Changeset f7bc948 in sasview for src/sas/sascalc/data_util/qsmearing.py
- Timestamp:
- Oct 8, 2016 2:13:22 PM (8 years ago)
- Branches:
- master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release-4.1.1, release-4.1.2, release-4.2.2, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
- Children:
- b61bd57
- Parents:
- 24f6f4a
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
src/sas/sascalc/data_util/qsmearing.py
r87b9447 rf7bc948 13 13 import logging 14 14 import sys 15 import sasmodels.sesans 15 16 16 from sasmodels.resolution import Slit1D, Pinhole1D 17 from sasmodels.resolution import Slit1D, Pinhole1D, SESANS1D 17 18 from sasmodels.resolution2d import Pinhole2D 18 from sasmodels import sesans19 19 20 20 def smear_selection(data, model = None): … … 48 48 return None 49 49 50 # Look for sesans50 # Look for resolution smearing data 51 51 _found_sesans = False 52 if hasattr(data,'lam'):53 _found_sesans = True54 logging.info("Found SESANS data!!")52 if data.dx is not None and data.lam is not None: 53 if data.dx[0] > 0.0: 54 _found_sesans = True 55 55 56 # If we found sesans data, do the necessary jiggery pokery57 56 if _found_sesans == True: 58 57 return sesans_smear(data, model) 59 58 60 # Look for resolution smearing data61 59 _found_resolution = False 62 60 if data.dx is not None and len(data.dx) == len(data.x): … … 93 91 if _found_slit == True: 94 92 return slit_smear(data, model) 95 96 93 return None 97 98 def sesans_smear(data, model=None):99 q = sesans.make_q(data.sample.zacceptance, data.Rmax)100 index = slice(None, None)101 res = None102 if data.y is not None:103 Iq, dIq = data.y, data.dy104 else:105 Iq, dIq = None, None106 #self._theory = np.zeros_like(q)107 q_vectors = [q]108 q_mono = sesans.make_all_q(data)109 Iq = model.evalDistribution(q_mono)110 111 return sesans.transform(data, q, Iq, 0, 0)112 94 113 95 … … 169 151 width = data.dx if data.dx is not None else 0 170 152 return PySmear(Pinhole1D(q, width), model) 153 154 def sesans_smear(data, model=None): 155 #This should be calculated characteristic length scale 156 #Probably not a data prameter either 157 #Need function to calculate this based on model 158 #Here assume a number 159 Rmax = 50000 160 q_calc = sesans.make_q(data.sample.z, Rmax) 161 return PySmear(SESANS1D(data,q_calc),model)
Note: See TracChangeset
for help on using the changeset viewer.