Ignore:
Timestamp:
May 1, 2015 10:58:57 AM (10 years ago)
Author:
smk78
Branches:
master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release-4.1.1, release-4.1.2, release-4.2.2, release_4.0.1, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
Children:
3b67c30
Parents:
a9dc4eb
Message:

Proof read.

File:
1 edited

Legend:

Unmodified
Added
Removed
  • src/sas/perspectives/fitting/media/sm_help.rst

    rcfc5917 rf256d9b  
    1111.. |theta| unicode:: U+03B8 
    1212.. |chi| unicode:: U+03C7 
     13.. |bigdelta| unicode:: U+0394 
    1314 
    1415.. |inlineimage004| image:: sm_image004.gif 
     
    2526.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 
    2627 
    27 Smearing Computation 
    28 -------------------- 
    29  
    30 The following three smearing algorithms are provided 
     28Smearing Functions 
     29================== 
     30 
     31Sometimes it will be necessary to correct reduced experimental data for the 
     32physical effects of the instrumental geometry in use. This process is called 
     33*desmearing*. However, calculated/simulated data - which by definition will be 
     34perfect/exact - can be *smeared* to make it more representative of what might 
     35actually be measured experimentally. 
     36 
     37SasView provides the following three smearing algorithms: 
    3138 
    3239*  *Slit Smearing* 
     
    3744 
    3845Slit Smearing 
    39 ^^^^^^^^^^^^^ 
    40  
    41 The sit smeared scattering intensity for SAS is defined by 
     46------------- 
     47 
     48**This type of smearing is normally only encountered with data from X-ray Kratky** 
     49**cameras or X-ray/neutron Bonse-Hart USAXS/USANS instruments.** 
     50 
     51The slit-smeared scattering intensity is defined by 
    4252 
    4353.. image:: sm_image002.gif 
    4454 
    45 where Norm = 
     55where *Norm* is given by 
    4656 
    4757.. image:: sm_image003.gif 
    4858 
    49 Equation 1 
     59**[Equation 1]** 
    5060 
    5161The functions |inlineimage004| and |inlineimage005| 
    5262refer to the slit width weighting function and the slit height weighting  
    53 determined at the q point, respectively. Here, we assumes that the weighting  
    54 function is described by a rectangular function, i.e., 
     63determined at the given *q* point, respectively. It is assumed that the weighting 
     64function is described by a rectangular function, such that 
    5565 
    5666.. image:: sm_image006.gif 
    5767 
    58 Equation 2 
     68**[Equation 2]** 
    5969 
    6070and 
     
    6272.. image:: sm_image007.gif 
    6373 
    64 Equation 3 
    65  
    66 so that |inlineimage008| |inlineimage009| for |inlineimage010| and u. 
    67  
    68 The |inlineimage011| and |inlineimage012| stand for 
    69 the slit height (FWHM/2) and the slit width (FWHM/2) in the q space. Now the  
    70 integral of Equation 1 is simplified to 
     74**[Equation 3]** 
     75 
     76so that |inlineimage008| |inlineimage009| for |inlineimage010| and *u*\ . 
     77 
     78Here |inlineimage011| and |inlineimage012| stand for 
     79the slit height (FWHM/2) and the slit width (FWHM/2) in *q* space. 
     80 
     81This simplifies the integral in Equation 1 to 
    7182 
    7283.. image:: sm_image013.gif 
    7384 
    74 Equation 4 
    75  
    76 Numerical Implementation of Equation 4: Case 1 
    77 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
    78  
    79 For |inlineimage012| = 0 and |inlineimage011| = constant. 
     85**[Equation 4]** 
     86 
     87which may be solved numerically, depending on the nature of |inlineimage011| and |inlineimage012| . 
     88 
     89Solution 1 
     90^^^^^^^^^^ 
     91 
     92**For** |inlineimage012| **= 0 and** |inlineimage011| **= constant.** 
    8093 
    8194.. image:: sm_image016.gif 
    8295 
    83 For discrete q values, at the q values from the data points and at the q  
    84 values extended up to qN= qi + |inlineimage011| the smeared  
    85 intensity can be calculated approximately 
     96For discrete *q* values, at the *q* values of the data points and at the *q* 
     97values extended up to *q*\ :sub:`N`\ = *q*\ :sub:`i` + |inlineimage011| the smeared 
     98intensity can be approximately calculated as 
    8699 
    87100.. image:: sm_image017.gif 
    88101 
    89 Equation 5 
    90  
    91 |inlineimage018| = 0 for *Is* in *j* < *i* or *j* > N-1*. 
    92  
    93 Numerical Implementation of Equation 4: Case 2 
    94 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
    95  
    96 For |inlineimage012| = constant and |inlineimage011| = 0. 
    97  
    98 Similarly to Case 1, we get 
    99  
    100 |inlineimage019| for qp= qi- |inlineimage012| and qN= qi+ |inlineimage012|. |inlineimage018| = 0 
    101 for *Is* in *j* < *p* or *j* > *N-1*. 
    102  
    103 Numerical Implementation of Equation 4: Case 3 
    104 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
    105  
    106 For |inlineimage011| = constant and  
    107 |inlineimage011| = constant. 
    108  
    109 In this case, the best way is to perform the integration, Equation 1,  
    110 numerically for both slit height and width. However, the numerical integration  
    111 is not correct enough unless given a large number of iteration, say at least  
    112 10000 by 10000 for each element of the matrix, W, which will take minutes and  
    113 minutes to finish the calculation for a set of typical SAS data. An  
    114 alternative way which is correct for slit width << slit hight, is used in  
    115 SasView. This method is a mixed method that combines method 1 with the  
    116 numerical integration for the slit width. 
     102**[Equation 5]** 
     103 
     104where |inlineimage018| = 0 for *I*\ :sub:`s` when *j* < *i* or *j* > *N-1*. 
     105 
     106Solution 2 
     107^^^^^^^^^^ 
     108 
     109**For** |inlineimage012| **= constant and** |inlineimage011| **= 0.** 
     110 
     111Similar to Case 1 
     112 
     113|inlineimage019| for *q*\ :sub:`p` = *q*\ :sub:`i` - |inlineimage012| and *q*\ :sub:`N` = *q*\ :sub:`i` + |inlineimage012| 
     114 
     115**[Equation 6]** 
     116 
     117where |inlineimage018| = 0 for *I*\ :sub:`s` when *j* < *p* or *j* > *N-1*. 
     118 
     119Solution 3 
     120^^^^^^^^^^ 
     121 
     122**For** |inlineimage011| **= constant and** |inlineimage011| **= constant.** 
     123 
     124In this case, the best way is to perform the integration of Equation 1 
     125numerically for both slit height and slit width. However, the numerical 
     126integration is imperfect unless a large number of iterations, say, at 
     127least 10000 by 10000 for each element of the matrix *W*, is performed. 
     128This is usually too slow for routine use. 
     129 
     130An alternative approach is used in SasView which assumes 
     131slit width << slit height. This method combines Solution 1 with the 
     132numerical integration for the slit width. Then 
    117133 
    118134.. image:: sm_image020.gif 
    119135 
    120 Equation 7 
    121  
    122 for qp= qi- |inlineimage012| and 
    123 qN= qi+ |inlineimage012|. |inlineimage018| = 0 for 
    124 *Is* in *j* < *p* or *j* > *N-1*. 
     136**[Equation 7]** 
     137 
     138for *q*\ :sub:`p` = *q*\ :sub:`i` - |inlineimage012| and *q*\ :sub:`N` = *q*\ :sub:`i` + |inlineimage012| 
     139 
     140where |inlineimage018| = 0 for *I*\ :sub:`s` when *j* < *p* or *j* > *N-1*. 
    125141 
    126142.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 
    127143 
    128144Pinhole Smearing 
    129 ^^^^^^^^^^^^^^^^ 
    130  
    131 The pinhole smearing computation is done similar to the case above except  
    132 that the weight function used is the Gaussian function, so that the Equation 6  
    133 for this case becomes 
     145---------------- 
     146 
     147**This is the type of smearing normally encountered with data from synchrotron** 
     148**SAXS cameras and SANS instruments.** 
     149 
     150The pinhole smearing computation is performed in a similar fashion to the slit- 
     151smeared case above except that the weight function used is a Gaussian. Thus 
     152Equation 6 becomes 
    134153 
    135154.. image:: sm_image021.gif 
    136155 
    137 Equation 8 
    138  
    139 For all the cases above, the weighting matrix *W* is calculated when the  
    140 smearing is called at the first time, and it includes the ~ 60 q values  
    141 (finely binned evenly) below (\>0) and above the q range of data in order  
    142 to cover all data points of the smearing computation for a given model and  
    143 for a given slit size. The *Norm*  factor is found numerically with the  
    144 weighting matrix, and considered on *Is* computation. 
     156**[Equation 8]** 
    145157 
    146158.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 
    147159 
    1481602D Smearing 
    149 ^^^^^^^^^^^ 
    150  
    151 The 2D smearing computation is done similar to the 1D pinhole smearing above  
    152 except that the weight function used was the 2D elliptical Gaussian function 
     161----------- 
     162 
     163The 2D smearing computation is performed in a similar fashion to the 1D pinhole 
     164smearing above except that the weight function used is a 2D elliptical Gaussian. 
     165Thus 
    153166 
    154167.. image:: sm_image022.gif 
    155168 
    156 Equation 9 
    157  
    158 In Equation 9, x0 = qcos/theta/ and y0 = qsin/theta/, and the primed axes  
    159 are in the coordinate rotated by an angle /theta/ around the z-axis (below)  
    160 so that x’0= x0cos/theta/+y0sin/theta/ and y’0= -x0sin/theta/+y0cos/theta/. 
    161  
    162 Note that the rotation angle is zero for x-y symmetric elliptical Gaussian  
    163 distribution. The A is a normalization factor. 
     169**[Equation 9]** 
     170 
     171In Equation 9, *x*\ :sub:`0` = *q* cos(|theta|), *y*\ :sub:`0` = *q* sin(|theta|), and 
     172the primed axes, are all in the coordinate rotated by an angle |theta| about 
     173the z-axis (see the figure below) so that *x'*\ :sub:`0` = *x*\ :sub:`0` cos(|theta|) + 
     174*y*\ :sub:`0` sin(|theta|) and *y'*\ :sub:`0` = -*x*\ :sub:`0` sin(|theta|) + 
     175*y*\ :sub:`0` cos(|theta|). Note that the rotation angle is zero for a x-y symmetric 
     176elliptical Gaussian distribution. The *A* is a normalization factor. 
    164177 
    165178.. image:: sm_image023.gif 
    166179 
    167 Now we consider a numerical integration where each bins in /theta/ and R are  
    168 *evenly* (this is to simplify the equation below) distributed by /delta//theta/  
    169 and /delta/R, respectively, and it is assumed that I(x’, y’) is constant  
    170 within the bins which in turn becomes 
     180Now we consider a numerical integration where each of the bins in |theta| and *R* are 
     181*evenly* (this is to simplify the equation below) distributed by |bigdelta|\ |theta| 
     182and |bigdelta|\ R, respectively, and it is further assumed that *I(x',y')* is constant 
     183within the bins. Then 
    171184 
    172185.. image:: sm_image024.gif 
    173186 
    174 Equation 10 
    175  
    176 Since we have found the weighting factor on each bin points, it is convenient  
    177 to transform x’-y’ back to x-y coordinate (rotating it by -/theta/ around z  
    178 axis). Then, for the polar symmetric smear 
     187**[Equation 10]** 
     188 
     189Since the weighting factor on each of the bins is known, it is convenient to 
     190transform *x'-y'* back to *x-y* coordinates (by rotating it by -|theta| around the 
     191*z* axis). 
     192 
     193Then, for a polar symmetric smear 
    179194 
    180195.. image:: sm_image025.gif 
    181196 
    182 Equation 11 
     197**[Equation 11]** 
    183198 
    184199where 
     
    186201.. image:: sm_image026.gif 
    187202 
    188 while for the x-y symmetric smear 
     203while for a *x-y* symmetric smear 
    189204 
    190205.. image:: sm_image027.gif 
    191206 
    192 Equation 12 
     207**[Equation 12]** 
    193208 
    194209where 
     
    196211.. image:: sm_image028.gif 
    197212 
    198 Here, the current version of the SasView uses Equation 11 for 2D smearing  
    199 assuming that all the Gaussian weighting functions are aligned in the polar  
    200 coordinate. 
    201  
    202 In the control panel, the higher accuracy indicates more and finer binnng  
    203 points so that it costs more in time. 
    204  
    205 .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 
     213The current version of the SasView uses Equation 11 for 2D smearing, assuming 
     214that all the Gaussian weighting functions are aligned in the polar coordinate. 
     215 
     216.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 
     217 
     218Weighting & Normalization 
     219------------------------- 
     220 
     221In all the cases above, the weighting matrix *W* is calculated on the first call 
     222to a smearing function, and includes ~60 *q* values (finely and evenly binned) 
     223below (>0) and above the *q* range of data in order to smear all data points for 
     224a given model and slit/pinhole size. The *Norm*  factor is found numerically with the 
     225weighting matrix and applied on the computation of *I*\ :sub:`s`. 
     226 
     227.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 
     228 
     229.. note::  This help document was last changed by Steve King, 01May2015 
Note: See TracChangeset for help on using the changeset viewer.