1 | r""" |
---|
2 | Definition |
---|
3 | ---------- |
---|
4 | This model calculates the structure factor of a polyelectrolyte solution with |
---|
5 | the RPA expression derived by Borue and Erukhimovich\ [#Borue]_. Note however |
---|
6 | that the fitting procedure here does not follow the notation in that reference |
---|
7 | as 's' and 't' are **not** decoupled. Instead the scattering intensity $I(q)$ |
---|
8 | is calculated as |
---|
9 | |
---|
10 | .. math:: |
---|
11 | |
---|
12 | I(q) = K\frac{q^2+k^2}{4\pi L_b\alpha ^2} |
---|
13 | \frac{1}{1+r_{0}^2(q^2+k^2)(q^2-12hC_a/b^2)} + background |
---|
14 | |
---|
15 | k^2 = 4\pi L_b(2C_s + \alpha C_a) |
---|
16 | |
---|
17 | r_{0}^2 = \frac{1}{\alpha \sqrt{C_a} \left( b/\sqrt{48\pi L_b}\right)} |
---|
18 | |
---|
19 | where |
---|
20 | |
---|
21 | $K$ is the contrast factor for the polymer which is defined differently than in |
---|
22 | other models and is given in barns where $1 barn = 10^{-24} cm^2$. $K$ is |
---|
23 | defined as: |
---|
24 | |
---|
25 | .. math:: |
---|
26 | |
---|
27 | K = a^2 |
---|
28 | |
---|
29 | a = b_p - (v_p/v_s) b_s |
---|
30 | |
---|
31 | where $b_p$ and $b_s$ are sum of the scattering lengths of the atoms |
---|
32 | constituting the monomer of the polymer and the sum of the scattering lengths |
---|
33 | of the atoms constituting the solvent molecules respectively, and $v_p$ and |
---|
34 | $v_s$ are the partial molar volume of the polymer and the solvent respectively |
---|
35 | |
---|
36 | $L_b$ is the Bjerrum length(|Ang|) - **Note:** This parameter needs to be |
---|
37 | kept constant for a given solvent and temperature! |
---|
38 | |
---|
39 | $h$ is the virial parameter (|Ang^3|/mol) - **Note:** See [#Borue]_ for the |
---|
40 | correct interpretation of this parameter. It incorporates second and third |
---|
41 | virial coefficients and can be Negative. |
---|
42 | |
---|
43 | $b$ is the monomer length(|Ang|), $C_s$ is the concentration of monovalent |
---|
44 | salt(mol/L), $\alpha$ is the ionization degree (ionization degree : ratio of |
---|
45 | charged monomers to total number of monomers), $C_a$ is the polymer molar |
---|
46 | concentration(mol/L), and $background$ is the incoherent background. |
---|
47 | |
---|
48 | For 2D data the scattering intensity is calculated in the same way as 1D, |
---|
49 | where the $\vec q$ vector is defined as |
---|
50 | |
---|
51 | .. math:: |
---|
52 | |
---|
53 | q = \sqrt{q_x^2 + q_y^2} |
---|
54 | |
---|
55 | References |
---|
56 | ---------- |
---|
57 | |
---|
58 | .. [#Borue] V Y Borue, I Y Erukhimovich, *Macromolecules*, 21 (1988) 3240 |
---|
59 | .. [#] J F Joanny, L Leibler, *Journal de Physique*, 51 (1990) 545 |
---|
60 | .. [#] A Moussaid, F Schosseler, J P Munch, S Candau, *J. Journal de Physique |
---|
61 | II France*, 3 (1993) 573 |
---|
62 | .. [#] E Raphael, J F Joanny, *Europhysics Letters*, 11 (1990) 179 |
---|
63 | |
---|
64 | Authorship and Verification |
---|
65 | ---------------------------- |
---|
66 | |
---|
67 | * **Author:** NIST IGOR/DANSE **Date:** pre 2010 |
---|
68 | * **Last Modified by:** Paul Kienzle **Date:** July 24, 2016 |
---|
69 | * **Last Reviewed by:** Paul Butler and Richard Heenan **Date:** October 07, 2016 |
---|
70 | """ |
---|
71 | |
---|
72 | import numpy as np |
---|
73 | from numpy import inf, pi, sqrt |
---|
74 | |
---|
75 | name = "be_polyelectrolyte" |
---|
76 | title = "Polyelectrolyte with the RPA expression derived by Borue and Erukhimovich" |
---|
77 | description = """ |
---|
78 | Evaluate |
---|
79 | F(x) = K 1/(4 pi Lb (alpha)^(2)) (q^(2)+k2)/(1+(r02)^(2)) |
---|
80 | (q^(2)+k2) (q^(2)-(12 h C/b^(2))) |
---|
81 | |
---|
82 | has 3 internal parameters : |
---|
83 | The inverse Debye Length: K2 = 4 pi Lb (2 Cs+alpha C) |
---|
84 | r02 =1/alpha/Ca^(0.5) (B/(48 pi Lb)^(0.5)) |
---|
85 | Ca = 6.022136e-4 C |
---|
86 | """ |
---|
87 | category = "shape-independent" |
---|
88 | |
---|
89 | # pylint: disable=bad-whitespace, line-too-long |
---|
90 | # ["name", "units", default, [lower, upper], "type", "description"], |
---|
91 | parameters = [ |
---|
92 | ["contrast_factor", "barns", 10.0, [-inf, inf], "", "Contrast factor of the polymer"], |
---|
93 | ["bjerrum_length", "Ang", 7.1, [0, inf], "", "Bjerrum length"], |
---|
94 | ["virial_param", "Ang^3/mol", 12.0, [-inf, inf], "", "Virial parameter"], |
---|
95 | ["monomer_length", "Ang", 10.0, [0, inf], "", "Monomer length"], |
---|
96 | ["salt_concentration", "mol/L", 0.0, [-inf, inf], "", "Concentration of monovalent salt"], |
---|
97 | ["ionization_degree", "", 0.05, [0, inf], "", "Degree of ionization"], |
---|
98 | ["polymer_concentration", "mol/L", 0.7, [0, inf], "", "Polymer molar concentration"], |
---|
99 | ] |
---|
100 | # pylint: enable=bad-whitespace, line-too-long |
---|
101 | |
---|
102 | |
---|
103 | def Iq(q, |
---|
104 | contrast_factor=10.0, |
---|
105 | bjerrum_length=7.1, |
---|
106 | virial_param=12.0, |
---|
107 | monomer_length=10.0, |
---|
108 | salt_concentration=0.0, |
---|
109 | ionization_degree=0.05, |
---|
110 | polymer_concentration=0.7): |
---|
111 | """ |
---|
112 | :param q: Input q-value |
---|
113 | :param contrast_factor: Contrast factor of the polymer |
---|
114 | :param bjerrum_length: Bjerrum length |
---|
115 | :param virial_param: Virial parameter |
---|
116 | :param monomer_length: Monomer length |
---|
117 | :param salt_concentration: Concentration of monovalent salt |
---|
118 | :param ionization_degree: Degree of ionization |
---|
119 | :param polymer_concentration: Polymer molar concentration |
---|
120 | :return: 1-D intensity |
---|
121 | """ |
---|
122 | |
---|
123 | concentration = polymer_concentration * 6.022136e-4 |
---|
124 | |
---|
125 | k_square = 4.0 * pi * bjerrum_length * (2*salt_concentration + |
---|
126 | ionization_degree * concentration) |
---|
127 | |
---|
128 | r0_square = 1.0/ionization_degree/sqrt(concentration) * \ |
---|
129 | (monomer_length/sqrt((48.0*pi*bjerrum_length))) |
---|
130 | |
---|
131 | term1 = contrast_factor/(4.0 * pi * bjerrum_length * |
---|
132 | ionization_degree**2) * (q**2 + k_square) |
---|
133 | |
---|
134 | term2 = 1.0 + r0_square**2 * (q**2 + k_square) * \ |
---|
135 | (q**2 - (12.0 * virial_param * concentration/(monomer_length**2))) |
---|
136 | |
---|
137 | return term1/term2 |
---|
138 | |
---|
139 | Iq.vectorized = True # Iq accepts an array of q values |
---|
140 | |
---|
141 | def random(): |
---|
142 | # TODO: review random be_polyelectrolyte model generation |
---|
143 | pars = dict( |
---|
144 | scale=10000, #background=0, |
---|
145 | #polymer_concentration=0.7, |
---|
146 | polymer_concentration=np.random.beta(5, 3), # around 70% |
---|
147 | #salt_concentration=0.0, |
---|
148 | # keep salt concentration extremely low |
---|
149 | # and use explicit molar to match polymer concentration |
---|
150 | salt_concentration=np.random.beta(1, 100)*6.022136e-4, |
---|
151 | #contrast_factor=10.0, |
---|
152 | contrast_fact=np.random.uniform(1, 100), |
---|
153 | #bjerrum_length=7.1, |
---|
154 | bjerrum_length=np.random.uniform(1, 10), |
---|
155 | #virial_param=12.0, |
---|
156 | virial_param=np.random.uniform(-1000, 30), |
---|
157 | #monomer_length=10.0, |
---|
158 | monomer_length=10.0**(4*np.random.beta(1.5, 3)), |
---|
159 | #ionization_degree=0.05, |
---|
160 | ionization_degree=np.random.beta(1.5, 4), |
---|
161 | ) |
---|
162 | return pars |
---|
163 | |
---|
164 | demo = dict(scale=1, background=0.1, |
---|
165 | contrast_factor=10.0, |
---|
166 | bjerrum_length=7.1, |
---|
167 | virial_param=12.0, |
---|
168 | monomer_length=10.0, |
---|
169 | salt_concentration=0.0, |
---|
170 | ionization_degree=0.05, |
---|
171 | polymer_concentration=0.7) |
---|
172 | |
---|
173 | tests = [ |
---|
174 | |
---|
175 | # Accuracy tests based on content in test/utest_other_models.py |
---|
176 | [{'contrast_factor': 10.0, |
---|
177 | 'bjerrum_length': 7.1, |
---|
178 | 'virial_param': 12.0, |
---|
179 | 'monomer_length': 10.0, |
---|
180 | 'salt_concentration': 0.0, |
---|
181 | 'ionization_degree': 0.05, |
---|
182 | 'polymer_concentration': 0.7, |
---|
183 | 'background': 0.001, |
---|
184 | }, 0.001, 0.0948379], |
---|
185 | |
---|
186 | # Additional tests with larger range of parameters |
---|
187 | [{'contrast_factor': 10.0, |
---|
188 | 'bjerrum_length': 100.0, |
---|
189 | 'virial_param': 3.0, |
---|
190 | 'monomer_length': 1.0, |
---|
191 | 'salt_concentration': 10.0, |
---|
192 | 'ionization_degree': 2.0, |
---|
193 | 'polymer_concentration': 10.0, |
---|
194 | 'background': 0.0, |
---|
195 | }, 0.1, -3.75693800588], |
---|
196 | |
---|
197 | [{'contrast_factor': 10.0, |
---|
198 | 'bjerrum_length': 100.0, |
---|
199 | 'virial_param': 3.0, |
---|
200 | 'monomer_length': 1.0, |
---|
201 | 'salt_concentration': 10.0, |
---|
202 | 'ionization_degree': 2.0, |
---|
203 | 'polymer_concentration': 10.0, |
---|
204 | 'background': 100.0 |
---|
205 | }, 5.0, 100.029142149], |
---|
206 | |
---|
207 | [{'contrast_factor': 100.0, |
---|
208 | 'bjerrum_length': 10.0, |
---|
209 | 'virial_param': 180.0, |
---|
210 | 'monomer_length': 1.0, |
---|
211 | 'salt_concentration': 0.1, |
---|
212 | 'ionization_degree': 0.5, |
---|
213 | 'polymer_concentration': 0.1, |
---|
214 | 'background': 0.0, |
---|
215 | }, 200., 1.80664667511e-06], |
---|
216 | ] |
---|