Changeset ed2276f in sasview for src/sas/sasgui/perspectives
- Timestamp:
- Apr 4, 2017 12:00:18 PM (8 years ago)
- Branches:
- master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release-4.2.2, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
- Children:
- 7b15990
- Parents:
- 9a5097c (diff), 571bf4b (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent. - git-author:
- Andrew Jackson <andrew.jackson@…> (04/04/17 12:00:18)
- git-committer:
- GitHub <noreply@…> (04/04/17 12:00:18)
- Location:
- src/sas/sasgui/perspectives
- Files:
-
- 11 edited
Legend:
- Unmodified
- Added
- Removed
-
src/sas/sasgui/perspectives/fitting/basepage.py
r9a5097c red2276f 1449 1449 self.state_change = True 1450 1450 self._draw_model() 1451 # Time delay has been introduced to prevent _handle error1452 # on Windows1453 # This part of code is executed when model is selected and1454 # it's parameters are changed (with respect to previously1455 # selected model). There are two Iq evaluations occuring one1456 # after another and therefore there may be compilation error1457 # if model is calculated for the first time.1458 # This seems to be Windows only issue - haven't tested on Linux1459 # though.The proper solution (other than time delay) requires1460 # more fundemental code refatoring1461 # Wojtek P. Nov 7, 20161462 if not ON_MAC:1463 time.sleep(0.1)1464 1451 self.Refresh() 1465 1452 … … 2609 2596 Layout is called after fitting. 2610 2597 """ 2611 self._sleep4sec()2612 2598 self.Layout() 2613 2599 return 2614 2615 def _sleep4sec(self):2616 """2617 sleep for 1 sec only applied on Mac2618 Note: This 1sec helps for Mac not to crash on self.2619 Layout after self._draw_model2620 """2621 if ON_MAC:2622 time.sleep(1)2623 2600 2624 2601 def _find_polyfunc_selection(self, disp_func=None): -
src/sas/sasgui/perspectives/fitting/fitpage.py
r9a5097c red2276f 1809 1809 self.onSmear(None) 1810 1810 1811 def _mac_sleep(self, sec=0.2):1812 """1813 Give sleep to MAC1814 """1815 if self.is_mac:1816 time.sleep(sec)1817 1818 1811 def get_view_mode(self): 1819 1812 """ … … 2188 2181 self.save_current_state() 2189 2182 2190 if not self.is_mac:2191 self.Layout()2192 self.Refresh()2193 self._mac_sleep(0.1)2194 2183 # plot model ( when drawing, do not update chisqr value again) 2195 2184 self._draw_model(update_chisqr=False, source='fit') -
src/sas/sasgui/perspectives/fitting/fitting.py
r9a5097c red2276f 876 876 qmin=qmin, qmax=qmax, weight=weight) 877 877 878 def _mac_sleep(self, sec=0.2):879 """880 Give sleep to MAC881 """882 if ON_MAC:883 time.sleep(sec)884 885 878 def draw_model(self, model, page_id, data=None, smearer=None, 886 879 enable1D=True, enable2D=False, … … 1030 1023 manager=self, 1031 1024 improvement_delta=0.1) 1032 self._mac_sleep(0.2)1033 1025 1034 1026 # batch fit … … 1270 1262 :param elapsed: time spent at the fitting level 1271 1263 """ 1272 self._mac_sleep(0.2)1273 1264 uid = page_id[0] 1274 1265 if uid in self.fit_thread_list.keys(): … … 1520 1511 page_id = [] 1521 1512 ## fit more than 1 model at the same time 1522 self._mac_sleep(0.2)1523 1513 try: 1524 1514 index = 0 … … 1755 1745 data_id="Data " + data.name + " unsmeared", 1756 1746 dy=unsmeared_error) 1757 1758 if sq_model is not None and pq_model is not None: 1759 self.create_theory_1D(x, sq_model, page_id, model, data, state, 1760 data_description=model.name + " S(q)", 1761 data_id=str(page_id) + " " + data.name + " S(q)") 1762 self.create_theory_1D(x, pq_model, page_id, model, data, state, 1763 data_description=model.name + " P(q)", 1764 data_id=str(page_id) + " " + data.name + " P(q)") 1765 1747 # Comment this out until we can get P*S models with correctly populated parameters 1748 #if sq_model is not None and pq_model is not None: 1749 # self.create_theory_1D(x, sq_model, page_id, model, data, state, 1750 # data_description=model.name + " S(q)", 1751 # data_id=str(page_id) + " " + data.name + " S(q)") 1752 # self.create_theory_1D(x, pq_model, page_id, model, data, state, 1753 # data_description=model.name + " P(q)", 1754 # data_id=str(page_id) + " " + data.name + " P(q)") 1766 1755 1767 1756 current_pg = self.fit_panel.get_page_by_id(page_id) -
src/sas/sasgui/perspectives/fitting/pagestate.py
r9a5097c red2276f 819 819 820 820 attr = newdoc.createAttribute("version") 821 import sasview821 from sas import sasview 822 822 attr.nodeValue = sasview.__version__ 823 823 # attr.nodeValue = '1.0' -
src/sas/sasgui/perspectives/calculator/data_operator.py
r61780e3 r9a5097c 5 5 import sys 6 6 import time 7 import numpy 7 import numpy as np 8 8 from sas.sascalc.dataloader.data_info import Data1D 9 9 from sas.sasgui.plottools.PlotPanel import PlotPanel … … 541 541 theory, _ = theory_list.values()[0] 542 542 dnames.append(theory.name) 543 ind = n umpy.argsort(dnames)543 ind = np.argsort(dnames) 544 544 if len(ind) > 0: 545 val_list = n umpy.array(self._data.values())[ind]545 val_list = np.array(self._data.values())[ind] 546 546 for datastate in val_list: 547 547 data = datastate.data -
src/sas/sasgui/perspectives/calculator/gen_scatter_panel.py
r0f7c930 r9a5097c 7 7 import sys 8 8 import os 9 import numpy 9 import numpy as np 10 10 #import math 11 11 import wx.aui as aui … … 741 741 marker = 'o' 742 742 m_size = 3.5 743 sld_tot = (n umpy.fabs(sld_mx) + numpy.fabs(sld_my) + \744 n umpy.fabs(sld_mz) + numpy.fabs(output.sld_n))743 sld_tot = (np.fabs(sld_mx) + np.fabs(sld_my) + \ 744 np.fabs(sld_mz) + np.fabs(output.sld_n)) 745 745 is_nonzero = sld_tot > 0.0 746 746 is_zero = sld_tot == 0.0 … … 757 757 pix_symbol = output.pix_symbol[is_nonzero] 758 758 # II. Plot selective points in color 759 other_color = n umpy.ones(len(pix_symbol), dtype='bool')759 other_color = np.ones(len(pix_symbol), dtype='bool') 760 760 for key in color_dic.keys(): 761 761 chosen_color = pix_symbol == key 762 if n umpy.any(chosen_color):762 if np.any(chosen_color): 763 763 other_color = other_color & (chosen_color != True) 764 764 color = color_dic[key] … … 767 767 markeredgecolor=color, markersize=m_size, label=key) 768 768 # III. Plot All others 769 if n umpy.any(other_color):769 if np.any(other_color): 770 770 a_name = '' 771 771 if output.pix_type == 'atom': … … 795 795 draw magnetic vectors w/arrow 796 796 """ 797 max_mx = max(n umpy.fabs(sld_mx))798 max_my = max(n umpy.fabs(sld_my))799 max_mz = max(n umpy.fabs(sld_mz))797 max_mx = max(np.fabs(sld_mx)) 798 max_my = max(np.fabs(sld_my)) 799 max_mz = max(np.fabs(sld_mz)) 800 800 max_m = max(max_mx, max_my, max_mz) 801 801 try: … … 812 812 unit_z2 = sld_mz / max_m 813 813 # 0.8 is for avoiding the color becomes white=(1,1,1)) 814 color_x = n umpy.fabs(unit_x2 * 0.8)815 color_y = n umpy.fabs(unit_y2 * 0.8)816 color_z = n umpy.fabs(unit_z2 * 0.8)814 color_x = np.fabs(unit_x2 * 0.8) 815 color_y = np.fabs(unit_y2 * 0.8) 816 color_z = np.fabs(unit_z2 * 0.8) 817 817 x2 = pos_x + unit_x2 * max_step 818 818 y2 = pos_y + unit_y2 * max_step 819 819 z2 = pos_z + unit_z2 * max_step 820 x_arrow = n umpy.column_stack((pos_x, x2))821 y_arrow = n umpy.column_stack((pos_y, y2))822 z_arrow = n umpy.column_stack((pos_z, z2))823 colors = n umpy.column_stack((color_x, color_y, color_z))820 x_arrow = np.column_stack((pos_x, x2)) 821 y_arrow = np.column_stack((pos_y, y2)) 822 z_arrow = np.column_stack((pos_z, z2)) 823 colors = np.column_stack((color_x, color_y, color_z)) 824 824 arrows = Arrow3D(panel, x_arrow, z_arrow, y_arrow, 825 825 colors, mutation_scale=10, lw=1, … … 880 880 if self.is_avg or self.is_avg == None: 881 881 self._create_default_1d_data() 882 i_out = n umpy.zeros(len(self.data.y))882 i_out = np.zeros(len(self.data.y)) 883 883 inputs = [self.data.x, [], i_out] 884 884 else: 885 885 self._create_default_2d_data() 886 i_out = n umpy.zeros(len(self.data.data))886 i_out = np.zeros(len(self.data.data)) 887 887 inputs = [self.data.qx_data, self.data.qy_data, i_out] 888 888 … … 989 989 :Param input: input list [qx_data, qy_data, i_out] 990 990 """ 991 out = n umpy.empty(0)991 out = np.empty(0) 992 992 #s = time.time() 993 993 for ind in range(len(input[0])): … … 998 998 inputi = [input[0][ind:ind + 1], [], input[2][ind:ind + 1]] 999 999 outi = self.model.run(inputi) 1000 out = n umpy.append(out, outi)1000 out = np.append(out, outi) 1001 1001 else: 1002 1002 if ind % 50 == 0 and update != None: … … 1006 1006 input[2][ind:ind + 1]] 1007 1007 outi = self.model.runXY(inputi) 1008 out = n umpy.append(out, outi)1008 out = np.append(out, outi) 1009 1009 #print time.time() - s 1010 1010 if self.is_avg or self.is_avg == None: … … 1027 1027 self.npts_x = int(float(self.npt_ctl.GetValue())) 1028 1028 self.data = Data2D() 1029 qmax = self.qmax_x #/ n umpy.sqrt(2)1029 qmax = self.qmax_x #/ np.sqrt(2) 1030 1030 self.data.xaxis('\\rm{Q_{x}}', '\AA^{-1}') 1031 1031 self.data.yaxis('\\rm{Q_{y}}', '\AA^{-1}') … … 1048 1048 qstep = self.npts_x 1049 1049 1050 x = n umpy.linspace(start=xmin, stop=xmax, num=qstep, endpoint=True)1051 y = n umpy.linspace(start=ymin, stop=ymax, num=qstep, endpoint=True)1050 x = np.linspace(start=xmin, stop=xmax, num=qstep, endpoint=True) 1051 y = np.linspace(start=ymin, stop=ymax, num=qstep, endpoint=True) 1052 1052 ## use data info instead 1053 new_x = n umpy.tile(x, (len(y), 1))1054 new_y = n umpy.tile(y, (len(x), 1))1053 new_x = np.tile(x, (len(y), 1)) 1054 new_y = np.tile(y, (len(x), 1)) 1055 1055 new_y = new_y.swapaxes(0, 1) 1056 1056 # all data reuire now in 1d array 1057 1057 qx_data = new_x.flatten() 1058 1058 qy_data = new_y.flatten() 1059 q_data = n umpy.sqrt(qx_data * qx_data + qy_data * qy_data)1059 q_data = np.sqrt(qx_data * qx_data + qy_data * qy_data) 1060 1060 # set all True (standing for unmasked) as default 1061 mask = n umpy.ones(len(qx_data), dtype=bool)1061 mask = np.ones(len(qx_data), dtype=bool) 1062 1062 # store x and y bin centers in q space 1063 1063 x_bins = x 1064 1064 y_bins = y 1065 1065 self.data.source = Source() 1066 self.data.data = n umpy.ones(len(mask))1067 self.data.err_data = n umpy.ones(len(mask))1066 self.data.data = np.ones(len(mask)) 1067 self.data.err_data = np.ones(len(mask)) 1068 1068 self.data.qx_data = qx_data 1069 1069 self.data.qy_data = qy_data … … 1084 1084 :warning: This data is never plotted. 1085 1085 residuals.x = data_copy.x[index] 1086 residuals.dy = n umpy.ones(len(residuals.y))1086 residuals.dy = np.ones(len(residuals.y)) 1087 1087 residuals.dx = None 1088 1088 residuals.dxl = None … … 1091 1091 self.qmax_x = float(self.qmax_ctl.GetValue()) 1092 1092 self.npts_x = int(float(self.npt_ctl.GetValue())) 1093 qmax = self.qmax_x #/ n umpy.sqrt(2)1093 qmax = self.qmax_x #/ np.sqrt(2) 1094 1094 ## Default values 1095 1095 xmax = qmax 1096 1096 xmin = qmax * _Q1D_MIN 1097 1097 qstep = self.npts_x 1098 x = n umpy.linspace(start=xmin, stop=xmax, num=qstep, endpoint=True)1098 x = np.linspace(start=xmin, stop=xmax, num=qstep, endpoint=True) 1099 1099 # store x and y bin centers in q space 1100 1100 #self.data.source = Source() 1101 y = n umpy.ones(len(x))1102 dy = n umpy.zeros(len(x))1103 dx = n umpy.zeros(len(x))1101 y = np.ones(len(x)) 1102 dy = np.zeros(len(x)) 1103 dx = np.zeros(len(x)) 1104 1104 self.data = Data1D(x=x, y=y) 1105 1105 self.data.dx = dx … … 1171 1171 state = None 1172 1172 1173 n umpy.nan_to_num(image)1173 np.nan_to_num(image) 1174 1174 new_plot = Data2D(image=image, err_image=data.err_data) 1175 1175 new_plot.name = model.name + '2d' … … 1640 1640 for key in sld_list.keys(): 1641 1641 if ctr_list[0] == key: 1642 min_val = n umpy.min(sld_list[key])1643 max_val = n umpy.max(sld_list[key])1644 mean_val = n umpy.mean(sld_list[key])1642 min_val = np.min(sld_list[key]) 1643 max_val = np.max(sld_list[key]) 1644 mean_val = np.mean(sld_list[key]) 1645 1645 enable = (min_val == max_val) and \ 1646 1646 sld_data.pix_type == 'pixel' … … 1733 1733 npts = -1 1734 1734 break 1735 if n umpy.isfinite(n_val):1735 if np.isfinite(n_val): 1736 1736 npts *= int(n_val) 1737 1737 if npts > 0: … … 1770 1770 ctl.Refresh() 1771 1771 return 1772 if n umpy.isfinite(s_val):1772 if np.isfinite(s_val): 1773 1773 s_size *= s_val 1774 1774 self.sld_data.set_pixel_volumes(s_size) … … 1787 1787 try: 1788 1788 sld_data = self.parent.get_sld_from_omf() 1789 #nop = (nop * n umpy.pi) / 61789 #nop = (nop * np.pi) / 6 1790 1790 nop = len(sld_data.sld_n) 1791 1791 except: -
src/sas/sasgui/perspectives/fitting/model_thread.py
rc1c9929 r9a5097c 4 4 5 5 import time 6 import numpy 6 import numpy as np 7 7 import math 8 8 from sas.sascalc.data_util.calcthread import CalcThread … … 68 68 69 69 # Define matrix where data will be plotted 70 radius = n umpy.sqrt((self.data.qx_data * self.data.qx_data) + \70 radius = np.sqrt((self.data.qx_data * self.data.qx_data) + \ 71 71 (self.data.qy_data * self.data.qy_data)) 72 72 … … 75 75 index_model = (self.qmin <= radius) & (radius <= self.qmax) 76 76 index_model = index_model & self.data.mask 77 index_model = index_model & n umpy.isfinite(self.data.data)77 index_model = index_model & np.isfinite(self.data.data) 78 78 79 79 if self.smearer is not None: … … 91 91 self.data.qy_data[index_model] 92 92 ]) 93 output = n umpy.zeros(len(self.data.qx_data))93 output = np.zeros(len(self.data.qx_data)) 94 94 # output default is None 95 95 # This method is to distinguish between masked … … 163 163 """ 164 164 self.starttime = time.time() 165 output = n umpy.zeros((len(self.data.x)))165 output = np.zeros((len(self.data.x))) 166 166 index = (self.qmin <= self.data.x) & (self.data.x <= self.qmax) 167 167 … … 175 175 self.qmax) 176 176 mask = self.data.x[first_bin:last_bin+1] 177 unsmeared_output = n umpy.zeros((len(self.data.x)))177 unsmeared_output = np.zeros((len(self.data.x))) 178 178 unsmeared_output[first_bin:last_bin+1] = self.model.evalDistribution(mask) 179 179 self.smearer.model = self.model … … 183 183 # Check that the arrays are compatible. If we only have a model but no data, 184 184 # the length of data.y will be zero. 185 if isinstance(self.data.y, n umpy.ndarray) and output.shape == self.data.y.shape:186 unsmeared_data = n umpy.zeros((len(self.data.x)))187 unsmeared_error = n umpy.zeros((len(self.data.x)))185 if isinstance(self.data.y, np.ndarray) and output.shape == self.data.y.shape: 186 unsmeared_data = np.zeros((len(self.data.x))) 187 unsmeared_error = np.zeros((len(self.data.x))) 188 188 unsmeared_data[first_bin:last_bin+1] = self.data.y[first_bin:last_bin+1]\ 189 189 * unsmeared_output[first_bin:last_bin+1]\ … … 209 209 210 210 if p_model is not None and s_model is not None: 211 sq_values = n umpy.zeros((len(self.data.x)))212 pq_values = n umpy.zeros((len(self.data.x)))211 sq_values = np.zeros((len(self.data.x))) 212 pq_values = np.zeros((len(self.data.x))) 213 213 sq_values[index] = s_model.evalDistribution(self.data.x[index]) 214 214 pq_values[index] = p_model.evalDistribution(self.data.x[index]) -
src/sas/sasgui/perspectives/fitting/utils.py
rd85c194 r9a5097c 2 2 Module contains functions frequently used in this package 3 3 """ 4 import numpy 4 import numpy as np 5 5 6 6 … … 19 19 data = data.y 20 20 if flag == 0: 21 weight = n umpy.ones_like(data)21 weight = np.ones_like(data) 22 22 elif flag == 1: 23 23 weight = dy_data 24 24 elif flag == 2: 25 weight = n umpy.sqrt(numpy.abs(data))25 weight = np.sqrt(np.abs(data)) 26 26 elif flag == 3: 27 weight = n umpy.abs(data)27 weight = np.abs(data) 28 28 return weight -
src/sas/sasgui/perspectives/pr/explore_dialog.py
rd85c194 r9a5097c 19 19 20 20 import wx 21 import numpy 21 import numpy as np 22 22 import logging 23 23 import sys … … 65 65 66 66 step = (self.max - self.min) / (self.npts - 1) 67 self.x = n umpy.arange(self.min, self.max + step * 0.01, step)68 dx = n umpy.zeros(len(self.x))69 y = n umpy.ones(len(self.x))70 dy = n umpy.zeros(len(self.x))67 self.x = np.arange(self.min, self.max + step * 0.01, step) 68 dx = np.zeros(len(self.x)) 69 y = np.ones(len(self.x)) 70 dy = np.zeros(len(self.x)) 71 71 72 72 # Plot area -
src/sas/sasgui/perspectives/pr/pr.py
ra69a967 r9a5097c 21 21 import time 22 22 import math 23 import numpy 23 import numpy as np 24 24 import pylab 25 25 from sas.sasgui.guiframe.gui_manager import MDIFrame … … 207 207 r = pylab.arange(0.01, d_max, d_max / 51.0) 208 208 M = len(r) 209 y = n umpy.zeros(M)210 pr_err = n umpy.zeros(M)209 y = np.zeros(M) 210 pr_err = np.zeros(M) 211 211 212 212 total = 0.0 … … 253 253 """ 254 254 # Show P(r) 255 y_true = n umpy.zeros(len(x))255 y_true = np.zeros(len(x)) 256 256 257 257 sum_true = 0.0 … … 307 307 308 308 x = pylab.arange(minq, maxq, maxq / 301.0) 309 y = n umpy.zeros(len(x))310 err = n umpy.zeros(len(x))309 y = np.zeros(len(x)) 310 err = np.zeros(len(x)) 311 311 for i in range(len(x)): 312 312 value = pr.iq(out, x[i]) … … 337 337 if pr.slit_width > 0 or pr.slit_height > 0: 338 338 x = pylab.arange(minq, maxq, maxq / 301.0) 339 y = n umpy.zeros(len(x))340 err = n umpy.zeros(len(x))339 y = np.zeros(len(x)) 340 err = np.zeros(len(x)) 341 341 for i in range(len(x)): 342 342 value = pr.iq_smeared(out, x[i]) … … 382 382 x = pylab.arange(0.0, pr.d_max, pr.d_max / self._pr_npts) 383 383 384 y = n umpy.zeros(len(x))385 dy = n umpy.zeros(len(x))386 y_true = n umpy.zeros(len(x))384 y = np.zeros(len(x)) 385 dy = np.zeros(len(x)) 386 y_true = np.zeros(len(x)) 387 387 388 388 total = 0.0 389 389 pmax = 0.0 390 cov2 = n umpy.ascontiguousarray(cov)390 cov2 = np.ascontiguousarray(cov) 391 391 392 392 for i in range(len(x)): … … 480 480 """ 481 481 # Read the data from the data file 482 data_x = n umpy.zeros(0)483 data_y = n umpy.zeros(0)484 data_err = n umpy.zeros(0)482 data_x = np.zeros(0) 483 data_y = np.zeros(0) 484 data_err = np.zeros(0) 485 485 scale = None 486 486 min_err = 0.0 … … 504 504 #err = 0 505 505 506 data_x = n umpy.append(data_x, x)507 data_y = n umpy.append(data_y, y)508 data_err = n umpy.append(data_err, err)506 data_x = np.append(data_x, x) 507 data_y = np.append(data_y, y) 508 data_err = np.append(data_err, err) 509 509 except: 510 510 logging.error(sys.exc_value) … … 528 528 """ 529 529 # Read the data from the data file 530 data_x = n umpy.zeros(0)531 data_y = n umpy.zeros(0)532 data_err = n umpy.zeros(0)530 data_x = np.zeros(0) 531 data_y = np.zeros(0) 532 data_err = np.zeros(0) 533 533 scale = None 534 534 min_err = 0.0 … … 555 555 #err = 0 556 556 557 data_x = n umpy.append(data_x, x)558 data_y = n umpy.append(data_y, y)559 data_err = n umpy.append(data_err, err)557 data_x = np.append(data_x, x) 558 data_y = np.append(data_y, y) 559 data_err = np.append(data_err, err) 560 560 except: 561 561 logging.error(sys.exc_value) … … 640 640 # Now replot the original added data 641 641 for plot in self._added_plots: 642 self._added_plots[plot].y = n umpy.copy(self._default_Iq[plot])642 self._added_plots[plot].y = np.copy(self._default_Iq[plot]) 643 643 wx.PostEvent(self.parent, 644 644 NewPlotEvent(plot=self._added_plots[plot], … … 664 664 # Now scale the added plots too 665 665 for plot in self._added_plots: 666 total = n umpy.sum(self._added_plots[plot].y)666 total = np.sum(self._added_plots[plot].y) 667 667 npts = len(self._added_plots[plot].x) 668 668 total *= self._added_plots[plot].x[npts - 1] / npts … … 814 814 # Save Pr invertor 815 815 self.pr = pr 816 cov = n umpy.ascontiguousarray(cov)816 cov = np.ascontiguousarray(cov) 817 817 818 818 # Show result on control panel … … 982 982 all_zeros = True 983 983 if err == None: 984 err = n umpy.zeros(len(pr.y))984 err = np.zeros(len(pr.y)) 985 985 else: 986 986 for i in range(len(err)): … … 1088 1088 # If we have not errors, add statistical errors 1089 1089 if y is not None: 1090 if err == None or n umpy.all(err) == 0:1091 err = n umpy.zeros(len(y))1090 if err == None or np.all(err) == 0: 1091 err = np.zeros(len(y)) 1092 1092 scale = None 1093 1093 min_err = 0.0 -
src/sas/sasgui/perspectives/simulation/simulation.py
rd85c194 r9a5097c 10 10 import wx 11 11 import os 12 import numpy 12 import numpy as np 13 13 import time 14 14 import logging … … 46 46 def compute(self): 47 47 x = self.x 48 output = n umpy.zeros(len(x))49 error = n umpy.zeros(len(x))48 output = np.zeros(len(x)) 49 error = np.zeros(len(x)) 50 50 51 51 self.starttime = time.time() … … 123 123 # Q-values for plotting simulated I(Q) 124 124 step = (self.q_max-self.q_min)/(self.q_npts-1) 125 self.x = n umpy.arange(self.q_min, self.q_max+step*0.01, step)125 self.x = np.arange(self.q_min, self.q_max+step*0.01, step) 126 126 127 127 # Set the list of panels that are part of the simulation perspective … … 187 187 # Q-values for plotting simulated I(Q) 188 188 step = (self.q_max-self.q_min)/(self.q_npts-1) 189 self.x = n umpy.arange(self.q_min, self.q_max+step*0.01, step)189 self.x = np.arange(self.q_min, self.q_max+step*0.01, step) 190 190 191 191 # Compute the simulated I(Q)
Note: See TracChangeset
for help on using the changeset viewer.