Changeset fa8011eb in sasmodels
- Timestamp:
- Feb 24, 2016 5:51:27 PM (9 years ago)
- Branches:
- master, core_shell_microgels, costrafo411, magnetic_model, release_v0.94, release_v0.95, ticket-1257-vesicle-product, ticket_1156, ticket_1265_superball, ticket_822_more_unit_tests
- Children:
- d51ea74
- Parents:
- c8dcbdf
- Location:
- sasmodels
- Files:
-
- 1 added
- 8 edited
Legend:
- Unmodified
- Added
- Removed
-
sasmodels/generate.py
r0a4628d rfa8011eb 191 191 The function :func:`make` loads the metadata from the module and returns 192 192 the kernel source. The function :func:`doc` extracts the doc string 193 and adds the parameter table to the top. The function :func:` sources`193 and adds the parameter table to the top. The function :func:`model_sources` 194 194 returns a list of files required by the model. 195 195 """ … … 206 206 import numpy as np 207 207 208 __all__ = ["make", "doc", "sources", "convert_type"]208 #__all__ = ["make", "doc", "model_sources", "convert_type"] 209 209 210 210 C_KERNEL_TEMPLATE_PATH = joinpath(dirname(__file__), 'kernel_template.c') -
sasmodels/models/core_shell_bicelle.py
r8007311 rfa8011eb 7 7 The form factor is normalized by the particle volume. 8 8 9 .. _core-shell- cylinder-geometry:9 .. _core-shell-bicelle-geometry: 10 10 11 11 .. figure:: img/core_shell_bicelle_geometry.png -
sasmodels/models/core_shell_sphere.py
r8c9dbc9 rfa8011eb 15 15 16 16 .. math:: 17 17 18 F^2(q)=\frac{3}{V_s}\left[V_c(\rho_c-\rho_s)\frac{\sin(qr_c)-qr_c\cos(qr_c)}{(qr_c)^3}+ 18 19 V_s(\rho_s-\rho_{solv})\frac{\sin(qr_s)-qr_s\cos(qr_s)}{(qr_s)^3}\right] … … 41 42 our model and the output of the NIST software. 42 43 43 .. image:: img/core_shell_sphere_1d.jpg44 .. figure:: img/core_shell_sphere_1d.jpg 44 45 45 Figure 1:Comparison of the SasView scattering intensity for a core-shell sphere with46 Comparison of the SasView scattering intensity for a core-shell sphere with 46 47 the output of the NIST SANS analysis software. The parameters were set to: 47 48 *scale* = 1.0, *radius* = 60 , *contrast* = 1e-6 |Ang^-2|, and -
sasmodels/models/elliptical_cylinder.py
rb7c2fce rfa8011eb 10 10 to any of the orientation angles, and also for the minor radius and the ratio of the ellipse radii. 11 11 12 .. image:: img/elliptical_cylinder_geometry.gif12 .. figure:: img/elliptical_cylinder_geometry.gif 13 13 14 * Figure.* *a* = *r_minor* and |nu|\ :sub:`n` = $r_ratio$ (i.e., $r_major / r_minor$).14 *a* = *r_minor* and |nu|\ :sub:`n` = $r_ratio$ (i.e., $r_major / r_minor$). 15 15 16 16 The function calculated is 17 17 18 18 .. math:: 19 19 20 I(\mathbf{q})=\frac{1}{V_{cyl}}\int{d\psi}\int{d\phi}\int{p(\theta,\phi,\psi)F^2(\mathbf{q},\alpha,\psi)\sin(\theta)d\theta} 20 21 … … 22 23 23 24 .. math:: 25 24 26 F(\mathbf{q},\alpha,\psi)=2\frac{J_1(a)\sin(b)}{ab} 25 27 \\ … … 40 42 P(q) = scale <F^2> / V 41 43 42 The returned value is scaled to units of |cm^-1|.43 44 44 To provide easy access to the orientation of the elliptical cylinder, we define the axis of the cylinder using two 45 45 angles |theta|, |phi| and |bigpsi|. As for the case of the cylinder, the angles |theta| and |phi| are defined on … … 49 49 All angle parameters are valid and given only for 2D calculation; ie, an oriented system. 50 50 51 .. image:: img/elliptical_cylinder_geometry_2d.jpg51 .. figure:: img/elliptical_cylinder_geometry_2d.jpg 52 52 53 *Figure. Definition of angles for 2D*53 Definition of angles for 2D 54 54 55 .. image:: img/core_shell_bicelle_fig2.jpg55 .. figure:: img/core_shell_bicelle_fig2.jpg 56 56 57 *Figure. Examples of the angles for oriented elliptical cylinders against the detector plane.*57 Examples of the angles for oriented elliptical cylinders against the detector plane. 58 58 59 59 NB: The 2nd virial coefficient of the cylinder is calculated based on the averaged radius (= sqrt(*r_minor*\ :sup:`2` \* *r_ratio*)) … … 61 61 62 62 63 .. image:: img/elliptical_cylinder_comparison_1d.jpg63 .. figure:: img/elliptical_cylinder_comparison_1d.jpg 64 64 65 *Figure. 1D plot using the default values (w/1000 data point).*65 1D plot using the default values (w/1000 data point). 66 66 67 67 Validation … … 73 73 and 76 degrees are taken for the angles of |theta|, |phi|, and |bigpsi| respectively). 74 74 75 .. image:: img/elliptical_cylinder_validation_1d.gif75 .. figure:: img/elliptical_cylinder_validation_1d.gif 76 76 77 *Figure. Comparison between 1D and averaged 2D.*77 Comparison between 1D and averaged 2D. 78 78 79 79 In the 2D average, more binning in the angle |phi| is necessary to get the proper result. The following figure shows 80 80 the results of the averaging by varying the number of angular bins. 81 81 82 .. image:: img/elliptical_cylinder_averaging.gif82 .. figure:: img/elliptical_cylinder_averaging.gif 83 83 84 *Figure. The intensities averaged from 2D over different numbers of bins and angles.*84 The intensities averaged from 2D over different numbers of bins and angles. 85 85 86 86 Reference -
sasmodels/models/guinier_porod.py
r21d1031 rfa8011eb 51 51 q = \sqrt{q_x^2+q_y^2} 52 52 53 .. image:: img/guinier_porod_model.jpg53 .. figure:: img/guinier_porod_model.jpg 54 54 55 Figure 1:Guinier-Porod model for $R_g=100$ |Ang|, $s=1$, $m=3$, and $background=0.1$.55 Guinier-Porod model for $R_g=100$ |Ang|, $s=1$, $m=3$, and $background=0.1$. 56 56 57 57 -
sasmodels/models/line.py
re66075f rfa8011eb 13 13 .. note:: 14 14 For 2D plots intensity has different definition than other shape independent models 15 15 16 .. math:: 16 17 I(q) = I(qx) \cdot I(qy) 17 18 .. figure:: None19 18 20 19 References -
sasmodels/models/rpa.py
r8dd6914 rfa8011eb 43 43 component. 44 44 45 .. figure:: img/ image215.jpg45 .. figure:: img/rpa_1d.jpg 46 46 47 47 1D plot using the default values (w/500 data points). -
sasmodels/models/vesicle.py
r068cebd rfa8011eb 24 24 is a flat background level (due for example to incoherent scattering in the 25 25 case of neutrons), and $j_1$ is the spherical bessel function 26 $j_1 = ( sin(x) - xcos(x))/ x^2$.26 $j_1 = (\sin(x) - x \cos(x))/ x^2$. 27 27 28 28 The functional form is identical to a "typical" core-shell structure, except … … 35 35 thickness = $R_{\text{tot}} - R_{\text{core}}$. 36 36 37 .. figure: img/vesicle_geometry.jpg 37 .. figure:: img/vesicle_geometry.jpg 38 39 Vesicle geometry. 38 40 39 41 The 2D scattering intensity is the same as *P(q)* above, regardless of the … … 48 50 radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied. 49 51 50 .. image:: img/vesicle_1d.jpg52 .. figure:: img/vesicle_1d.jpg 51 53 52 *Figure. 1D plot using the default values given in the table 53 (w/200 data point). Polydispersity and instrumental resolution normally 54 will smear out most of the rapidly oscillating features.* 54 1D plot using the default values given in the table (w/200 data point). 55 Polydispersity and instrumental resolution normally will smear out most 56 of the rapidly oscillating features. 55 57 56 58 REFERENCE
Note: See TracChangeset
for help on using the changeset viewer.