Changes in / [fa902d4:fc7aa39] in sasmodels


Ignore:
Files:
2 added
1 deleted
9 edited

Legend:

Unmodified
Added
Removed
  • doc/Makefile

    ra84a0ca r2f63032  
    8585 
    8686clean: 
    87         -$(RMDIR) _build model api ref/models 
     87        -$(RMDIR) _build model api ref$(PATHSEP)models 
    8888 
    8989html: build 
  • sasmodels/models/bessel.py

    rad9af31 r2f63032  
    3333Validation of our code was done by comparing the output of the 1D model 
    3434to the output of the software provided by the NIST (Kline, 2006). 
    35 Figure :num:`figure #sphere-comparison` shows a comparison of the output 
     35Figure :numref:`figure #sphere-comparison` shows a comparison of the output 
    3636of our model and the output of the NIST software. 
    3737 
  • sasmodels/models/cylinder.py

    r26141cb r2f63032  
    3131To provide easy access to the orientation of the cylinder, we define the 
    3232axis of the cylinder using two angles $\theta$ and $\phi$. Those angles 
    33 are defined in :num:`figure #cylinder-angle-definition`. 
     33are defined in :numref:`figure #cylinder-angle-definition`. 
    3434 
    3535.. _cylinder-angle-definition: 
  • sasmodels/models/ellipsoid.py

    r43b7eea r43b7eea  
    3939the rotation axis of the ellipsoid using two angles $\theta$ and $\phi$. 
    4040These angles are defined in the 
    41 :ref:`cylinder orientation figure <cylinder-orientation>`. 
     41:ref:`cylinder orientation figure <cylinder-angle-definition>`. 
    4242For the ellipsoid, $\theta$ is the angle between the rotational axis 
    4343and the $z$-axis. 
  • sasmodels/models/parallelepiped.py

    r43b7eea r2f63032  
    77---------- 
    88 
    9 | This model calculates the scattering from a rectangular parallelepiped (:num:`Figure #parallelepiped-image`). 
     9| This model calculates the scattering from a rectangular parallelepiped (:numref:`Figure #parallelepiped-image`). 
    1010| If you need to apply polydispersity, see also :ref:`rectangular-prism`. 
    1111 
  • sasmodels/models/porod.py

    r1ce6e82 r2f63032  
    1919    q = \sqrt{q_x^2+q_y^2} 
    2020 
     21References 
     22---------- 
     23 
     24G Porod. *Kolloid Zeit*. 124 (1951) 83. 
     25L A Feigin, D I Svergun, G W Taylor. *Structure Analysis by Small-Angle X-ray and Neutron Scattering*. Springer. (1987) 
    2126""" 
    2227 
  • sasmodels/models/squarewell.py

    ra84a0ca r2f63032  
    1414The interaction potential is: 
    1515 
    16 .. comment:: 
    17  
    18   .. image:: img/image225.PNG 
     16  .. image:: img\squarewell.png 
    1917 
    2018.. math:: 
     
    3735    q = \sqrt{q_x^2 + q_y^2} 
    3836 
     37References 
     38---------- 
    3939 
    40 REFERENCE 
    41  
    42 R V Sharma, K C Sharma, *Physica*, 89A (1977) 213 
     40R V Sharma, K C Sharma, *Physica*, 89A (1977) 213. 
    4341 
    4442""" 
  • sasmodels/models/triaxial_ellipsoid.py

    r43b7eea r2f63032  
    3636we define the axis of the cylinder using the angles $\theta$, $\phi$ 
    3737and $\psi$. These angles are defined on 
    38 :num:`figure #triaxial-ellipsoid-angles`. 
     38:numref:`figure #triaxial-ellipsoid-angles`. 
    3939The angle $\psi$ is the rotational angle around its own $c$ axis 
    4040against the $q$ plane. For example, $\psi = 0$ when the 
  • sasmodels/resolution.py

    ra146eaa r2f63032  
    196196                \,dq_\perp dq_\parallel 
    197197 
    198  
    199     Definition 
    200     ---------- 
     198    **Definition** 
    201199 
    202200    We are using the mid-point integration rule to assign weights to each 
Note: See TracChangeset for help on using the changeset viewer.