standard deviation, allowing a **Relative Polydispersity (RP)** 454 where $\sigma$ is the standard deviation, allowing a **Relative Polydispersity (RP)** 362 455 to be defined as 363 456 … … 366 459 RP = \sigma / \bar \Gamma = \sqrt{2 \cdot PI} 367 460 368 PI values smaller than 0.05 indicate a highly monodisperse system. Values 461 PI values smaller than 0.05 indicate a highly monodisperse system. Values 369 462 greater than 0.7 indicate significant polydispersity. 370 463 371 The **size polydispersity P-parameter** is defined as the relative standard 372 deviation coefficient of variation 464 The **size polydispersity P-parameter** is defined as the relative standard 465 deviation coefficient of variation 373 466 374 467 .. math:: … … 377 470 378 471 where $\nu$ is the variance of the distribution and $\bar R$ is the mean 379 value of $R$. Here, the product $P \bar R$ is *equal* to the standard 472 value of $R$. Here, the product $P \bar R$ is *equal* to the standard 380 473 deviation of the Lognormal distribution. 381 474 -
sasmodels/weights.py
r3d58247 rf41027b 231 231 )) 232 232 233 SAS_WEIGHTS_PATH = "~/.sasview/weights" 234 def load_weights(pattern=None): 235 # type: (str) -> None 236 """ 237 Load dispersion distributions matching the given glob pattern 238 """ 239 import logging 240 import os 241 import os.path 242 import glob 243 import traceback 244 from .custom import load_custom_kernel_module 245 if pattern is None: 246 path = os.environ.get("SAS_WEIGHTS_PATH", SAS_WEIGHTS_PATH) 247 pattern = os.path.join(path, "*.py") 248 for filename in sorted(glob.glob(os.path.expanduser(pattern))): 249 try: 250 #print("loading weights from", filename) 251 module = load_custom_kernel_module(filename) 252 MODELS[module.Dispersion.type] = module.Dispersion 253 except Exception as exc: 254 logging.error(traceback.format_exc(exc)) 233 255 234 256 def get_weights(disperser, n, width, nsigmas, value, limits, relative):
Note: See TracChangeset
for help on using the changeset viewer.