Ignore:
Timestamp:
Mar 26, 2017 11:33:16 PM (8 years ago)
Author:
andyfaff
Branches:
master, ESS_GUI, ESS_GUI_Docs, ESS_GUI_batch_fitting, ESS_GUI_bumps_abstraction, ESS_GUI_iss1116, ESS_GUI_iss879, ESS_GUI_iss959, ESS_GUI_opencl, ESS_GUI_ordering, ESS_GUI_sync_sascalc, costrafo411, magnetic_scatt, release-4.2.2, ticket-1009, ticket-1094-headless, ticket-1242-2d-resolution, ticket-1243, ticket-1249, ticket885, unittest-saveload
Children:
ed2276f
Parents:
9146ed9
Message:

MAINT: import numpy as np

File:
1 edited

Legend:

Unmodified
Added
Removed
  • src/sas/sasgui/perspectives/fitting/model_thread.py

    rc1c9929 r9a5097c  
    44 
    55import time 
    6 import numpy 
     6import numpy as np 
    77import math 
    88from sas.sascalc.data_util.calcthread import CalcThread 
     
    6868 
    6969        # Define matrix where data will be plotted 
    70         radius = numpy.sqrt((self.data.qx_data * self.data.qx_data) + \ 
     70        radius = np.sqrt((self.data.qx_data * self.data.qx_data) + \ 
    7171                    (self.data.qy_data * self.data.qy_data)) 
    7272 
     
    7575        index_model = (self.qmin <= radius) & (radius <= self.qmax) 
    7676        index_model = index_model & self.data.mask 
    77         index_model = index_model & numpy.isfinite(self.data.data) 
     77        index_model = index_model & np.isfinite(self.data.data) 
    7878 
    7979        if self.smearer is not None: 
     
    9191                self.data.qy_data[index_model] 
    9292            ]) 
    93         output = numpy.zeros(len(self.data.qx_data)) 
     93        output = np.zeros(len(self.data.qx_data)) 
    9494        # output default is None 
    9595        # This method is to distinguish between masked 
     
    163163        """ 
    164164        self.starttime = time.time() 
    165         output = numpy.zeros((len(self.data.x))) 
     165        output = np.zeros((len(self.data.x))) 
    166166        index = (self.qmin <= self.data.x) & (self.data.x <= self.qmax) 
    167167 
     
    175175                                                             self.qmax) 
    176176            mask = self.data.x[first_bin:last_bin+1] 
    177             unsmeared_output = numpy.zeros((len(self.data.x))) 
     177            unsmeared_output = np.zeros((len(self.data.x))) 
    178178            unsmeared_output[first_bin:last_bin+1] = self.model.evalDistribution(mask) 
    179179            self.smearer.model = self.model 
     
    183183            # Check that the arrays are compatible. If we only have a model but no data, 
    184184            # the length of data.y will be zero. 
    185             if isinstance(self.data.y, numpy.ndarray) and output.shape == self.data.y.shape: 
    186                 unsmeared_data = numpy.zeros((len(self.data.x))) 
    187                 unsmeared_error = numpy.zeros((len(self.data.x))) 
     185            if isinstance(self.data.y, np.ndarray) and output.shape == self.data.y.shape: 
     186                unsmeared_data = np.zeros((len(self.data.x))) 
     187                unsmeared_error = np.zeros((len(self.data.x))) 
    188188                unsmeared_data[first_bin:last_bin+1] = self.data.y[first_bin:last_bin+1]\ 
    189189                                                        * unsmeared_output[first_bin:last_bin+1]\ 
     
    209209 
    210210        if p_model is not None and s_model is not None: 
    211             sq_values = numpy.zeros((len(self.data.x))) 
    212             pq_values = numpy.zeros((len(self.data.x))) 
     211            sq_values = np.zeros((len(self.data.x))) 
     212            pq_values = np.zeros((len(self.data.x))) 
    213213            sq_values[index] = s_model.evalDistribution(self.data.x[index]) 
    214214            pq_values[index] = p_model.evalDistribution(self.data.x[index]) 
Note: See TracChangeset for help on using the changeset viewer.