Changeset 0813a99 in sasmodels
- Timestamp:
- Mar 6, 2017 12:08:39 PM (8 years ago)
- Branches:
- master, core_shell_microgels, costrafo411, magnetic_model, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
- Children:
- d24e390
- Parents:
- 7b7fcf0 (diff), acfb094 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent. - Files:
-
- 1 added
- 7 edited
Legend:
- Unmodified
- Added
- Removed
-
sasmodels/models/ellipsoid.c
r925ad6e r130d4c7 4 4 double radius_polar, double radius_equatorial, double theta, double phi); 5 5 6 double _ellipsoid_kernel(double q, double radius_polar, double radius_equatorial, double sin_alpha); 7 double _ellipsoid_kernel(double q, double radius_polar, double radius_equatorial, double sin_alpha)6 static double 7 _ellipsoid_kernel(double q, double radius_polar, double radius_equatorial, double cos_alpha) 8 8 { 9 9 double ratio = radius_polar/radius_equatorial; 10 // Given the following under the radical: 11 // 1 + sin^2(T) (v^2 - 1) 12 // we can expand to match the form given in Guinier (1955) 13 // = (1 - sin^2(T)) + v^2 sin^2(T) = cos^2(T) + sin^2(T) 10 // Using ratio v = Rp/Re, we can expand the following to match the 11 // form given in Guinier (1955) 12 // r = Re * sqrt(1 + cos^2(T) (v^2 - 1)) 13 // = Re * sqrt( (1 - cos^2(T)) + v^2 cos^2(T) ) 14 // = Re * sqrt( sin^2(T) + v^2 cos^2(T) ) 15 // = sqrt( Re^2 sin^2(T) + Rp^2 cos^2(T) ) 16 // 14 17 // Instead of using pythagoras we could pass in sin and cos; this may be 15 18 // slightly better for 2D which has already computed it, but it introduces … … 17 20 // leave it as is. 18 21 const double r = radius_equatorial 19 * sqrt(1.0 + sin_alpha*sin_alpha*(ratio*ratio - 1.0));22 * sqrt(1.0 + cos_alpha*cos_alpha*(ratio*ratio - 1.0)); 20 23 const double f = sas_3j1x_x(q*r); 21 24 … … 39 42 double total = 0.0; 40 43 for (int i=0;i<76;i++) { 41 //const double sin_alpha = (Gauss76Z[i]*(upper-lower) + upper + lower)/2;42 const double sin_alpha = Gauss76Z[i]*zm + zb;43 total += Gauss76Wt[i] * _ellipsoid_kernel(q, radius_polar, radius_equatorial, sin_alpha);44 //const double cos_alpha = (Gauss76Z[i]*(upper-lower) + upper + lower)/2; 45 const double cos_alpha = Gauss76Z[i]*zm + zb; 46 total += Gauss76Wt[i] * _ellipsoid_kernel(q, radius_polar, radius_equatorial, cos_alpha); 44 47 } 45 48 // translate dx in [-1,1] to dx in [lower,upper] … … 59 62 double q, sin_alpha, cos_alpha; 60 63 ORIENT_SYMMETRIC(qx, qy, theta, phi, q, sin_alpha, cos_alpha); 61 const double form = _ellipsoid_kernel(q, radius_polar, radius_equatorial, sin_alpha);64 const double form = _ellipsoid_kernel(q, radius_polar, radius_equatorial, cos_alpha); 62 65 const double s = (sld - sld_solvent) * form_volume(radius_polar, radius_equatorial); 63 66 -
sasmodels/models/hayter_msa.c
r4962519 r3fc5d27 70 70 SofQ=sqhcal(Qdiam, gMSAWave); 71 71 }else{ 72 //SofQ=NaN; 73 SofQ=-1.0; 72 SofQ=NAN; 74 73 // print "Error Level = ",ierr 75 74 // print "Please report HPMSA problem with above error code" -
sasmodels/models/rpa.c
r6351bfa racfb094 39 39 double S31,S32,S33,S34,S41,S42,S43,S44; 40 40 double Lad,Lbd,Lcd,Nav,Intg; 41 41 42 // Set values for non existent parameters (eg. no A or B in case 0 and 1 etc) 42 43 //icase was shifted to N-1 from the original code 43 44 if (icase <= 1){ … … 57 58 Kab = Kac = Kad = -0.0004; 58 59 } 59 60 61 // Set volume fraction of component D based on constraint that sum of vol frac =1 62 Phi[3]=1.0-Phi[0]-Phi[1]-Phi[2]; 63 64 //set up values for cross terms in case of block copolymers (1,3,4,6,7,8,9) 60 65 Nab=sqrt(N[0]*N[1]); 61 66 Nac=sqrt(N[0]*N[2]); … … 79 84 Phicd=sqrt(Phi[2]*Phi[3]); 80 85 86 // Calculate Q^2 * Rg^2 for each homopolymer assuming random walk 81 87 Xa=q*q*b[0]*b[0]*N[0]/6.0; 82 88 Xb=q*q*b[1]*b[1]*N[1]/6.0; … … 84 90 Xd=q*q*b[3]*b[3]*N[3]/6.0; 85 91 86 Paa=2.0*(exp(-Xa)-1.0+Xa)/(Xa*Xa); 87 S0aa=N[0]*Phi[0]*v[0]*Paa; 88 Pab=((1.0-exp(-Xa))/Xa)*((1.0-exp(-Xb))/Xb); 92 //calculate all partial structure factors Pij and normalize n^2 93 Paa=2.0*(exp(-Xa)-1.0+Xa)/(Xa*Xa); // free A chain form factor 94 S0aa=N[0]*Phi[0]*v[0]*Paa; // Phi * Vp * P(Q)= I(Q0)/delRho^2 95 Pab=((1.0-exp(-Xa))/Xa)*((1.0-exp(-Xb))/Xb); //AB diblock (anchored Paa * anchored Pbb) partial form factor 89 96 S0ab=(Phiab*vab*Nab)*Pab; 90 Pac=((1.0-exp(-Xa))/Xa)*exp(-Xb)*((1.0-exp(-Xc))/Xc); 97 Pac=((1.0-exp(-Xa))/Xa)*exp(-Xb)*((1.0-exp(-Xc))/Xc); //ABC triblock AC partial form factor 91 98 S0ac=(Phiac*vac*Nac)*Pac; 92 Pad=((1.0-exp(-Xa))/Xa)*exp(-Xb-Xc)*((1.0-exp(-Xd))/Xd); 99 Pad=((1.0-exp(-Xa))/Xa)*exp(-Xb-Xc)*((1.0-exp(-Xd))/Xd); //ABCD four block 93 100 S0ad=(Phiad*vad*Nad)*Pad; 94 101 95 102 S0ba=S0ab; 96 Pbb=2.0*(exp(-Xb)-1.0+Xb)/(Xb*Xb); 103 Pbb=2.0*(exp(-Xb)-1.0+Xb)/(Xb*Xb); // free B chain 97 104 S0bb=N[1]*Phi[1]*v[1]*Pbb; 98 Pbc=((1.0-exp(-Xb))/Xb)*((1.0-exp(-Xc))/Xc); 105 Pbc=((1.0-exp(-Xb))/Xb)*((1.0-exp(-Xc))/Xc); // BC diblock 99 106 S0bc=(Phibc*vbc*Nbc)*Pbc; 100 Pbd=((1.0-exp(-Xb))/Xb)*exp(-Xc)*((1.0-exp(-Xd))/Xd); 107 Pbd=((1.0-exp(-Xb))/Xb)*exp(-Xc)*((1.0-exp(-Xd))/Xd); // BCD triblock 101 108 S0bd=(Phibd*vbd*Nbd)*Pbd; 102 109 103 110 S0ca=S0ac; 104 111 S0cb=S0bc; 105 Pcc=2.0*(exp(-Xc)-1.0+Xc)/(Xc*Xc); 112 Pcc=2.0*(exp(-Xc)-1.0+Xc)/(Xc*Xc); // Free C chain 106 113 S0cc=N[2]*Phi[2]*v[2]*Pcc; 107 Pcd=((1.0-exp(-Xc))/Xc)*((1.0-exp(-Xd))/Xd); 114 Pcd=((1.0-exp(-Xc))/Xc)*((1.0-exp(-Xd))/Xd); // CD diblock 108 115 S0cd=(Phicd*vcd*Ncd)*Pcd; 109 116 … … 111 118 S0db=S0bd; 112 119 S0dc=S0cd; 113 Pdd=2.0*(exp(-Xd)-1.0+Xd)/(Xd*Xd); 120 Pdd=2.0*(exp(-Xd)-1.0+Xd)/(Xd*Xd); // free D chain 114 121 S0dd=N[3]*Phi[3]*v[3]*Pdd; 122 123 // Reset all unused partial structure factors to 0 (depends on case) 115 124 //icase was shifted to N-1 from the original code 116 125 switch(icase){ … … 193 202 S0dc=S0cd; 194 203 204 // self chi parameter is 0 ... of course 195 205 Kaa=0.0; 196 206 Kbb=0.0; … … 243 253 ZZ=S0ad*(T11*S0ad+T12*S0bd+T13*S0cd)+S0bd*(T21*S0ad+T22*S0bd+T23*S0cd)+S0cd*(T31*S0ad+T32*S0bd+T33*S0cd); 244 254 255 // D is considered the matrix or background component so enters here 245 256 m=1.0/(S0dd-ZZ); 246 257 … … 297 308 S44=S11+S22+S33+2.0*S12+2.0*S13+2.0*S23; 298 309 310 //calculate contrast where L[i] is the scattering length of i and D is the matrix 311 //need to verify why the sqrt of Nav rather than just Nav (assuming v is molar volume) 299 312 Nav=6.022045e+23; 300 313 Lad=(L[0]/v[0]-L[3]/v[3])*sqrt(Nav); … … 303 316 304 317 Intg=Lad*Lad*S11+Lbd*Lbd*S22+Lcd*Lcd*S33+2.0*Lad*Lbd*S12+2.0*Lbd*Lcd*S23+2.0*Lad*Lcd*S13; 318 319 //rescale for units of Lij^2 (in 10e-12 m^2 to m^2 ?) 320 Intg *= 1.0e-24; 305 321 306 322 return Intg; -
sasmodels/models/rpa.py
r40a87fa rbb73096 107 107 108 108 control = "case_num" 109 HIDE_ NONE = set()110 HIDE_A = set("N1 Phi1 v1 L1 b1 K12 K13 K14".split()) 109 HIDE_ALL = set("Phi4".split()) 110 HIDE_A = set("N1 Phi1 v1 L1 b1 K12 K13 K14".split()).union(HIDE_ALL) 111 111 HIDE_AB = set("N2 Phi2 v2 L2 b2 K23 K24".split()).union(HIDE_A) 112 112 def hidden(case_num): … … 119 119 return HIDE_A 120 120 else: 121 return HIDE_ NONE121 return HIDE_ALL 122 122 -
sasmodels/sasview_model.py
rfe8ff99 r749a7d4 16 16 import logging 17 17 from os.path import basename, splitext 18 import thread 18 19 19 20 import numpy as np # type: ignore … … 38 39 except ImportError: 39 40 pass 41 42 calculation_lock = thread.allocate_lock() 40 43 41 44 SUPPORT_OLD_STYLE_PLUGINS = True … … 605 608 to the card for each evaluation. 606 609 """ 610 ## uncomment the following when trying to debug the uncoordinated calls 611 ## to calculate_Iq 612 #if calculation_lock.locked(): 613 # logging.info("calculation waiting for another thread to complete") 614 # logging.info("\n".join(traceback.format_stack())) 615 616 with calculation_lock: 617 return self._calculate_Iq(qx, qy) 618 619 def _calculate_Iq(self, qx, qy=None): 607 620 #core.HAVE_OPENCL = False 608 621 if self._model is None: … … 721 734 return [self.params[par.name]], [1.0] 722 735 723 def test_ model():736 def test_cylinder(): 724 737 # type: () -> float 725 738 """ 726 Test that a sasview model (cylinder) can be run.739 Test that the cylinder model runs, returning the value at [0.1,0.1]. 727 740 """ 728 741 Cylinder = _make_standard_model('cylinder') … … 733 746 # type: () -> float 734 747 """ 735 Test that a sasview model (cylinder) can be run.748 Test that 2-D hardsphere model runs and doesn't produce NaN. 736 749 """ 737 750 Model = _make_standard_model('hardsphere') … … 744 757 # type: () -> float 745 758 """ 746 Test that a sasview model (cylinder) can be run.759 Test that the 2-D RPA model runs 747 760 """ 748 761 RPA = _make_standard_model('rpa') … … 750 763 return rpa.evalDistribution([0.1, 0.1]) 751 764 765 def test_empty_distribution(): 766 # type: () -> None 767 """ 768 Make sure that sasmodels returns NaN when there are no polydispersity points 769 """ 770 Cylinder = _make_standard_model('cylinder') 771 cylinder = Cylinder() 772 cylinder.setParam('radius', -1.0) 773 cylinder.setParam('background', 0.) 774 Iq = cylinder.evalDistribution(np.asarray([0.1])) 775 assert np.isnan(Iq[0]), "empty distribution fails" 752 776 753 777 def test_model_list(): 754 778 # type: () -> None 755 779 """ 756 Make sure that all models build as sasview models .780 Make sure that all models build as sasview models 757 781 """ 758 782 from .exception import annotate_exception … … 781 805 782 806 if __name__ == "__main__": 783 print("cylinder(0.1,0.1)=%g"%test_model()) 807 print("cylinder(0.1,0.1)=%g"%test_cylinder()) 808 #test_empty_distribution() -
sasmodels/sesans.py
rb397165 r94d13f1 14 14 import numpy as np # type: ignore 15 15 from numpy import pi, exp # type: ignore 16 from scipy.special import jv as besselj 17 #import direct_model.DataMixin as model 18 19 def make_q(q_max, Rmax): 20 r""" 21 Return a $q$ vector suitable for SESANS covering from $2\pi/ (10 R_{\max})$ 22 to $q_max$. This is the integration range of the Hankel transform; bigger range and 23 more points makes a better numerical integration. 24 Smaller q_min will increase reliable spin echo length range. 25 Rmax is the "radius" of the largest expected object and can be set elsewhere. 26 q_max is determined by the acceptance angle of the SESANS instrument. 16 from scipy.special import j0 17 18 class SesansTransform(object): 27 19 """ 28 from sas.sascalc.data_util.nxsunit import Converter 20 Spin-Echo SANS transform calculator. Similar to a resolution function, 21 the SesansTransform object takes I(q) for the set of *q_calc* values and 22 produces a transformed dataset 29 23 30 q_min = dq = 0.1 * 2*pi / Rmax31 return np.arange(q_min, 32 Converter(q_max[1])(q_max[0],33 units="1/A"),34 dq) 35 36 def make_all_q(data): 24 *SElength* (A) is the set of spin-echo lengths in the measured data. 25 26 *zaccept* (1/A) is the maximum acceptance of scattering vector in the spin 27 echo encoding dimension (for ToF: Q of min(R) and max(lam)). 28 29 *Rmax* (A) is the maximum size sensitivity; larger radius requires more 30 computation time. 37 31 """ 38 Return a $q$ vector suitable for calculating the total scattering cross section for 39 calculating the effect of finite acceptance angles on Time of Flight SESANS instruments. 40 If no acceptance is given, or unwanted (set "unwanted" flag in paramfile), no all_q vector is needed. 41 If the instrument has a rectangular acceptance, 2 all_q vectors are needed. 42 If the instrument has a circular acceptance, 1 all_q vector is needed 43 44 """ 45 if not data.has_no_finite_acceptance: 46 return [] 47 elif data.has_yz_acceptance(data): 48 # compute qx, qy 49 Qx, Qy = np.meshgrid(qx, qy) 50 return [Qx, Qy] 51 else: 52 # else only need q 53 # data.has_z_acceptance 54 return [q] 32 #: SElength from the data in the original data units; not used by transform 33 #: but the GUI uses it, so make sure that it is present. 34 q = None # type: np.ndarray 55 35 56 def transform(data, q_calc, Iq_calc, qmono, Iq_mono): 57 """ 58 Decides which transform type is to be used, based on the experiment data file contents (header) 59 (2016-03-19: currently controlled from parameters script) 60 nqmono is the number of q vectors to be used for the detector integration 61 """ 62 nqmono = len(qmono) 63 if nqmono == 0: 64 result = call_hankel(data, q_calc, Iq_calc) 65 elif nqmono == 1: 66 q = qmono[0] 67 result = call_HankelAccept(data, q_calc, Iq_calc, q, Iq_mono) 68 else: 69 Qx, Qy = [qmono[0], qmono[1]] 70 Qx = np.reshape(Qx, nqx, nqy) 71 Qy = np.reshape(Qy, nqx, nqy) 72 Iq_mono = np.reshape(Iq_mono, nqx, nqy) 73 qx = Qx[0, :] 74 qy = Qy[:, 0] 75 result = call_Cosine2D(data, q_calc, Iq_calc, qx, qy, Iq_mono) 36 #: q values to calculate when computing transform 37 q_calc = None # type: np.ndarray 76 38 77 return result 39 # transform arrays 40 _H = None # type: np.ndarray 41 _H0 = None # type: np.ndarray 78 42 79 def call_hankel(data, q_calc, Iq_calc): 80 return hankel((data.x, data.x_unit), 81 (data.lam, data.lam_unit), 82 (data.sample.thickness, 83 data.sample.thickness_unit), 84 q_calc, Iq_calc) 85 86 def call_HankelAccept(data, q_calc, Iq_calc, q_mono, Iq_mono): 87 return hankel(data.x, data.lam * 1e-9, 88 data.sample.thickness / 10, 89 q_calc, Iq_calc) 90 91 def call_Cosine2D(data, q_calc, Iq_calc, qx, qy, Iq_mono): 92 return hankel(data.x, data.y, data.lam * 1e-9, 93 data.sample.thickness / 10, 94 q_calc, Iq_calc) 95 96 def TotalScatter(model, parameters): #Work in progress!! 97 # Calls a model with existing model parameters already in place, then integrate the product of q and I(q) from 0 to (4*pi/lambda) 98 allq = np.linspace(0,4*pi/wavelength,1000) 99 allIq = 1 100 integral = allq*allIq 101 43 def __init__(self, z, SElength, zaccept, Rmax): 44 # type: (np.ndarray, float, float) -> None 45 #import logging; logging.info("creating SESANS transform") 46 self.q = z 47 self._set_hankel(SElength, zaccept, Rmax) 102 48 49 def apply(self, Iq): 50 # tye: (np.ndarray) -> np.ndarray 51 G0 = np.dot(self._H0, Iq) 52 G = np.dot(self._H.T, Iq) 53 P = G - G0 54 return P 103 55 104 def Cosine2D(wavelength, magfield, thickness, qy, qz, Iqy, Iqz, modelname): #Work in progress!! Needs to call model still 105 #============================================================================== 106 # 2D Cosine Transform if "wavelength" is a vector 107 #============================================================================== 108 #allq is the q-space needed to create the total scattering cross-section 56 def _set_hankel(self, SElength, zaccept, Rmax): 57 # type: (np.ndarray, float, float) -> None 58 # Force float32 arrays, otherwise run into memory problems on some machines 59 SElength = np.asarray(SElength, dtype='float32') 109 60 110 Gprime = np.zeros_like(wavelength, 'd') 111 s = np.zeros_like(wavelength, 'd') 112 sd = np.zeros_like(wavelength, 'd') 113 Gprime = np.zeros_like(wavelength, 'd') 114 f = np.zeros_like(wavelength, 'd') 115 for i, wavelength_i in enumerate(wavelength): 116 z = magfield*wavelength_i 117 allq=np.linspace() #for calculating the Q-range of the scattering power integral 118 allIq=np.linspace() # This is the model applied to the allq q-space. Needs to refference the model somehow 119 alldq = (allq[1]-allq[0])*1e10 120 sigma[i]=wavelength[i]^2*thickness/2/pi*np.sum(allIq*allq*alldq) 121 s[i]=1-exp(-sigma) 122 for j, Iqy_j, qy_j in enumerate(qy): 123 for k, Iqz_k, qz_k in enumerate(qz): 124 Iq = np.sqrt(Iqy_j^2+Iqz_k^2) 125 q = np.sqrt(qy_j^2 + qz_k^2) 126 Gintegral = Iq*cos(z*Qz_k) 127 Gprime[i] += Gintegral 128 # sigma = wavelength^2*thickness/2/pi* allq[i]*allIq[i] 129 # s[i] += 1-exp(Totalscatter(modelname)*thickness) 130 # For now, work with standard 2-phase scatter 61 #Rmax = #value in text box somewhere in FitPage? 62 q_max = 2*pi / (SElength[1] - SElength[0]) 63 q_min = 0.1 * 2*pi / (np.size(SElength) * SElength[-1]) 64 q = np.arange(q_min, q_max, q_min, dtype='float32') 65 dq = q_min 131 66 67 H0 = np.float32(dq/(2*pi)) * q 132 68 133 sd[i] += Iq134 f[i] = 1-s[i]+sd[i]135 P[i] = (1-sd[i]/f[i])+1/f[i]*Gprime[i]69 repq = np.tile(q, (SElength.size, 1)).T 70 repSE = np.tile(SElength, (q.size, 1)) 71 H = np.float32(dq/(2*pi)) * j0(repSE*repq) * repq 136 72 137 138 139 140 def HankelAccept(wavelength, magfield, thickness, q, Iq, theta, modelname): 141 #============================================================================== 142 # HankelTransform with fixed circular acceptance angle (circular aperture) for Time of Flight SESANS 143 #============================================================================== 144 #acceptq is the q-space needed to create limited acceptance effect 145 SElength= wavelength*magfield 146 G = np.zeros_like(SElength, 'd') 147 threshold=2*pi*theta/wavelength 148 for i, SElength_i in enumerate(SElength): 149 allq=np.linspace() #for calculating the Q-range of the scattering power integral 150 allIq=np.linspace() # This is the model applied to the allq q-space. Needs to refference the model somehow 151 alldq = (allq[1]-allq[0])*1e10 152 sigma[i]=wavelength[i]^2*thickness/2/pi*np.sum(allIq*allq*alldq) 153 s[i]=1-exp(-sigma) 154 155 dq = (q[1]-q[0])*1e10 156 a = (x<threshold) 157 acceptq = a*q 158 acceptIq = a*Iq 159 160 G[i] = np.sum(besselj(0, acceptq*SElength_i)*acceptIq*acceptq*dq) 161 162 # G[i]=np.sum(integral) 163 164 G *= dq*1e10*2*pi 165 166 P = exp(thickness*wavelength**2/(4*pi**2)*(G-G[0])) 167 168 def hankel(SElength, wavelength, thickness, q, Iq): 169 r""" 170 Compute the expected SESANS polarization for a given SANS pattern. 171 172 Uses the hankel transform followed by the exponential. The values for *zz* 173 (or spin echo length, or delta), wavelength and sample thickness should 174 come from the dataset. $q$ should be chosen such that the oscillations 175 in $I(q)$ are well sampled (e.g., $5 \cdot 2 \pi/d_{\max}$). 176 177 *SElength* [A] is the set of $z$ points at which to compute the 178 Hankel transform 179 180 *wavelength* [m] is the wavelength of each individual point *zz* 181 182 *thickness* [cm] is the sample thickness. 183 184 *q* [A$^{-1}$] is the set of $q$ points at which the model has been 185 computed. These should be equally spaced. 186 187 *I* [cm$^{-1}$] is the value of the SANS model at *q* 188 """ 189 190 from sas.sascalc.data_util.nxsunit import Converter 191 wavelength = Converter(wavelength[1])(wavelength[0],"A") 192 thickness = Converter(thickness[1])(thickness[0],"A") 193 Iq = Converter("1/cm")(Iq,"1/A") # All models default to inverse centimeters 194 SElength = Converter(SElength[1])(SElength[0],"A") 195 196 G = np.zeros_like(SElength, 'd') 197 #============================================================================== 198 # Hankel Transform method if "wavelength" is a scalar; mono-chromatic SESANS 199 #============================================================================== 200 for i, SElength_i in enumerate(SElength): 201 integral = besselj(0, q*SElength_i)*Iq*q 202 G[i] = np.sum(integral) 203 G0 = np.sum(Iq*q) 204 205 # [m^-1] step size in q, needed for integration 206 dq = (q[1]-q[0]) 207 208 # integration step, convert q into [m**-1] and 2 pi circle integration 209 G *= dq*2*pi 210 G0 = np.sum(Iq*q)*dq*2*np.pi 211 212 P = exp(thickness*wavelength**2/(4*pi**2)*(G-G0)) 213 214 return P 73 self.q_calc = q 74 self._H, self._H0 = H, H0 -
sasmodels/resolution.py
rb397165 r7b7fcf0 84 84 self.weight_matrix = pinhole_resolution(self.q_calc, self.q, 85 85 np.maximum(q_width, MINIMUM_RESOLUTION)) 86 self.q_calc = abs(self.q_calc) 86 87 87 88 def apply(self, theory): … … 125 126 self.weight_matrix = \ 126 127 slit_resolution(self.q_calc, self.q, qx_width, qy_width) 128 self.q_calc = abs(self.q_calc) 127 129 128 130 def apply(self, theory): … … 153 155 # neither trapezoid nor Simpson's rule improved the accuracy. 154 156 edges = bin_edges(q_calc) 155 edges[edges < 0.0] = 0.0 # clip edges below zero157 #edges[edges < 0.0] = 0.0 # clip edges below zero 156 158 cdf = erf((edges[:, None] - q[None, :]) / (sqrt(2.0)*q_width)[None, :]) 157 159 weights = cdf[1:] - cdf[:-1] … … 286 288 # The current algorithm is a midpoint rectangle rule. 287 289 q_edges = bin_edges(q_calc) # Note: requires q > 0 288 q_edges[q_edges < 0.0] = 0.0 # clip edges below zero290 #q_edges[q_edges < 0.0] = 0.0 # clip edges below zero 289 291 weights = np.zeros((len(q), len(q_calc)), 'd') 290 292
Note: See TracChangeset
for help on using the changeset viewer.