source: sasmodels/sasmodels/models/core_shell_bicelle.py @ 5df888c

core_shell_microgelscostrafo411magnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 5df888c was 416f5c7, checked in by richardh, 8 years ago

fixes for numref warnings in docu, new equations core_shell_bicelle core_shell_ellipsoid

  • Property mode set to 100644
File size: 7.1 KB
Line 
1r"""
2Definition
3----------
4
5This model provides the form factor for a circular cylinder with a
6core-shell scattering length density profile. Thus this is a variation
7of a core-shell cylinder or disc where the shell on the walls and ends
8may be of different thicknesses and scattering length densities. The form
9factor is normalized by the particle volume.
10
11
12.. figure:: img/core_shell_bicelle_geometry.png
13
14    Schematic cross-section of bicelle. Note however that the model here
15    calculates for rectangular, not curved, rims as shown below.
16
17.. figure:: img/core_shell_bicelle_parameters.png
18
19   Cross section of cylindrical symmetry model used here. Users will have
20   to decide how to distribute "heads" and "tails" between the rim, face
21   and core regions in order to estimate appropriate starting parameters.
22
23Given the scattering length densities (sld) $\rho_c$, the core sld, $\rho_f$,
24the face sld, $\rho_r$, the rim sld and $\rho_s$ the solvent sld, the
25scattering length density variation along the cylinder axis is:
26
27.. math::
28
29    \rho(r) =
30      \begin{cases}
31      &\rho_c \text{ for } 0 \lt r \lt R; -L \lt z\lt L \\[1.5ex]
32      &\rho_f \text{ for } 0 \lt r \lt R; -(L+2t) \lt z\lt -L;
33      L \lt z\lt (L+2t) \\[1.5ex]
34      &\rho_r\text{ for } 0 \lt r \lt R; -(L+2t) \lt z\lt -L; L \lt z\lt (L+2t)
35      \end{cases}
36
37The form factor for the bicelle is calculated in cylindrical coordinates, where
38$\alpha$ is the angle between the $Q$ vector and the cylinder axis, to give:
39
40.. math::
41
42    I(Q,\alpha) = \frac{\text{scale}}{V} \cdot
43        F(Q,\alpha)^2 + \text{background}
44
45where
46
47.. math::
48
49        \begin{align}   
50    F(Q,\alpha) = &\bigg[
51    (\rho_c - \rho_f) V_c \frac{J_1(QRsin \alpha)}{QRsin\alpha}\frac{2 \cdot sin(QLcos\alpha/2)}{QLcos\alpha} \\
52    &+(\rho_f - \rho_r) V_{c+f} \frac{J_1(QRsin\alpha)}{QRsin\alpha}\frac{2 \cdot sin(Q(L/2+t_f)cos\alpha)}{Q(L+2t_f)cos\alpha} \\
53    &+(\rho_r - \rho_s) V_t \frac{J_1(Q(R+t_r)sin\alpha)}{Q(R+t_r)sin\alpha}\frac{2 \cdot sin(Q(L/2+t_f)cos\alpha)}{Q(L+2t_f)cos\alpha}
54    \bigg]
55    \end{align}
56
57where $V_t$ is the total volume of the bicelle, $V_c$ the volume of the core,
58$V_{c+f}$ the volume of the core plus the volume of the faces, $R$ is the radius
59of the core, $L$ the length of the core, $t_f$ the thickness of the face, $t_r$
60the thickness of the rim and $J_1$ the usual first order bessel function.
61
62The output of the 1D scattering intensity function for randomly oriented
63cylinders is then given by integrating over all possible $\theta$ and $\phi$.
64
65The *theta* and *phi* parameters are not used for the 1D output.
66Our implementation of the scattering kernel and the 1D scattering intensity
67use the c-library from NIST.
68
69.. figure:: img/cylinder_angle_definition.jpg
70
71    Definition of the angles for the oriented core shell bicelle tmodel.
72
73.. figure:: img/cylinder_angle_projection.jpg
74    :width: 600px
75
76    Examples of the angles for oriented pp against the detector plane.
77
78References
79----------
80
81.. [#] D Singh (2009). *Small angle scattering studies of self assembly in
82   lipid mixtures*, John's Hopkins University Thesis (2009) 223-225. `Available
83   from Proquest <http://search.proquest.com/docview/304915826?accountid
84   =26379>`_
85
86Authorship and Verification
87----------------------------
88
89* **Author:** NIST IGOR/DANSE **Date:** pre 2010
90* **Last Modified by:** Paul Butler **Date:** September 30, 2016
91* **Last Reviewed by:** Richard Heenan **Date:** October 5, 2016
92"""
93
94from numpy import inf, sin, cos
95
96name = "core_shell_bicelle"
97title = "Circular cylinder with a core-shell scattering length density profile.."
98description = """
99    P(q,alpha)= (scale/Vs)*f(q)^(2) + bkg,  where:
100    f(q)= Vt(sld_rim - sld_solvent)* sin[qLt.cos(alpha)/2]
101    /[qLt.cos(alpha)/2]*J1(qRout.sin(alpha))
102    /[qRout.sin(alpha)]+
103    (sld_core-sld_face)*Vc*sin[qLcos(alpha)/2][[qL
104    *cos(alpha)/2]*J1(qRc.sin(alpha))
105    /qRc.sin(alpha)]+
106    (sld_face-sld_rim)*(Vc+Vf)*sin[q(L+2.thick_face).
107    cos(alpha)/2][[q(L+2.thick_face)*cos(alpha)/2]*
108    J1(qRc.sin(alpha))/qRc.sin(alpha)]
109
110    alpha:is the angle between the axis of
111    the cylinder and the q-vector
112    Vt = pi.(Rc + thick_rim)^2.Lt : total volume
113    Vc = pi.Rc^2.L :the volume of the core
114    Vf = 2.pi.Rc^2.thick_face
115    Rc = radius: is the core radius
116    L: the length of the core
117    Lt = L + 2.thick_face: total length
118    Rout = radius + thick_rim
119    sld_core, sld_rim, sld_face:scattering length
120    densities within the particle
121    sld_solvent: the scattering length density
122    of the solvent
123    bkg: the background
124    J1: the first order Bessel function
125    theta: axis_theta of the cylinder
126    phi: the axis_phi of the cylinder...
127        """
128category = "shape:cylinder"
129
130# pylint: disable=bad-whitespace, line-too-long
131#             ["name", "units", default, [lower, upper], "type", "description"],
132parameters = [
133    ["radius",         "Ang",       80, [0, inf],    "volume",      "Cylinder core radius"],
134    ["thick_rim",  "Ang",       10, [0, inf],    "volume",      "Rim shell thickness"],
135    ["thick_face", "Ang",       10, [0, inf],    "volume",      "Cylinder face thickness"],
136    ["length",         "Ang",      50, [0, inf],    "volume",      "Cylinder length"],
137    ["sld_core",       "1e-6/Ang^2", 1, [-inf, inf], "sld",         "Cylinder core scattering length density"],
138    ["sld_face",       "1e-6/Ang^2", 4, [-inf, inf], "sld",         "Cylinder face scattering length density"],
139    ["sld_rim",        "1e-6/Ang^2", 4, [-inf, inf], "sld",         "Cylinder rim scattering length density"],
140    ["sld_solvent",    "1e-6/Ang^2", 1, [-inf, inf], "sld",         "Solvent scattering length density"],
141    ["theta",          "degrees",   90, [-inf, inf], "orientation", "In plane angle"],
142    ["phi",            "degrees",    0, [-inf, inf], "orientation", "Out of plane angle"],
143    ]
144
145# pylint: enable=bad-whitespace, line-too-long
146
147source = ["lib/Si.c", "lib/polevl.c", "lib/sas_J1.c", "lib/gauss76.c",
148          "core_shell_bicelle.c"]
149
150demo = dict(scale=1, background=0,
151            radius=20.0,
152            thick_rim=10.0,
153            thick_face=10.0,
154            length=400.0,
155            sld_core=1.0,
156            sld_face=4.0,
157            sld_rim=4.0,
158            sld_solvent=1.0,
159            theta=90,
160            phi=0)
161
162qx, qy = 0.4 * cos(90), 0.5 * sin(0)
163tests = [
164    # Accuracy tests based on content in test/utest_other_models.py
165    [{'radius': 20.0,
166      'thick_rim': 10.0,
167      'thick_face': 10.0,
168      'length': 400.0,
169      'sld_core': 1.0,
170      'sld_face': 4.0,
171      'sld_rim': 4.0,
172      'sld_solvent': 1.0,
173      'background': 0.0,
174     }, 0.001, 353.550],
175
176    [{'radius': 20.0,
177      'thick_rim': 10.0,
178      'thick_face': 10.0,
179      'length': 400.0,
180      'sld_core': 1.0,
181      'sld_face': 4.0,
182      'sld_rim': 4.0,
183      'sld_solvent': 1.0,
184      'theta': 90.0,
185      'phi': 0.0,
186      'background': 0.00,
187     }, (qx, qy), 24.9167],
188
189    # Additional tests with larger range of parameters
190    [{'radius': 3.0,
191      'thick_rim': 100.0,
192      'thick_face': 100.0,
193      'length': 1200.0,
194      'sld_core': 5.0,
195      'sld_face': 41.0,
196      'sld_rim': 42.0,
197      'sld_solvent': 21.0,
198     }, 0.05, 1670.1828],
199    ]
Note: See TracBrowser for help on using the repository browser.