source: sasmodels/Models/code_lamellar.py @ 099e053

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 099e053 was ca6c007, checked in by HMP1 <helen.park@…>, 10 years ago

further organizing

  • Property mode set to 100644
File size: 2.2 KB
Line 
1#!/usr/bin/env python
2# -*- coding: utf-8 -*-
3
4import numpy as np
5import pyopencl as cl
6from Models.weights import GaussianDispersion
7
8def set_precision(src, qx, qy, dtype):
9    qx = np.ascontiguousarray(qx, dtype=dtype)
10    qy = np.ascontiguousarray(qy, dtype=dtype)
11    if dtype == 'double':
12        header = """\
13#define real float
14"""
15    else:
16        header = """\
17#pragma OPENCL EXTENSION cl_khr_fp64: enable
18#define real double
19"""
20    return header+src, qx, qy
21
22
23class GpuLamellar(object):
24    PARS = {
25        'scale':1, 'bi_thick':1, 'sld_bi':1e-6, 'sld_sol':0, 'background':0,
26    }
27    PD_PARS = {'bi_thick'}
28    def __init__(self, qx, qy, dtype='float32'):
29
30        #create context, queue, and build program
31        self.ctx = cl.create_some_context()
32        self.queue = cl.CommandQueue(self.ctx)
33        src,qx,qy = set_precision(open('Kernel/Kernel-Lamellar.cpp').read(), qx, qy, dtype=dtype)
34        self.prg = cl.Program(self.ctx, src).build()
35        self.qx, self.qy = qx, qy
36
37        #buffers
38        mf = cl.mem_flags
39        self.qx_b = cl.Buffer(self.ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=self.qx)
40        self.qy_b = cl.Buffer(self.ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=self.qy)
41        self.res_b = cl.Buffer(self.ctx, mf.WRITE_ONLY, qx.nbytes)
42        self.res = np.empty_like(self.qx)
43
44    def eval(self, pars):
45
46        bi_thick = GaussianDispersion(int(pars['bi_thick_pd_n']), pars['bi_thick_pd'], pars['bi_thick_pd_nsigma'])
47        bi_thick.value, bi_thick.weight = bi_thick.get_weights(pars['bi_thick'], 0, 10000, True)
48
49        sum, norm = 0.0, 0.0
50        sub = pars['sld_bi'] - pars['sld_sol']
51
52        real = np.float32 if self.qx.dtype == np.dtype('float32') else np.float64
53        for i in xrange(len(bi_thick.weight)):
54            self.prg.LamellarKernel(self.queue, self.qx.shape, None, self.qx_b, self.qy_b, self.res_b, real(bi_thick.value[i]),
55                                    real(pars['scale']), real(sub), np.uint32(self.qx.size))
56            cl.enqueue_copy(self.queue, self.res, self.res_b)
57
58            sum += bi_thick.weight[i]*self.res
59            norm += bi_thick.weight[i]
60
61        return sum/norm + pars['background']
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
Note: See TracBrowser for help on using the repository browser.